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In classical model theory, there is a number of results (“composition theorems”) that reduce
the theory (first-order, MSO) of a compound structure (e.g., sum or product) to the theories
of its components, see, e.g., [Gur85]. In this talk we discuss the composition method in the
context of modal logic.

We consider the operation of sum on Kripke frames, where a family of frames-summands is
indexed by elements of another frame. In many cases, the modal logic of sums inherits the finite
model property and decidability from the modal logic of summands [BR10], [Sha18]. Under a
general condition, the satisfiability problem on sums is polynomial space Turing reducible to
the satisfiability problem on summands; in particular, for many modal logics decidability in
PSpace is an immediate corollary from the semantic characterization of the logic [Sha22].

In this talk we announce the following result: if both the logic of indices and the logic of
summands are locally finite, then the logic of sums is also locally finite. We also formulate a
sufficient syntactic condition for local finiteness of bimodal logics.

Main result

Fix an A < ω for the alphabet of modal operators.

Definition 1. Consider a family (Fi)i∈I of A-frames Fi = (Wi, (Ri,a)a∈A). The sum∑
i∈I Fi of the family (Fi)i∈I of A-frames over an A-frame I = (I, (Sa)a∈A) is the A-frame

(
⊔

i∈I Wi, (R
Σ
a )a∈A), where

⊔
i∈I Wi =

⋃
i∈I({i} ×Wi) is the disjoint union of sets Wi, and

(i, w)RΣ
a (j, v) iff (i = j&wRi,av) or (i 6= j& iSaj).

For classes I, F of A-frames, let
∑

I F be the class of all sums
∑

i∈I Fi such that I ∈ I and
Fi ∈ F for every i in I.

Modal logics of sums appear in various contexts such as provability logic, complexity and
decision problems, completeness problems; see, e.g., [Bek10, Sha08, Bal09, BR10, Sha18, Sha22].

Theorem 1. Let F and I be classes of A-frames. If the modal logics Log(F) and Log(I) are
locally finite, then the logic Log(

∑
I F) is locally finite as well.

The proof is based on the semantic criterion of local finiteness given in [SS16] (Theorem 4.3).

Lexicographic sums

The sum operation given above does not change the signature. In many cases it is convenient
to characterize a polymodal logic via the following variant of the sum operation.

Definition 2. Let I = (I, S) be a unimodal frame, (Fi)i∈I a family of A-frames, Fi =

(Wi, (Ri,a)a∈A). The lexicographic sum
lex∑

IFi is the (1 + A)-frame
(⊔

i∈I Wi, S
lex, (Ra)a<N

)
,

where

(i, w)Slex(j, u) iff iSj,

(i, w)Ra(j, u) iff i = j & wRi,au.



For a class F of A-frames and a class I of 1-frames,
lex∑

IF denotes the class of all sums
lex∑

IFi,

where I ∈ I and all Fi are in F . For a unimodal L1, let
lex∑

L1
L2 be the logic of the class

lex∑
FramesL1

FramesL2.

In the case when all summands are equal, this operation is the lexicographic product; lexi-
cographic products of modal logics were introduced in [Bal09].

Theorem 2. Let L1 be a unimodal logic, L2 be an A-modal logic. If L1 and L2 are locally

finite, then the logic
lex∑

L1
L2 is locally finite as well.

This theorem is an easy corollary of Theorem 1.
Consider the 2-modal formulas α = ♦1♦0p → ♦0p, β = ♦0♦1p → ♦0p, γ = ♦0p → 21♦0p.

One can see that these formulas are valid in every lexicographic sum
lex∑

IFi of 1-frames Fi. In

many cases, α, β, γ provide a complete axiomatization of
lex∑

L1
L2, that is we have

lex∑
L1

L2 = L1 ∗ L2 + {α, β, γ}, (1)

where L1 ∗ L2 denotes the fusion of unimodal L1 and L2, L + Ψ denotes the smallest normal

logic containing L∪Ψ. In particular, (1) holds for the logic
lex∑

GLGL [Bek10] (where GL is the

Gödel-Löb logic) and for
lex∑

S4S4 [Bal09].

Theorem 3. Let L1 and L2 be locally finite canonical unimodal logics. If the class FramesL1

is definable in first-order language without equality, then the logic L1 ∗ L2 + {α, β, γ} is locally
finite.

The proof follows from the fact that under the condition of the theorem, (1) holds for L1 and L2.
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