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The seminal work of Kochen and Specker [11] showed that quantum mechanics is funda-
mentally contextual : the properties of a quantum system must be considered relative to the
context in which they are measured. There is no consistent way of assigning values to all the
observables. In [3, 4, 2], contextuality was studied from a sheaf-theoretic point of view, and
sheaf cohomology was used to characterise the obstructions to having a consistent global as-
signment to all the variables. One could say that cohomology detects the holes which prevent
there being a consistent picture of a global whole.

Constraint satisfaction is an important algorithmic paradigm which allows the application
of structural methods to central questions of complexity theory. The “non-uniform” version
CSP(B) for a fixed finite σ-structure B, where σ is a finite relational vocabulary, asks for an
instance given by a finite σ-structure A whether there is a σ-homomorphism A → B. The
celebrated Feder-Vardi Dichotomy Conjecture [8] asked whether for every B, CSP(B) is either
polynomial-time solvable, or NP-complete. This conjecture was recently proved by Bulatov and
Zhuk [5, 12].

Recently, Adam Ó Conghaile has pointed out surprisingly close connections between these
two, prima facie completely unrelated topics [7], further developed in [1].

• The idea of k-consistency in constraint satisfaction, an approximation method which yields
exact results in a wide range of cases, is naturally represented as the coflasquification (dual
to the well-known Godement construction [9]) of a sheaf of partial homomorphisms.

• These representations take the same form as the sheaf-theoretic representations of contex-
tuality in [3]. This in turn allows the cohomological criteria for contextuality introduced
in [4, 2] to be used to give a computationally efficient refinement of k-consistency.

• The results in [4, 2] can be leveraged to show that this refined version of k-consistency
gives exact results for all affine templates, which form one of the main tractable classes
for which the standard k-consistency algorithm fails.

• Current work is aimed at determining the exact power of the cohomological refinement
of k-consistency.

• The same ideas can be adapted to give a very similar analysis for the widely studied
Weisfeiler-Leman equivalences [10], which give polynomial-time approximations to graph
and structure isomorphism. Cohomological refinements of these equivalences can then be
introduced, and are shown in [7] to defeat various families of counter-examples based on
the Cai-Furer-Immerman construction [6], which is paradigmatic in finite model theory.
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