Translational Embeddings via Stable Canonical Rules

NICK BEZHANISHVILI¹ AND ANTONIO MARIA CLEANI²

¹ Institute for Logic, Language and Computation, University of Amsterdam n.bezhanishvili@uva.nl

> ² University of Southern California cleani@usc.edu

This paper, based on [3], presents a new uniform method for studying modal companions of superintuitionistic (si) deductive systems and related notions, based on the machinery of stable canonical rules developed, e.g., in [1]. Our techniques recover much of the existing theory of modal companions, expand it with new results, and generalize smoothly to rule systems admitting filtrations in richer signatures.

A si-rule (modal rule) is a pair Γ/Δ with Γ, Δ finite sets of si (modal) formulae. Si- and normal modal rule systems (defined in [1]) are sets of si- or modal rules axiomatizing universal classes of Heyting algebras and modal algebras respectively, the way si-logics and normal modal logics axiomatize varieties of Heyting and modal algebras. Let $\mathbf{Ext}(\mathbf{IPC})$ and $\mathbf{NExt}(K)$ be the lattices of si- and normal modal logics respectively. For each $L \in \mathbf{Ext}(\mathbf{IPC})$ there is a least si-rule system L_R containing \emptyset/φ for each $\varphi \in L$, and similarly for normal modal logics. Thus the maps $L \mapsto L_R$ and $M \mapsto M_R$ are embeddings of $\mathbf{Ext}(\mathbf{IPC})$ and $\mathbf{NExt}(K)$ into the lattices of si-rule systems $\mathbf{Ext}(\mathbf{IPC}_R)$ and of normal modal rule systems $\mathbf{NExt}(K_R)$ respectively.

The Gödel translation $T(\varphi)$ of a si-formula φ is obtained by prefixing every subformula of φ with \Box . Lift the Gödel translation to rules by setting $T(\Gamma/\Delta) := T[\Gamma]/T[\Delta]$. For $L \in Ext(IPC)$, set $\tau(L) := S4 \oplus \{T(\varphi) : \varphi \in L\}$ and $\sigma(L) := Grz \oplus \tau(L)$, and similarly for si-rule systems. For $M \in NExt(S4)$, set $\rho(M) := \{\varphi : T(\varphi) \in M\}$, and similarly for normal modal rule systems. A normal modal logic (rule system) M is a *modal companion* of a si-logic (rule system) L if $\rho(M) = L$.

A map $f: \mathfrak{X} \to \mathfrak{Y}$ between Esakia spaces $\mathfrak{X}, \mathfrak{Y}$ is *stable* if continuous and relation preserving. If $\mathfrak{D} \subseteq \wp(Y)$, a map $f: \mathfrak{X} \to \mathfrak{Y}$ satisfies the *bounded domain condition* (BDC) for \mathfrak{D} when for any $x \in X$ and $\mathfrak{d} \in \mathfrak{D}$, if $\uparrow f(x) \cap \mathfrak{d} \neq \varnothing$ then $f[\uparrow x] \cap \mathfrak{d} \neq \varnothing$, where $\uparrow x := \{y : x \leq y\}$. Analogously, stable maps and the BDC are defined for modal spaces. For every finite Esakia space \mathfrak{F} and any $\mathfrak{D} \subseteq \wp(F)$ there is a *si-stable canonical rule* $\eta(\mathfrak{F}, \mathfrak{D})$ which is refuted in an Esakia space \mathfrak{X} iff there is a stable surjection $f: \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D} . Similarly, every finite modal space \mathfrak{F} and any $\mathfrak{D} \subseteq \wp(F)$ induce a modal stable canonical rule $\mu(\mathfrak{F}, \mathfrak{D})$ which is refuted in a modal space \mathfrak{X} iff there is a stable surjection $f: \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D} [1]. All si- and normal modal rule systems are axiomatizable by stable canonical rules.

Our first main result is an alternative proof of the following theorem.

