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In a category of algebras for a given finitary signature, the reflection of an algebra A into
a subcategory presented by a set of finitary equations (or implications) may be constructed
by means of a transfinite chain of morphisms which converges at step ω. This construction
may be performed in any locally presentable category, leading to a solution of the Orthogonal
Subcategory Problem for a set of morphisms, as it was proved by Gabriel and Ulmer [9].
Thus, given a set H of morphisms, we conclude that the full subcategory of orthogonal objects
constitutes the category of Eilenberg-Moore algebras of an idempotent monad. This result can
be extended to a broader context, including locally bounded categories, as shown in [11].

In [6], Banaschewski and Herrlich observed that, for an algebra, the satisfaction of an
implication is equivalent to the injectivity of the algebra with respect to a certain morphism.
The combination of this idea with the properties of the above transfinite chain gave rise to the
study of deduction systems where the “formulas” are morphisms, see [1], [2], [3].

In a 2-category K, an object X is said to be left Kan-injective with respect to a morphism
h : A → B if, for every morphism f : A → X, there is a left Kan extension of f along h given
by an invertible 2-cell:
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A morphism u : X → Y is said to be left Kan-injective with respect to h : A → B if it preserves
left Kan extensions of morphisms f : A → X along h, that is, Lanh(uf) = uLanh(f). We
denote by LInj(H) the locally full subcategory of K of all objects and all morphisms left Kan
injective with respect to every morphism of H.

In 2-categories, certain conditions on objects, and on morphisms, may be given by means
of left Kan injectivity. For instance, in the 2-category Pos, made of posets, monotone maps
and pointwise order between maps, the posets with binary suprema and the morphisms which
preserve them are precisely those which are left Kan-injective with respect to the embedding of
the discrete poset D with two elements into the poset obtained from D by joining a top element.
Taken in the 2-category Cat of categories, this embedding presents, via left-Kan-injectivity, the
categories with binary coproducts and morphisms preserving them. Many other examples may
be find in [5], [7], [8], [10] and [13].

Starting from a set H of morphisms in a 2-category K, we construct, for each object X, a
transfinite chain leading to the components of the unit of a lax-idempotent pseudo-monad (or
KZ-doctrine, see [11] and [12]). The algebras and the homomorphisms of this KZ-doctrine are,
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essentially, the objects and the morphisms of K which are left Kan-injective with respect to H.
This encompasses, as a particular case, the transfinite chains mentioned above, and generalizes
the Kan-injective reflection chain presented in [5] for order-enriched categories, which, in [4],
was a key tool for obtaining a Kan-injectivity logic.
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