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”It is equally stupid and simple to consider mathematics to be
just an axiom system as it is to see a tree as nothing but a
quantity of planks.” L.E.J. Brouwer

Amir Akbar Tabatabai Proof Theory, Logic and Algebra TACL 2022, Praia de Mira 2 / 42



What is a proof?

In the first part, we saw three different formalizations of the
intuitionistic proofs. They were all syntactical objects constructed in
syntactical calculi. Which one is a proof?

We have the same problem with computation? Which realization
should we choose? Or maybe they are just different realizations of
one abstract notion. We don’t know that notion! Right? Why?

Proofs have never been the main citizens in logic, even in the proof
theory itself. (It is not quite true, but still). We are usually interested
in provability and not the proofs. We need proofs just to help us to
prove some theorems about the theories, e.g. the consistency, the
interpolation, the admissible rules (DP), etc. They are not like groups
in mathematics. The situation is similar to the state of the art in
computability theory before the interest in algorithm design. What
was important was computability not the computation.
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Proof Equivalence

As a consequence of this lack of interest, we do not have a reasonable
answer to even the trivial questions! For instance, think about the
proof equivalence. Are the following proofs equivalent?

D
A

D′
B ∧I

A ∧ B ∧E1
A

D
A

What about the following trees?

A ∧ A ∧1E
A

A ∧ A ∧2E
A

axiom
A,A⇒ A

L∧
A ∧ A⇒ A

Note that it is not clear how to compare proofs in different systems.

When are two statements equivalent? For instance, whether A ∧ B
and B ∧ A are equivalent? What about A and A ∧ A?

Amir Akbar Tabatabai Proof Theory, Logic and Algebra TACL 2022, Praia de Mira 4 / 42



Proof Equivalence

As a consequence of this lack of interest, we do not have a reasonable
answer to even the trivial questions! For instance, think about the
proof equivalence. Are the following proofs equivalent?

D
A

D′
B ∧I

A ∧ B ∧E1
A

D
A

What about the following trees?

A ∧ A ∧1E
A

A ∧ A ∧2E
A

axiom
A,A⇒ A

L∧
A ∧ A⇒ A

Note that it is not clear how to compare proofs in different systems.

When are two statements equivalent? For instance, whether A ∧ B
and B ∧ A are equivalent? What about A and A ∧ A?

Amir Akbar Tabatabai Proof Theory, Logic and Algebra TACL 2022, Praia de Mira 4 / 42



Proof Equivalence

As a consequence of this lack of interest, we do not have a reasonable
answer to even the trivial questions! For instance, think about the
proof equivalence. Are the following proofs equivalent?

D
A

D′
B ∧I

A ∧ B ∧E1
A

D
A

What about the following trees?

A ∧ A ∧1E
A

A ∧ A ∧2E
A

axiom
A,A⇒ A

L∧
A ∧ A⇒ A

Note that it is not clear how to compare proofs in different systems.

When are two statements equivalent? For instance, whether A ∧ B
and B ∧ A are equivalent? What about A and A ∧ A?

Amir Akbar Tabatabai Proof Theory, Logic and Algebra TACL 2022, Praia de Mira 4 / 42



Equivalence between Formulas

Usually people say that A and B are equivalent if each one implies the
other. This means that A and B are equivalent iff there is a proof π
of B from A and also a proof σ of A from B.

Shouldn’t these π and
σ be somehow related?

Compare it to the following situation. When two sets are equivalent?
The existence of one map in each direction between the two, or the
existence of a bijection? Now, what if the sets are the sets of proofs
for A and B. If A and B are equivalent, shouldn’t these sets be in
one-to-one correspondence? In this sense, in addition to the existence
of π and σ, we also need them to be the inverse of each other, i.e.,
πσ = id and σπ = id . Hence, we need to understand the equality!

Again, are A ∧ B and B ∧ A equivalent? What about A and A ∧ A?
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A Way Out?

To answer these questions, we must know what are those abstract objects
that usual proofs are the realization of. For that purpose, we need a
structural setting in which one can describe the relative behavior of an
entity rather than the details of its implementations.