Theorem 1. The following pairs of maps are mutually inverse complete lattice isomorphisms:

- 1. $\sigma : \mathbf{Ext}(\mathtt{IPC}_{\mathtt{R}}) \to \mathbf{NExt}(\mathtt{Grz}_{\mathtt{R}}) \text{ and } \rho : \mathbf{NExt}(\mathtt{Grz}_{\mathtt{R}}) \to \mathbf{Ext}(\mathtt{IPC}_{\mathtt{R}})$ [2].
- 2. $\sigma : \mathbf{Ext}(\mathbf{IPC}) \to \mathbf{NExt}(\mathbf{Grz}) \text{ and } \rho : \mathbf{NExt}(\mathbf{Grz}) \to \mathbf{Ext}(\mathbf{IPC})$ [4].

If \mathfrak{X} is a closure space, its *skeleton* $\rho \mathfrak{X}$ is the Esakia obtained by collapsing clusters in \mathfrak{X} and setting $\{\rho[U] : U \in \mathsf{Clop}(\mathfrak{X})\}$ as a basis, where $\rho : \mathfrak{X} \to \rho \mathfrak{X}$ is the map sending each $x \in \mathfrak{X}$ to its cluster. We let $\sigma \rho \mathfrak{X}$ be $\rho \mathfrak{X}$, viewed as a closure space. Theorem 1 follows from lemma 2 below, which we establish using the refutation conditions of stable canonical rules.

Lemma 2. Let \mathfrak{X} be a Grz-space. Then for every modal rule Γ/Δ , $\mathfrak{X} \models \Gamma/\Delta$ iff $\sigma \rho \mathfrak{X} \models \Gamma/\Delta$.

Proof sketch. (\Rightarrow) is easy. To prove (\Leftarrow) , we assume wlog that $\Gamma/\Delta = \mu(\mathfrak{F}, \mathfrak{D})$, for \mathfrak{F} a finite closure space. If $\mathfrak{X} \not\models \mu(\mathfrak{F}, \mathcal{D})$, then there is a stable surjection $f : \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D} . Let $C = \{x_1, \ldots, x_n\} \subseteq F$ be some cluster. By the properties of Grz-spaces, there are disjoint $U_1, \ldots, U_n \in \operatorname{Clop}(\sigma\rho\mathfrak{X})$ with $\rho[M_i] \subseteq U_i$ and $\bigcup_i U_i = \rho[Z_C]$, where $M_i := max(f^{-1}(x_i))$. Thus for each cluster $C \subseteq F$ we may define a map $g_C : \rho[Z_C] \to C$ by setting $z \mapsto x_i \iff z \in U_i$. We combine these into a map $g : \sigma\rho\mathfrak{X} \to F$ by setting $g(\rho(z)) := g_C(\rho(z))$ if $f(z) \in C$ for some proper cluster C, and $g(\rho(z)) := f(z)$ otherwise. It can be shown that g is a stable surjection satisfying the BDC for \mathfrak{D} , which establishes $\sigma\rho\mathfrak{X} \not\models \mu(\mathfrak{F}, \mathfrak{D})$.

We also axiomatically characterize the modal companion maps via stable canonical rules.

Theorem 3. Let $L \in Ext(IPC_R)$ be such that $L = IPC_R \oplus \{\eta(\mathfrak{F}_i, \mathfrak{D}_i) : i \in I\}$. Then we have:

- 1. $\tau L = S4_R \oplus \{\mu(\sigma \mathfrak{F}_i, \mathfrak{D}_i) : i \in I\}$
- 2. $\sigma \mathbf{L} = \mathbf{Grz}_{\mathbf{R}} \oplus \{\mu(\sigma \mathfrak{F}_i, \mathfrak{D}_i) : i \in I\}.$

Theorem 4. Let $M \in NExt(S4_R)$ with $M = S4_R \oplus \{\mu(\mathfrak{F}_i, \mathfrak{D}_i) : i \in I\}$, and let $\rho \mathfrak{D} := \{\rho[\mathfrak{d}] : \mathfrak{d} \in \mathfrak{D}\}$. Then we have:

$$\rho \mathtt{M} = \mathtt{IPC}_{\mathtt{R}} \oplus \{ \eta(\rho \mathfrak{F}_i, \rho \mathfrak{D}_i) : \mu(\sigma \rho \mathfrak{F}_i, \rho \mathfrak{D}_i) \in \mathtt{M} \}.$$

