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Residuated lattices encompass a wide array of prominent algebraic structures, with exam-
ples including Boolean algebras, Heyting algebras, MV-algebras, De Morgan monoids, relation
algebras, and lattice-ordered groups, among many others. Thanks to their diversity, residuated
lattices provide a unified treatment of substructural logics, for which they give the equivalent
algebraic semantics, as well as connecting these logics to classical algebra. However, this diver-
sity also presents a challenge to offering a broadly-applicable analysis of their structure. One
approach to addressing this challenge centers on residuated lattices whose multiplication oper-
ation is idempotent. Such algebras have proven important, on both the algebraic and logical
level, as components in decomposition theorems for more general residuated lattices (see, e.g.,
[8, 4]), and also complement the already extensively-pursued study of cancellative residuated
lattices (see, e.g., [2, 1]). Analyzing the structure of broad classes of residuated lattices based
on associated idempotent algebras depends on obtaining structural descriptions of idempotent
residuated lattices themselves.

This study focuses on the structure of totally ordered idempotent residuated lattices, ad-
vancing a line of research represented in, e.g., [7, 6, 3]. The right and left inverse operations
xr = x\1 and x` = 1/x, where \ and / are the two residuals of the underlying monoid oper-
ation, play an important role in our inquiry, and are crucial in our study of congruences and
subalgebra generation in idempotent residuated chains. Among other things, the properties of
the inverse operations allow us to establish the following.

Theorem 1. The variety of idempotent semilinear residuated lattices has the congruence ex-
tension property.

Inverses also play a pronounced role in the global structure of idempotent residuated chains.
In any idempotent residuated chain, the set of elements that are inverses forms a skeleton, which
may be realized as the image of a nucleus. We show that it is possible to reconstruct any given
totally ordered idempotent residuated lattice as an ordinal sum indexed by its skeleton through
considering the partition induced by this nucleus. Further, we characterize the idempotent
residuated chains appearing as skeletons by means of a simple identity, which, in the commu-
tative case, identifies the skeletal idempotent residuated chains as odd Sugihara monoids (see
[5, 7]).

We further establish that each totally ordered idempotent residuated lattice is determined
by its order and inverse operations, together with the multiplicative identity, and illustrate
how the multiplication and division operations may be defined from these ingredients. This
analysis supports our introduction of enhanced monoidal preorders, enrichments of the monoidal
preorders considered in [7], and allows us to establish the following result.
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Theorem 2. Totally ordered idempotent residuated lattices are definitionally equivalent to en-
hanced monoidal preorders.

Enhanced monoidal preorders, together with a closely-related graphical presentation of the
action of inverses that we call flow diagrams, prove a powerful tool for solving problems re-
garding idempotent residuated chains. We deploy this technology to locate properties causing
the failure of the amalgamation property for idempotent residuated chains, which is known to
hold under the additional assumption of commutativity. Having pinpointed features that cause
amalgamation to fail in the general case, we identify a natural class of idempotent residuated
chains for which the amalgamation property holds. In particular, the aforementioned analysis
reveals the importance of the derived operation given by x? = x` ∧ xr and suggests consid-
eration of the class of ?-involutive idempotent residuated chains defined by x = x??. Using
the structural results mentioned previously together with variants of some results from [10], we
establish the following.

Theorem 3. The class of ?-involutive idempotent chains has the strong amalgamation property,
and consequently so does the variety of ?-involutive idempotent semilinear residuated lattices.

Because the algebras we consider in this inquiry give the algebraic semantics of certain
substructural logics, this work fits into the broader study of metalogical properties of non-
classical logics (see e.g. [9]). Via the well known bridge theorems of abstract algebraic logic,
we obtain as corollaries of our algebraic results several important metalogical properties for the
corresponding logics, including the interpolation property, the Beth definability property, and
deduction-detachment theorem.
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