This framework of
structural relative thinking is called category theory where morphisms
(proofs) are more important than the objects (propositions). Identifying
these relative structures, we can claim:

A realization of a proof is whatever behaves like a proof, i.e., follows
the relative structure. It can be anything, a continuous map, a
computation, etc.

What is the abstract proof beyond all the realizations? It is a
morphism living in the corresponding free category.

What is the equality of proofs? It is the equality of maps in the
category.

What is an equivalence between the formulas? It is the existence of
an isomorphism between the objects in the category. Brouwer’s quote!
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Definition

A category C is the following data:

• a colection of objects, denoted by ob(C),

• a collection of morphisms, denoted by Mor(C),

• for any morphism f ∈ Mor(C), an object s(f ) called the source of f ,

• for any morphism f ∈ Mor(C), an object t(f ) called the target of f ,

• for any object A ∈ ob(C), a morphism idA,

• for any two morphisms f , g ∈ Mor(C) such that s(f ) = t(g), a
morphism f ◦ g ,

satisfying the following properties:

• s(idA) = t(idA) = A,

• s(f ◦ g) = s(g) and t(f ◦ g) = t(f ),

• f ◦ idA = f = idB ◦ f , if s(f ) = A and t(f ) = B,

• f ◦ (g ◦ h) = (f ◦ g) ◦ h.
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For any f ∈ Mor(C), we summarize the data s(f ) = A and t(f ) = B by
f : A→ B. For any two objects A,B ∈ ob(C) by C(A,B) or HomC(A,B),
we mean the collection of all morphisms f : A→ B.

Example

The collection of all sets as the objects and the usual functions as the
morphisms with the usual composition and identity constitutes a category.
This category is denoted by Set.

Example

A category C is called a preorder if for any two objects A,B ∈ ob(C), the
collection HomC(A,B) has at most one element. Spelling out the
definition of a category in this special case, a preorder is actually a set,
usually denoted by P with a binary relation ≤ ⊆ P × P such that x ≤ x ,
for any x ∈ P and if x ≤ y and y ≤ z then x ≤ z . The prototype example
of preorders is a set of subsets of some set X with inclusion as the order.
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Categories as Proof Systems

Objects in a category can be interpreted as propositions and morphisms
f : A→ B as proofs of B from A. This idea goes back to Joachim
Lambek, inspired by Lawvere’s thesis. Lambek called studying the proof
systems via categorical means the categorical proof theory. This is a
generalization of the usual Curry-Howard correspondence.

For instance, in Set, we can think of the set A as the set of all
evidences for a proposition A. Then, a proof is a function to
transform any evidence of A to an evidence for B.

In this sense, the preorders are the proof systems in which all proofs
between two statements are collapsed to a single proof and hence the
only information the category stores is just the provability. Therefore,
it is no surprise that preorders provide the models of logic where we
only care about the provability relation.

Using Brouwer’s quote provocatively, mathematics is about categories
not preoorders.
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Some Examples

Example

The collection of pairs (A, σA), where A is a set and σA is a bijection over
A with equivariant maps is a category. An equivariant map from (A, σA)
to (B, σB) is a function f : A→ B such that f ◦ σA = σB ◦ f . This
category is denoted by SetZ.

Philosophical Comment

Any object of this category can be interpreted as a reversible dynamical
system consisting of a set A and a function f : A→ A, encoding the
dynamism of the system. Of course, any map between the dynamic
systems must be a function from the base sets preserving the dynamism.
It is also possible to think of the set A as the set of all evidences for a
proposition A and σA as a transformation up to which we consider the
evidences. Then, a proof is a function to transform any evidence of A to
an evidence for B, respecting the transformations.
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Some Examples

Example

Consider the collection of pairs (A,∼A), where A is a subset of N and ∼A

is an equivalence relation on A together with maps f : (A,∼A)→ (B,∼B)
as the computable functions f : N→ N that map A into B and preserve
the relation. This is a category. For some reasons, it would be more
convenient to identify any two functions f , g : A→ B such that
f (a) ∼B g(a), for any a ∈ A. We will denote this category by Rec.

