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Focused sequent calculi [1, 2, 11] make use of syntactic restrictions on the applicability of
inference rules achieving three main goals: (i) the proof search space is considerably reduced
without losing completeness, (ii) every cut-free proof comes in a special normal form, (iii) a
criterion for defining identity of sequent calculi proofs. Being able to identify or tell apart two
proofs has far-reaching consequences.

We introduce a novel focused display calculus fD.LG and a fully polarized algebraic seman-
tics (see the last paragraph of this abstract for more details on this) FP.LG for Lambek-Grishin
logic [12] by generalising the theory of multi-type calculi [5] and their algebraic semantics, ad-
mitting not only heterogeneous operators [4], but also heterogeneous consequence relations (see
[9]) now interpreted as weakening relations [10] (i.e. a natural generalisation of partial orders).
The calculus fD.LG has strong focalization and it is sound and complete w.r.t. FP.LG. This
completeness result is in a sense stronger than completeness with respect to standard polarized
algebraic semantics, insofar we do not need to quotient over proofs with consecutive appli-
cations of shifts operator over the same formula (see the last paragraph of this abstract for
more details on this). We also show a number of additional results. fD.LG is sound and
complete w.r.t. LG-algebras: this amounts to a semantic proof of the completeness of focus-
ing, given that the standard (display) sequent calculus for Lambek-Grishin logic is complete
w.r.t. LG-algebras. fD.LG and the focused calculus fLG of Moortgat and Moot are equivalent
with respect to proofs, indeed there is an effective translation from fL.G-derivations to fD.LG-
derivations and vice versa: this provides the link with operational semantics, given that every
fLG-derivation is in a Curry-Howard correspondence with a directional Aujfi-term.

We conjecture that this approach, here tailored for the signature of the Lambek-Grishin
logic, can be extended to a large class of logics, namely all lattice expansions logics extended
with analytic inductive azioms (see [6]). We conjecture that if a calculus belongs to this class,
then it enjoys cut-elimination, aiming at generalizing the cut-elimination meta-theorem in the
tradition of display calculi (see [13]). Moreover, we conjecture that any displayable logic [6] can
be equivalently presented as an instance of this class.

In what follows we summarise the main features of this analysis in general terms, without
special reference to Lambek-Grishin logic. In the case of focused sequent calculi, the distinc-
tion between positive versus negative formulas is the key ingredient for organising proofs in
phases. The distinction is proof-theoretically relevant in that it reflects a fundamental distinc-
tion between logical introduction rules. We observe that this distinction is also semantically
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grounded, indeed the main connective of a positive formula (in the original language of the
logic) is a left adjoint/residual and the main connective of a negative formula (in the original
language of the logic) is a right adjoint/residual. Proofs in focalized normal form (see [12]) are
cut-free proofs organised in three phases: two focused phases (either positive or negative) and
one non-focused phase (also called neutral phase). A focused positive (resp. negative) phase
in a derivation is a proof-section where a formula is decomposed as much as possible only by
means of non-invertible logical rules for positive (resp. negative) connectives. This formula and
all its immediate subformulas in this proof-section are said ‘in focus’. All the other rules are
applied only in non-focused phases. So, each derivable sequent has at most one formula in fo-
cus. Moreover, the interaction between two focused phases is always mediated by a non-focused
phase.

Shift operators —usually denoted as 1 and | ([7, 8, 3])— are often considered to polarize a
focused sequent calculus, i.e. as a tool to control the interplay between positive and negative
formulas and the interaction between phases. Shifts are adjoint unary operators that change
the polarity of a formula, where T goes from positive to negative, | goes from negative to
positive, and T-]. In this paper, we consider positive and negative formulas as formulas of
different sorts. We also distinguish between positive (resp. negative) pure formulas and positive
(resp. negative) shifted formulas, i.e. formulas under the scope of a shift operator. So, we
end up considering four different sorts, each of which is interpreted in a different sub-algebra.
Therefore, in this setting shifts are heterogeneous operators, where 1 gets split into 1 (from
positive pure formulas into negative shifted formulas) and | (from positive shifted formulas into
negative pure formulas), | gets split into | (from negative pure formulas into positive shifted
formulas) and | (from negative shifted formulas into positive pure formulas), 1 4 | and 1 - |.
Moreover, the composition of two shifts is still either a closure or an interior operator (by
adjunction), but we do not assume that it is an identity. We call a presentation of a logic with
the features described above full polarization.
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