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Providing good proof systems for probabilistic logics is a long standing problem in proof theory
and logics for uncertainty. In 1990, [5] introduces a logic to reason about probabilities and its Hilbert
style calculus that contains three types of axioms and rules: the ones that govern the arithmetical part,
i.e., the reasoning about inequalities; the ones that axiomatise probabilities; and the rules and axioms of
classical propositional logic. The proposed calculus has the advantage of being quite intuitive and easy
to use, however, its axiomatisation is infinite. In 2020, [1] utilises a two-layered modal logic to formalise
reasoning about probabilities. The proposed calculus consists of three parts: the rules and axioms of
the logic of events (i.e. classical logic) or ‘inner logic’; the ‘outer logic’ that formalises reasoning with
probabilities; and finally, the modalities that transform events into probabilistic statements.

This work is a part of larger research project aimed at providing good proof systems for probabilistic
logics and other logics of uncertainty in a uniform and modular way. In this project, we use a generaliza-
tion of display calculi introduced by Belnap [2]. This choice is motivated by the following two reasons.
Firstly, display calculi are by design modular, insofar they implement a neat division of labour between
logical rules (introducing the connectives and relying on their minimal order-theoretic properties) and
so-called structural rules (capturing the specific features of the logic under consideration). Secondly,
they provides a framework in which cut-elimination, a crucial property of proof systems, can be proved
in a principled way as an application of a general meta-theorem.

The main difficulties in applying the theory of display calculi to the probability logics lies in the
handling of the operators like + and − (i.e. the (truncated) sum and difference, respectively) and their
interaction with the probability operator P.

A specific and preliminary difficulty in the handling of probability operator is that it is a non-normal
operator (with usual definition of join and meet on interval [0, 1]), so standard techniques and design
choices are immediately banned. To overcome this issue, we use a generalization of the standard theory
to a so-called multi-type environment (see, for instance, [7] as a prototypical examples of this approach).
Here we consider an equivalent multi-type presentation of the algebraic semantics for probability logic,
thanks to which we can define an appropriate formal translations of the original language into a new
multi-type language (preserving validity and derivability of formulas).

A similar problem arises when considering the peculiar axiom of probability logic (involving the
sum, the difference and the probability operator as well) given that it not analytic inductive [6] in the
original language, so, once again, standard techniques cannot be applied.

In an ongoing work, we introduce a generalization of standard display calculi we used to capture
Łucasewicz logic and, in particular, to deal with the peculiar axiom of the logic involving the sum
(or, equivalently, the subtraction depending on the presentation of the axiom). This axiom is key to
capture the interaction with the probability operator, and the specific design choices implemented in this
calculus (motivated by an algebraic analysis of Łucasewicz logic) are imported here as well. Moreover,
we use a specialized version of the algorithm ALBA to automatically generate the analytic structural
rules equivalently capturing the axiom. Showing that such rule preserve the analyticity of the basic
calculus is work in progress.

Below we expand on the treatment of the probability operator. The key idea is that the non-normal
operators (like the conditional binary operator of conditional logics or the monotone unary modalities
in non-normal modal logics) can be decomposed into the composition of normal modal operators [4].
In this work, we use a similar approach to deal with the probability operator P.

Let B be any set and P(B) be its power-set. Let P : P(B) → [0, 1] be a probability function on it.
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Let R∈,R< ⊆ P(B) × B be defined as follows. For any a ∈ B, A ∈ P(B),

AR∈a iff a ∈ A and AR<a iff a < A.

Let R≤,R� ⊆ [0, 1] × P(B) be defined as follows. For any α ∈ [0, 1], A ∈ P(B),

αR≤A iff α ≤ P(A) and αR�A iff α � P(A).

Let A ⊆ B, and U ⊆ P(B) be any subsets of B and P(B) respectively. Let [∈](A) = [R∈](A), 〈<〉(A) =

〈R<〉(A), 〈≤〉(U) = 〈R≤〉(U), and [�](U) = [R�](U), where for any relation R, [R] and 〈R〉 denote the
box and diamond operators corresponding to the relation R on the given frame. Then, we have

Lemma 1. For any A ⊆ B, and U ⊆ P(B) we have (1) [∈](A) = A↓, (2) 〈<〉(A) = (A↑)c, (3) 〈≤〉(U) =

[0,max{P(A) | A ∈ U}], and (4) [�](U) = [0,min{P(A) | A ∈ Uc}].

The following corollary follows immediately from the Lemma.

Corollary 2. For any A ⊆ B, P(A) = max(〈≤〉[∈](A)) = max([�]〈<〉(A)).

Thus, under the identification of an interval with its largest element above, the corollary shows that
the probability operator P can be decomposed into the combination of normal operators 〈≤〉, [∈], [�],
and 〈<〉 in two ways. This decomposition allows us to write the probability axioms in the language of
Łucasewicz logic expanded with the above modal operators. Therefore, the axioms of probability logic
can be expressed in the above multi-type normal modal logic. We believe these techniques would allow
us to introduce display-like calculi for probability logics and other (non-classical) logics of uncertainty
such as the logics for probabilities and belief functions over Belnap-Dunn logic introduced in [3].
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