The coordinatization of the spectra of ℓ -groups

LUCA CARAI, SERAFINA LAPENTA AND LUCA SPADA*

University of Salerno {lcarai, slapenta, lspada}@unisa.it

Let G be a lattice ordered Abelian group (henceforth, just ℓ -group), the set of prime ideals (=prime convex ℓ -subgroups) of G, endowed with the hull-kernel topology is called the *spectrum* of G and is denoted Spec G. Spectra of ℓ -groups have received much attention in the past. It is know that they are *generalised spectral spaces* —i.e. T_0 , sober, and with a basis of compact open sets— with the additional property of being *completely normal* —i.e., if x and y are in the closure of a point z, then either x is in the closure of y or y is in the closure of x.

Recently in [4] it was proved that the above properties characterise the second-countable spectra of ℓ -groups; in the same paper it was proved that there cannot be any first order axiomatisation of the distributive lattices that are dual to spectra of ℓ -groups.

It was also observed that spectra of ℓ -groups do not retain enough information to characterise the ℓ -group they come form; e.g., \mathbb{Z} and \mathbb{R} have the same spectrum (a single point). Here we propose a way to attach further information on **Spec** so to be able to reconstruct the original ℓ -group, up to isomorphism. More specifically, we provide a way to *coordinatize* **Spec**. Indeed, although **Spec** cannot always be embedded in some power \mathbb{R}^k , because of its topological structure, we show that a coordinatization is possible if one enlarges the set of coordinates to an *ultrapower* of \mathbb{R} . This is due to the following result.

Theorem 1. For every cardinal α there exists an ultrapower of \mathbb{R} on an α -regular ultrafilter, in which all linearly ordered groups of cardinality smaller than α embed.

Since quotients over prime ideals are linearly ordered, one obtains the wanted embedding.

Let \mathcal{U} be an arbitrary ultrapower of \mathbb{R} . Any power \mathcal{U}^k can be endowed with a Zariski-like topology by taking as a basis of closed sets:

$$\mathbb{V}(t(x)) \coloneqq \{ u \in \mathcal{U}^k \mid \mathcal{U} \models t(u) = 0 \},\$$

with t(x) ranging among k-ary terms in the language of ℓ -groups. It is easy to see that this topology is not T_0 , however it is sober and has a basis of compact open sets. Moreover it is compact only because the origin O belongs to all closed sets. For any ultrapower \mathcal{U} let $\overline{\mathcal{U}^k}$ be the largest T_0 quotient of $\mathcal{U}^k \setminus \{O\}$.

Theorem 2. For any k, the space $\overline{\mathcal{U}^k}$ is a generalized spectral space. Moreover for any ℓ -group G, there exist a cardinal k and an ultrapower \mathcal{U} of \mathbb{R} , such that Spec G is homeomorphic to a closed subspace of $\overline{\mathcal{U}^k}$.

This result has two consequences. The first is that Spec induces a duality on ℓ -groups — more details about this are contained in another abstract submitted by the same authors. The second consequence is a characterisation of spectra of ℓ -groups as closed subspaces of some $\overline{\mathcal{U}^k}$.

Theorem 3. Let X be any generalised spectral space. The space X is the spectrum of some ℓ -group if and only if X is, up to an iso, a closed subspace of $\overline{\mathcal{U}^k}$ for some ultrapower \mathcal{U} of \mathbb{R} and some cardinal k.

^{*}Speaker.

A useful tool to understand the geometry of \mathcal{U}^n , with $n \in \mathbb{N}$, is provided by the following decomposition theorem.

Theorem 4 ([2]). If $a \in \mathcal{U}^n$, then $a = \alpha_1 v_1 + \ldots + \alpha_t v_t$ where $\alpha_1, \ldots, \alpha_t \in \mathcal{U}$ are positive, α_{i+1}/α_i is infinitesimal, v_1, \ldots, v_t are orthonormal vectors in \mathbb{R}^n , and the decomposition is unique.

An important contribution to the study of the space of prime ideals of an ℓ -group is [3] (see also [1] for the case with strong unit). There, prime ideals of finitely generated free ℓ -groups are characterised as the sets of piecewise (homogeneous) linear functions with integer coefficients that vanish on a *cone* determined by a tuple of vectors. Using an adaptation of Theorem 4 we are able to connect our results with the above description and provide a more intuitive version using concepts of non-standard analysis. Indeed, we are able to associate to any non-standard point a tuple of orthonormal vectors in \mathbb{R}^n , called *index*. This induces a correspondence between prime ideals and sets of indexes. For every prime ideal \mathfrak{p} , the set associated to \mathfrak{p} in this way turns out to be the set of all indexes of all non-standard points that are images of \mathfrak{p} under all possible embeddings in Theorem 2, or equivalently, the closure of any image of \mathfrak{p} under these embeddings.

References

- Manuela Busaniche and Daniele Mundici. Geometry of Robinson consistency in Łukasiewicz logic. Annals of Pure and Applied Logic, 147(1-2):1–22, jun 2007.
- [2] Michel Goze. Infinitesimal algebra and geometry. In Francine Diener and Marc Diener, editors, Nonstandard analysis in practice, Universitext, chapter 5, pages xiv + 250. Berlin: Springer-Verlag, 1995.
- [3] G. Panti. Prime ideals in free ℓ-groups and free vector lattices. Journal of Algebra, 219(1):173–200, 1999.
- [4] Friedrich Wehrung. Spectral spaces of countable abelian lattice-ordered groups. Transactions of the American Mathematical Society, 371(3):2133-2158, 2019.