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Let X be a sober space and L = O(X) the frame of open subsets of X. The Hofmann-
Mislove Theorem [7] establishes that the poset of Scott-open filters of L (ordered by reverse
inclusion) is isomorphic to the poset of compact saturated subsets of X (ordered by inclusion).
This classic result was proved in 1981 and turned out to be an extremely useful link between
domain theory and topology. Several alternative proofs of the theorem have been established
since then (see, e.g., [5]). Of these, the proof by Keimel and Paseka [10] is probably the most
direct and widely accepted.

There is a similar result in Priestley duality for distributive lattices [11], which establishes
that the poset of filters of a bounded distributive lattice L is isomorphic to the poset of closed
upsets of the Priestley space X of L. A close look at the two proofs reveals striking similarities.
Indeed, it was pointed out in [2] that the latter result can be obtained from the Hofmann-Mislove
Theorem. This can be seen as follows:

Let L be a bounded distributive lattice and I(L) the frame of ideals of L. It is well
understood [9] that I(L) is a coherent frame, and that I is a functor that establishes an
equivalence between the categories Dist of bounded distributive lattices and CohFrm of coherent
frames. On the other hand, CohFrm is dually equivalent to the category Spec of spectral spaces
[9]. Since each spectral space is sober, the Hofmann-Mislove Theorem yields that for each
spectral space X, the poset of Scott-open filters of O(X) is isomorphic to the poset of compact
saturated subsets of X. But Spec is isomorphic to the category Pries of Priestley spaces [3].
Under this isomorphism, compact saturated sets are exactly the closed upsets. Furthermore,
under the equivalence between CohFrm and Dist, Scott-open filters of O(X) correspond to filters
of the distributive lattice L of compact elements of O(X). Thus, the Hofmann-Mislove Theorem
implies that the poset of filters of a bounded distributive lattice L is isomorphic to the poset
of closed upsets of the Priestley space X of L.

We provide a new approach to the Hofmann-Mislove Theorem by showing that we can also
go in the opposite direction and derive the Hofmann-Mislove Theorem by utilizing Priestley
duality. Namely, let L be a frame, and let X be the Priestley space of L. Since every frame
is a Heyting algebra, X is an Esakia space [4]. Moreover, since L is a complete lattice, X is
extremally order-disconnected. To simplify notation, we refer to extremally order-disconnected
Esakia spaces simply as localic spaces.

For a localic space X, let Y = {x ∈ X | ↓x is clopen}. By [1], if X is the Priestley space of
a frame L, then Y is exactly the space of points of L. Thus, L is spatial iff Y is dense in X.

The key ingredient of our proof is a characterization of Scott-open filters of L in the language
of Priestley duality.

Definition 1. Let X be a localic space and C a closed upset of X. We call C a Scott-upset if
minC ⊆ Y .
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Theorem 2. Let L be a frame, X its Priestley space, F a filter of L, and C(F ) its dual closed
upset of X.

(1) F is Scott-open iff C(F ) is a Scott-upset.

(2) The poset of Scott-upsets of X is isomorphic to the poset of compact saturated subsets of
Y .

The Hofmann-Mislove Theorem is now an immediate consequence of Theorem 2. Addi-
tionally, our approach allows us to give alternate proofs for some other well-known results in
domain theory and pointfree topology, including:

• Hofmann-Lawson duality between locally compact frames and locally compact sober
spaces [6],

• Johnstone duality between stably locally compact frames and stably locally compact
spaces [9], and

• Isbell duality between compact regular frames and compact Hausdorff spaces [8].
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