Philosophical Comment

This is a rewriting of the previous example, sticking only to the
equivalence relation between the evidences and forgetting the
transformations. We also restricted ourselves to all computable functions
as the evidence-transformations. After all, it is reasonable to consider the
proofs as the algorithmic procedures.
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transformations. We also restricted ourselves to all computable functions
as the evidence-transformations. After all, it is reasonable to consider the
proofs as the algorithmic procedures.
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The Category of Proofs

Convention. In this lecture, whenever we refer to natural deduction, we
always mean the proofs in NJ up to βη-equivalences.

Example

The collection of propositional formulas in the language {>,⊥,∧,∨,→}
together with natural deduction proofs of B from the assumption A as the
maps from A to B is a category. The composition is putting the proofs
after one another and the identity idA is just the axiom that A proves
itself. We will denote this category by Prf.
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The Terminal Object

Definition

An object A is called terminal if for any object B, there exists a unique
map from B to A. This map is denoted by ! : B → A.

Example

In Set, the terminal object is {∗}.
In SetZ, the terminal object is the pair ({∗}, id{∗}).

In a poset (P,≤), the terminal object is by definition an element
a ∈ P such that for any b ∈ P, we have b ≤ a. Hence, the terminal
object is the greatest element of the poset.

In Rec, the terminal object is ({∗},={∗}).

In Prf, the terminal object is >. Notice the effect of the η-equality to
ensure the uniqueness.
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The Terminal Object as the Trivial Truth

Philosophical Comment

Reading any category as a proof system, the terminal object is >
which is the trivial truth with no non-trivial proof.

One may argue that although the intuition behind the uniqueness
condition is clear for the singletons in Set, the use of the η-rule to
ensure this condition for the proof is a bit artificial. To convince you,
let me emphasize that > is in the language to formalize the trivial
truth, meaning something that is provable with just one proof. > is
not equivalent to any provable statement. You can see the clash with
the proof-irrelevant approach here, where all provable statements are
considered to be equivalent to >.

The terminal object is not unique (all singletons in Set). However, as it is
easy to see that the terminal object is unique up to isomorphism we can
denote it by a reserved name 1.
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The Product

Definition

Let A and B be two objects. An object C together with two morphisms
p0 : C → A and p1 : C → B is called a product if for any object D and
any morphisms f : D → A and g : D → B, there exists a unique map
h : D → C such that:

D

A C Bp0 p1

f g
h

This h is denoted by 〈f , g〉. The product of A and B is denoted by A× B.
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Note that p0 ◦ 〈f , g〉 = f and p1 ◦ 〈f , g〉 = g . Also, 〈p0, p1〉 = idA×B . A
category is called cartesian if it has a terminal object and all binary
products.

Example

In Set, the product is the usual cartesian product together with the
projections.

In SetZ, the product of (A, σA) and (B, σB) is (A× B, σA × σB)
together with the projections, where [σA×σB ](a, b) = (σA(a), σB(b)).

In a poset (P,≤), the product of a, b ∈ P is by definition the greatest
lower bound of the subset {a, b} i.e., an element c such that c ≤ a
and c ≤ b and for any d ∈ P, if d ≤ a and d ≤ b, then d ≤ c .

In Rec, the product of (A,∼A) and (B,∼B) is (C ,∼C ), together with
the maps p0 : C → A and p1 : C → B, where
C = {2a(2b + 1) | a ∈ A, b ∈ B}, 2a(2b + 1) ∼C 2c(2d + 1) if a ∼A c
and b ∼B d and p0(2n(2m + 1)) = n and p1(2n(2m + 1)) = m.
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The Product in Prf

In Prf, the product of A and B is the conjunction A ∧ B together with the
two proof trees in the left and for any two proof trees π, π, the proof tree
〈π, π′〉 is nothing but the proof tree in the right:

A ∧ B ∧E1
A

A ∧ B ∧E2
B

π
A

π′

B ∧I
A ∧ B

To prove p0(〈π, π′〉) = π, note that the left hand side is the left proof tree
in the following

π
A

π′

B ∧I
A ∧ B ∧E1
A

π
A ∧ B ∧E1
A

π
A ∧ B ∧E2
B ∧I

A ∧ B

which is β-equivalent to π. For uniqueness, it is enough to prove
〈p0π, p1π〉 = π. Here, the left hand side is the right proof tree which is
η-equivalent to π.
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The Product as the Conjunction

Philosophical Comment

Reading any category as a proof system, we can interpret the product
as the conjunction.

