On varieties of residuated po-magmas and the structure of finite ipo-semilattices

Peter Jipsen and Melissa Sugimoto

Chapman University, California, USA jipsen@chapman.edu Leiden University, Netherlands, msr22360gmail.com

In [6] *po-algebras* are defined as partially ordered sets with operations that are either orderpreserving or order-reversing in each argument, and a variety of po-algebras is a class of similar po-algebras defined by equations or inequations.

A residuated partially ordered magma or rpo-magma $\mathbf{A} = (A, \leq, \cdot, \backslash, /)$ is a partially-ordered set (A, \leq) with a binary operation \cdot and two residuals that satisfy for all $x, y, z \in A$

 $(\text{res}) \quad xy \le z \iff x \le z/y \iff y \le x \backslash z$

The operation $x \cdot y$ is usually written xy. Residuation ensures that $x \setminus y$ and y/x are orderreversing in the denominator (x position) and order-preserving in the numerator, while xy is order-preserving in both arguments. Since (res) is equivalent to the inequations $x \leq xy/y$, $(z/y)y \leq z, y \leq x \setminus xy, x(x \setminus z) \leq z$ it follows that rpo-magmas are a variety of po-algebras. Although rpo-magmas are very general, (res) imposes restrictions on the posets that can occur.

Theorem 1. In an rpo-magma every connected component of \leq is up-directed and downdirected, hence for finite rpo-magmas every connected component is bounded.

The equivalence relation on a poset that has each connected component as an equivalence class is a congruence on a rpo-magma, and the quotient algebra is a quasigroup with the discrete order (i.e. \leq is the equality relation). Conversely, from any quasigroup Q and a pairwise disjoint family of *bounded* posets A_q for $q \in Q$, one can construct an rpo-magma with poset $\bigcup_{a \in Q} A_q$.

A rpo-semigroup or Lambek algebra is a rpo-magma where \cdot is associative. A unital rpomagma has a constant 1 such that x1 = x = 1x, and a rpo-monoid is a unital rpo-semigroup. A residuated lattice-ordered magma $(A, \land, \lor, \cdot, \backslash, /)$ (or $r\ell$ -magma for short) is a rpo-magma for which the partial order is a lattice order. A $r\ell$ -monoid is more commonly called a residuated lattice.

An involutive partially-ordered magma or ipo-magma is of the form $(A, \leq, \cdot, \sim, -)$ such that (A, \leq) is a poset, \cdot is a binary operation, the left and right linear negations $\sim, -$ are an involutive pair, i.e., $\sim -x = x = -\sim x, x \leq \sim y \iff y \leq -x$, and for all $x, y, z \in A$

(ires) $xy \le z \iff x \le -(y \cdot \neg z) \iff y \le \neg (-z \cdot x).$

It follows that \sim , - are both order-reversing. The axiom (ires) shows that every ipo-magma is term-equivalent to a rpo-magma, but it is often convenient to use the equivalent formulation

(rotate) $xy \le z \iff y \cdot \neg z \le \neg x \iff -z \cdot x \le -y.$

The variety of ipo-monoids includes all partially ordered groups [1], where $\sim x = -x = x^{-1}$.

Lemma 2. Let $\mathbf{A} = (A, \leq, \cdot, \sim, -)$ be a poset with a binary and two unary operations. (1) If \cdot is idempotent (i.e. xx = x) and \mathbf{A} satisfies (rotate) then \mathbf{A} is an ipo-magma. (2) If an ipo-magma is idempotent or unital, and \cdot is commutative then $\sim x = -x$.

Figure 1: (i) The smallest i ℓ -semilattice that is not unital, and (ii) the smallest ipo-semilattice that is not lattice-ordered. Note that $-\top = \bot$.

In a commutative idempotent ipo-semigroup there is another semilattice order, called the *multiplicative order*, that is defined by $x \sqsubseteq y \iff xy = x$, and these po-algebras are called *ipo-semilattices*. The most prominent examples of ipo-semilattices are Boolean algebras $(A, \cdot, +, -)$, where $x + y = -(-x \cdot -y)$. They arise as the case when the partial order \leq and the semilattice order \sqsubseteq coincide. More generally, ipo-semilattices are determined by the two relations \leq , \sqsubseteq and the involution – (see e.g. Figure 1).

Note that an element t in an ipo-semilattice is the multiplicative identity if and only if t is the top element in the multiplicative order, hence an ipo-semilattice is unital if and only if the multiplicative order has a top element.

We give a description of the structure of finite $i\ell$ -semilattices, and provide some partial structural results for finite ipo-semilattices. For finite commutative idempotent involutive residuated lattices (i.e. unital $i\ell$ -semilattices) a structural description has been given in [4]. We present a more global approach for ipo-semilattices based on Płonka sums of Boolean algebras. Similar methods have been used in [3] to describe the structure of odd and of even involutive FL_echains. Inspired by the duality for involutive bisemilattices [2], we also give a more compact dual description of finite ipo-semilattices based on semilattice direct systems of partial maps between sets. We present an algorithm to construct finite ipo-semilattices from their dual description, and an algorithm to enumerate the dual objects up to isomorphism. Some of our investigations were aided by computations using Prover9 and Mace4 [5].

References

- [1] A. M. W. Glass: Partially ordered groups. World Scientific, 1999.
- Bonzio, S., Loi, A., Peruzzi, L.: A duality for involutive bisemilattices, Studia Logica, (2019) 107: 423-444, https://doi.org/10.1007/s11225-018-9801-0.
- Jenei, S.: Group-representation for even and odd involutive commutative residuated chains. Studia Logica, 2022, https://doi.org/10.1007/s11225-021-09981-y.
- [4] P. Jipsen, O. Tuyt and D. Valota: The structure of finite commutative idempotent involutive residuated lattices, Algebra Univers. 82, 57, 2021, https://doi.org/10.1007/s00012-021-00751-4.
- [5] W. McCune: Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005-2010.
- [6] D. Pigozzi: Partially ordered varieties and quasivarieties. Unpublished lecture notes at https: //orion.math.iastate.edu/dpigozzi/notes/santiago_notes.pdf, 2004, 1-26.
- J. Płonka: On a method of construction of abstract algebras, Fundamenta Mathematicae 61(2) 1967, 183–189.