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In recent years, research in structural proof theory has focused on analytic calculi [14, 3,
10, 2, 18, 19], understood as those calculi supporting a robust form of cut elimination, i.e. one
which is preserved by adding rules of a specific shape (the analytic rules). Important results
on analytic calculi have been obtained in the context of various proof-theoretic formalisms:
(classes of) axioms have been identified for which equivalent correspondences with analytic
rules have been established algorithmically or semi-algorithmically. This strand of research
has been developed in the context of sequent and labelled calculi [16, 17, 15, 14], sequent and
hypersequent calculi [3, 12, 13], and (proper) display calculi [11, 4, 10].

In [10], which is the contribution in the line of research described above to which the results
discussed in the present talk most directly connect, a characterization, analogous to the one
of [4],! of the property of being properly displayable? is obtained for arbitrary normal (D)LE-
logics® via a systematic connection between proper display calculi and generalized Sahlqvist
correspondence theory (aka unified correspondence [5, 6, 7, 8]). Thanks to this connection,
general meta-theoretic results are established for properly displayable (D)LE-logics. In partic-
ular, in [10], the properly displayable (D)LE-logics are syntactically characterized as the logics
axiomatised by analytic inductive azioms (namely axioms of a given syntactic shape, see [10,
Definition 51 and 55]); moreover, the same algorithm ALBA which computes the first-order
correspondent of (analytic) inductive (D)LE-axioms can be used to effectively compute their
corresponding analytic structural rule(s). In [1], following [9], residuated families of unary
and binary connectives are studied parametrically in group actions on the coordinates of the
relations associated with the connectives.

The semantic equivalence between each analytic inductive axiom ¢ F 1) and its correspond-
ing analytic structural rule(s) Ry,...,R,, discussed in [10], is an immediate consequence of
the soundness of the rules of ALBA on perfect normal (distributive) lattice expansions. On
the syntactic side, a description of the derivation, which relies on the proof-theoretic version of
Ackermann’s Lemma and therefore involves cuts, is presented in [4]. However, an effective pro-
cedure was still missing for building cut-free derivations of ¢ I 1) in the proper display calculus
obtained by adding Ry, ..., R, to the basic proper display calculus D.LE (resp. D.DLE) of the
basic normal (D)LE-logic. Such an effective procedure would establish, via syntactic means,
that for any properly displayable (D)LE-logic L, the proper display calculus for L—i.e. the
calculus obtained by adding the analytic structural rules obtained from the axioms of L to
the basic calculus D.LE (resp. D.DLE)—derives all the theorems (or derivable sequents) of L.
This is what we refer to as the syntactic completeness of the proper display calculus for L with
respect to any analytic (D)LE-logic L. This syntactic completeness result for all properly dis-
playable logics in arbitrary (D)LE-signatures is the main contribution of the present research.
It is perhaps worth emphasizing that we do not just show that any analytic inductive axiom
is derivable in its corresponding proper display calculus, but we also provide an algorithm to
generate a cut-free derivation of a particular shape that we refer to as being in pre-normal form.

!For a comparison between the characterizations in [4] and in [10], see [10, Section 9].

2A display calculus is proper if every structural rule is closed under uniform substitution. A logic is (properly)
displayable if it can be captured by some (proper) display calculus (see [10, Section 2.2]).

3Normal (D)LE-logics are those logics algebraically captured by varieties of normal (distributive) lattice
expansions, i.e. (distributive) lattices endowed with additional operations that are finitely join-preserving or
meet-reversing in each coordinate, or are finitely meet-preserving or join-reversing in each coordinate.
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