Theorem 3 follows from the fact that for all si-stable canonical rules $\eta(\mathfrak{F}, \mathfrak{D})$ we have that $T(\eta(\mathfrak{F}, \mathfrak{D}))$ is equivalent to $\mu(\sigma \mathfrak{F}, \mathfrak{D})$ (*rule translation lemma*). We prove Theorem 4 by showing that for any modal stable canonical rule $\mu(\mathfrak{F}, \mathfrak{D})$ with \mathfrak{F} a preorder and for any closure space \mathfrak{X} , if $\mathfrak{X} \not\models \mu(\mathfrak{F}, \mathfrak{D})$ then $\rho \mathfrak{X} \not\models \eta(\rho \mathfrak{F}, \rho \mathfrak{D})$ (*rule collapse lemma*).

Lastly, we generalize the Dummett-Lemmon conjecture [5, Corollary 2] to rule systems.

Theorem 5. A si-rule system $L \in Ext(IPC_R)$ is Kripke complete iff τL is.

Proof sketch. (\Leftarrow) is easy. To prove (\Rightarrow), let L be Kripke complete. Suppose that $\Gamma/\Delta \notin \tau L$. Wlog, we assume $\Gamma/\Delta = \mu(\mathfrak{F}, \mathfrak{D})$ for \mathfrak{F} a preorder. By rule collapse lemma, $\eta(\rho\mathfrak{F}, \rho\mathfrak{D}) \notin L$. Since L is Kripke complete, there is a si Kripke frame \mathfrak{Y} and a stable surjection $f: \mathfrak{Y} \to \rho\mathfrak{F}$ satisfying the BDC for $\rho\mathfrak{D}$. For every $x \in \rho[F]$ look at $\rho^{-1}(x)$, let $k = |\rho^{-1}(x)|$ and enumerate $\rho^{-1}(x) = \{x_1, \ldots, x_k\}$. Working in \mathfrak{Y} , for every $y \in f^{-1}(x)$ replace y with a k-cluster y_1, \ldots, y_k and extend the relation R clusterwise. The result, \mathfrak{Z} , is a Kripke frame with $\mathfrak{Z} \models \tau L$. We identify $\rho\mathfrak{Z} = \mathfrak{Y}$. For every $x \in \rho[F]$ define a map $g_x: f^{-1}(x) \to \rho^{-1}(x)$ by setting $g_x(y_i) = x_i$ $(i \leq k)$. Finally, define $g: \mathfrak{Z} \to \mathfrak{F}$ by putting $g = \bigcup_{x \in \rho[F]} g_x$. It can be shown that g is a stable surjection satisfying the BDC for \mathfrak{D} , thus establishing $\mathfrak{Z} \nvDash \mu(\mathfrak{F}, \mathfrak{D})$.

Via uniform generalizations of our techniques, we obtain similar results in the settings of bi-superintuitionistic and tense deductive systems, and of deductive systems over the modal intuitionistic logic of provability KM and classical provability logic GL. For details, consult [3].

References

- Bezhanishvili, G., Bezhanishvili, N., and Iemhoff, R. [2016]. Stable canonical rules. The Journal of Symbolic Logic, 81(1):284–315.
- [2] Blok, W. [1976]. Varieties of Interior Algebras. Ph.D. thesis, Universiteit van Amsterdam.
- [3] Cleani, A. M. [2021]. Translational Embeddings via Stable Canonical Rules. Master's thesis, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam.
- [4] Jerábek, E. [2009]. Canonical rules. The Journal of Symbolic Logic, 74(4):1171–1205.
- [5] Zakharyashchev, M. V. [1991]. Modal Companions of Superintuitionistic Logics: Syntax, Semantics, and Preservation Theorems. *Mathematics of the USSR-Sbornik*, 68(1)