One may naturally object that although the commutativity and the
uniqueness for the cartesian product is natural, but the proof
theoretical counterpart, i.e., the β- and η-equivalences are not and
maybe the product is just too demanding. To motivate that, note
that the product of A and B is just an object (together with a natural
isomorphism) between Hom(C ,A× B) and Hom(C ,A)×Hom(C ,B).
This just says that any proof of A ∧ B from C is in one-to-one
correspondence (i.e., uniform in A, B and C ) with the pairs of proofs
of A and B from C . Think about the BHK interpretation.

Therefore, the projections, the commutation and the uniqueness are
not essential. They are just a presentation of a deep universal fact
that characterizes the conjunction.
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Some Isomorphisms

Using the universal property of the terminal and the products, it is easy to
prove the following list of isomorphisms:

A× 1 ∼= A via the maps p0 : A× 1→ A and 〈idA, !〉 : A→ A× 1.

A× B ∼= B × A via the maps 〈p1, p0〉 : A× B → B × A.

(A× B)× C ∼= A× (B × C ).
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Functoriality

The product as an operator not only acts on the objects, but also acts on
the morphisms. Assume that both the product of A and B and the
product of C and D exist. Now, assume that we are given f : A→ C and
g : B → D. We intend to come up with a canonical map
f × g : A× B → C × D. For that purpose, first note that p0 : A× B → A
and p1 : A× B → B. Therefore, fp0 : A× B → C and gp1 : A× B → D.
Therefore, 〈fp0, gp1〉 : A× B → C × D:

A A× B B

C C × D D

p0 p1

q0 q1

f ggp1fp0 f×g

Amir Akbar Tabatabai Proof Theory, Logic and Algebra TACL 2022, Praia de Mira 20 / 42



The Initial Object

Definition

An object A is called initial if for any object B, there exists a unique map
from A to B. We denote the initial object by 0 and the unique map by
! : A→ B.

Example

In Set the initial object is ∅.

In SetZ the initial object is the pair (∅, id∅).

In a poset (P,≤), the initial object is by definition an element a ∈ P
such that for any b ∈ P, we have a ≤ b. Hence, the initial object is
the least element of the poset.

In Rec, the initial object is (∅,=∅).

In Prf, the initial object is ⊥. Notice the effect of the η-equality to
ensure the uniqueness.
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The Initial Object as Inconsistency

Philosophical Comment

Reading any category as a proof system, we can interpret the initial
as the inconsistency.

The existence of a map from ⊥ to A is a consequence of the BHK
definition of ⊥ that says ⊥ has no proof. But it is weaker, right?
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The Coproduct

Definition

Let A and B be two objects. An object C together with two morphisms
i0 : A→ C and i1 : B → C is called a coproduct if for any object D and
any morphisms f : A→ D and g : B → D, there exists a unique map
h : C → D such that:

D

A C B
i0 i1

f g
h

This h is denoted by [f , g ]. The coproduct of A and B is denoted by
A + B.
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Some Examples

A category is called cocartesian if it has the initial object and all binary
coproducts.

Example

In Set, the coproduct of A and B is the disjoint union A + B together
with the injections i0 : A→ A + B and i1 : B → A + B defined by
i0(a) = (0, a) and i1(b) = (1, b).

In SetZ, the coproduct of (A, σA) and (B, σB) is (A + B, σA + σB)
together with the injections, where [σA + σB ](0, a) = (0, σA(a)) and
[σA + σB ](1, b) = (1, σB(b)).

