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A space X is said to be TD if every point x ∈ X has an open neighborhood U such that
U − {x} is open (cf. [3]). This is a weak separation axiom, stronger than T0 and weaker than
T1, and it plays an important role in point-free topology (see, for instance, [6]).

Actually, it can be argued that the importance of the TD axiom is similar to that of sobriety
because both concepts are, in a certain sense, dual to each other [4] — see for example the
following two symmetric characterizations:

• A space X is sober if and only if there is no proper subspace inclusion ι : X ↪→ Y such
that the associated frame homomorphism Ω(ι) is an isomorphism.

• A space X is TD if and only if there is no proper subspace inclusion ι : Y ↪→ X such that
the associated frame homomorphism Ω(ι) is an isomorphism.

Now, the classical adjunction
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between topological spaces and locales restricts to an equivalence between sober spaces and
spatial locales; and it was shown by Banaschewski and Pultr in [4] that there is a similar
situation for the TD-case. More precisely, there is an adjunction
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where TopD denotes the category of TD-spaces and their continuous maps, and LocD is a certain
non-full subcategory of Loc. This adjunction restricts to an equivalence between TopD and the
subcategory of LocD consisting of TD-spatial locales. Since Ω is full and faithful, one may
regard LocD as a category of generalized TD-spaces.

In this talk, following [1, 2], we shall discuss the basic properties of the category LocD, paying
special attention to its regular subobject lattices (i.e., the lattices of generalized subspaces in
the TD-duality).

We will provide TD-analogues of some well-known constructions in the theory of locales
(e.g., the assembly of a frame), and explore some of their applications in point-free topology,
especially in connection with TD-spatiality. We will also stress the similarities and differences
between the classical sober-spatial duality and the TD-duality (e.g., the functorial behaviour of
the assembly).

Parts of this talk are joint work with Javier Gutiérrez Garćıa and Anna Laura Suarez.
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