Lifting of monotone-light factorizations

RUI PREZADO^{1,*}

Universidade de Coimbra rui.prezado@student.uc.pt

Let $f: X \to Y$ be a continuous map between compact Hausdorff spaces. We say that f is *monotone*, respectively *light*, if for all $y \in Y$, the fiber $f^{-1}(y)$ is connected, respectively totally disconnected. These maps were studied by [Eil34] (for metric spaces) and [Why50], where they show that every continuous map f between compact Hausdorff spaces admits a factorization $f = g \circ h$ where g is light and h is monotone, unique up to a unique isomorphism. This is the so-called *monotone-light factorization* of compact Hausdorff spaces, which may be described as the pullback-stabilization and localization of the factorization system induced by the reflection π_0 : CHaus \to Stn, a construction we make precise below, which maps each compact space X to its (Stone) space $\pi_0 X$ of connected components.

Suppose \mathcal{C} has finite limits. In general, a reflection $R: \mathcal{C} \to \mathcal{D}$ (a functor with a fully faithful right adjoint) merely determines a prefactorization system $(\mathcal{L}, \mathcal{R})$ on \mathcal{C} . Here, \mathcal{L} is class of morphisms f such that Rf is an isomorphism. Reflections for which $(\mathcal{L}, \mathcal{R})$ is a factorization system are said to be *simple*, as defined in [CHK85]. We note that the reflection CHaus \rightarrow Stn is simple, with \mathcal{L} the class of continuous maps which induce a homeomorphism on the underlying spaces of connected components.

This relationship between reflections and prefactorizations systems was extensively studied in [CHK85]. There, some properties of reflections are shown to imply simplicity. For example, *semi-left exact* reflections (also called *admissible* in the suitable context of Janelidze-Galois theory [BJ01]) are simple, as are reflections with *stable units*.

Given a factorization system $(\mathcal{L}, \mathcal{R})$, its pullback-stabilization and localization is a pair of classes of morphisms $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$ defined by:

 $\begin{aligned} \mathcal{L}_{\mathsf{stab}} &= \left\{ f \mid p^*(f) \in \mathcal{L} \text{ for all } p \right\}, \\ \mathcal{R}_{\mathsf{loc}} &= \left\{ f \mid \text{there exists } p \text{ of effective descent such that } p^*(f) \in \mathcal{R} \right\}. \end{aligned}$

It is not always the case that $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$ is a factorization system; when it is, we say it is the *monotone-light factorization system* induced by $(\mathcal{L}, \mathcal{R})$.

The work of [CJKP97] was centered around studying conditions for which (\mathcal{L}_{stab} , \mathcal{R}_{loc}) is a factorization system. They found in 10.3 *ibid* that semi-left exactness is not sufficient to guarantee monotone-light factorizations, and further counter-examples were later given in [Xar04]. Nevertheless, Theorem 6.9 of [CJKP97] does characterize those factorization systems for which (\mathcal{E}_{stab} , \mathcal{M}_{loc}) is a factorization system, despite the conditions given therein being difficult to verify in general.

As part of a project aiming to study categorical Galois theory for various categorical structures, we study liftings of factorization systems and of simple, semi-left exact and stable units reflections, as well as ascertaining whether lifting pullback-stable/local classes preserves stability/locality. For example, suitable factorization systems for monoidal categories induce a factorization system for the categories of the respective enriched categories, and moreover, pullback-stability is preserved.

^{*}Speaker.

For instance, consider the reflection $Cat \rightarrow Ord$, studied in [Xar03]. In Section 2.2 ibid it is shown that this reflection is simple, and the induced factorization system $(\mathcal{L}, \mathcal{R})$ admits a monotone-light factorization $(\mathcal{L}_{stab}, \mathcal{R}_{loc})$, both suitable in the aforementioned sense. The reflection lifts to a (simple) reflection $Cat-Cat \rightarrow Ord-Cat$, and the induced factorization system $(\overline{\mathcal{L}}, \overline{\mathcal{R}})$ is the lifting of $(\mathcal{L}, \mathcal{R})$. The main result of [Xar22] guarantees $\overline{\mathcal{R}}_{loc} = \overline{\mathcal{R}}_{loc}$, a non-trivial instance where a monotone-light factorization is lifted.

As another example, consider the monoidal reflection $R: \Delta \to [0, \infty]^{\text{op}}$ of the quantale of distribution functions into the complete real half-line. This lifts to a left-exact reflection $\hat{R}: \Delta$ -Cat $\to [0, \infty]^{\text{op}}$ -Cat of probabilistic metric spaces (see [HR13]) into Lawvere metric spaces, which induces a stable, and therefore monotone-light, factorization system. This is lifted to the factorization system induced by \hat{R} , also monotone-light.

These lifting results are generally achieved in two steps: by expressing the various notions of factorization systems and reflections in 2-categories with reasonable properties, and by considering pseudofunctors which preserve certain bilimits between such 2-categories. Those pseudofunctors will also preserve those notions across 2-categories, allowing us to lift factorization systems and reflections from one context to another.

This is part of on-going joint work with Maria Manuel Clementino and Fernando Lucatelli Nunes.

References

[BJ01] F. Borceux and G. Janelidze. Galois Theories. Cambridge Univ. Press, 2001.

- [CHK85] C. Cassidy, M. Hébert and G. M. Kelly. Reflective subcategories, localizations and factorization systems. J. Austral. Math. Soc. (Series A), 38:287–329, 1985.
- [CJKP97] A. Carboni, G. Janelidze, G. M. Kelly and R. Paré. On Localization and Stabilization for Factorization Systems. Appl. Categ. Structures, 5:1–58, 1997.
- [Eil34] S. Eilenberg. Sur les transformations continues d'espaces métriques compacts. Fund. Math., 22:292–296, 1934.
- [HR13] D. Hofmann and C. D. Reis. Probabilistic metric spaces as enriched categories. Fuzzy Sets and Systems, 210:1–21, 2013.
- [Why50] G. T. Whyburn. Open mappings on locally compact spaces. Mem. Amer. Math. Soc. 1, 1950.
- [Xar03] J. J. Xarez. The monotone-light factorization for categories via preordered and ordered sets. PhD thesis, Universidade de Aveiro, 2003.
- [Xar04] J. J. Xarez. Internal monotone-light factorization for categories via preorders. Theory Appl. Categ., 13(15):235–251, 2004.
- [Xar22] J. J. Xarez. (2022). The monotone-light factorization for 2-categories via 2-preorders. arXiV:2202.06394.