In a poset (P,≤), the coproduct of a, b ∈ P is by definition the least
upper bound of the subset {a, b} i.e., an element c such that a ≤ c
and b ≤ c and for any d ∈ P, if a ≤ d and b ≤ d , then c ≤ d .
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Some Examples

Example

In Rec, the coproduct of (A,∼A) and (B,∼B) is (C ,∼C ), together
with the maps i0 : A→ C and i1 : B → C , where
C = {2a(2b + 1) | (a = 0 and b ∈ A) or (a = 1 and b ∈ B)},
2a(2b + 1) ∼C 2c(2d + 1) if (a = c = 0 and b ∼A d) or (a = c = 1
and b ∼B d) and i0(n) = 2n + 1 and i1(n) = 2(2n + 1).

In Prf, the coproduct of A and B is the disjunction A ∨ B together
with the two proof trees in the left and [π, σ] is defined as the proof
tree in the left:

A ∨I1
A ∨ B

B ∨I2
A ∨ B A ∨ B

[A]
π
C

[B]
σ
C ∨E

C
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The Coproduct as Disjunction

Philosophical Comment

Reading any category as a proof system, we can interpret the
coproduct as the disjunction.

To motivate, note that the coproduct of A and B is just an object
(together with a natural isomorphism) between Hom(A + B,C ) and
Hom(A,C )× Hom(B,C ). This just says that any proof of C from
A ∨ B is in one-to-one correspondence (i.e., uniform in A, B and C )
with the pairs of proofs of C from A and B. If we think about the
BHK interpretation, it is not exactly that. But it is its consequence.

Therefore, the injections, the commutation and the uniqueness are
not essential. They are just a presentation of a deep universal fact
that characterizes the disjunction.
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Exponential Object

Definition

Let C be a category with products and A and B be two objects. An object
C together with a morphism ev : C × A→ B is called an exponential
object if for any f : D × A→ B, there exists a unique g : D → C such
that:

D × A

C × A Bev

fg×idA

The exponentiation is denoted by BA. A cartesian category with all
exponentials is called cartesian closed. A cartesian closed category which is
cocartesian is called bicartesian closed.
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Some Examples

Example

In the category Set, the exponential is BA = {f |f : A→ B} with the
morphism ev : BA × A→ B defined by ev(f , a) = f (a). Note that for
any map f : C × A→ B, the map g : C → BA is defined by
g(c)(a) = f (c , a).

In SetZ, the exponential of (B, σB) by (A, σA) is (BA, σBA) together
with the evaluation map, where BA is the set of all functions and
σBA(f ) = σB f σ

−1
A .

In a poset (P,≤), the exponentiation is by definition the least
element c such that c ∧ a ≤ b i.e., an element c such that c ∧ a ≤ b
and for any d ∈ P if d ∧ a ≤ b then d ≤ c . Exponential objects in
posets are called Heyting implications and denoted by →.
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Example

A prototype example of preorder bicartesian closed categories is the
frames. We can say that the finitely verifiable propositions provide a
natural setting for provability. Is it possible to use finite verifiability to
also address proofs and not just provability?

Yes! These categories
are called Grothendieck toposes.

In Rec, the exponentiation of (B,∼B) by (A,∼A) is (C ,∼C ),
together with the map ev : C × A→ B, where C is the set of all
numbers e ∈ N such that ∀n ∈ A e · n ∈ B and for all m, n ∈ A, if
m ∼A n then e ·m ∼B e · n}. Also, define e ∼C f if e · n ∼B f · n, for
any n ∈ A and ev(e, a) = e · a. Note that ev is actually the universal
machine and for finding the map that the definition of the
exponentiation demands, we need the Smn-theorem. The idea is
simply that we need a computable function that maps an algorithm
f : C × A→ B to an algorithm g : C → BA such that
(g · c) · a = f · (2c(2a + 1)).
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Some Examples

Example

In Prf, the exponential of B by A is the implication A→ B together with
the left proof tree as the evaluation map. The right proof tree also helps
to introduce the map the definition demands for π:

A A→ B → E
B

[A]
π
B → I

A→ B
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The Exponential as the Implication

Philosophical Comment

Reading any category as a proof system, we can interpret the
exponential as the implication.

To motivate, note that the exponential BA is just an object (together
with a natural isomorphism) between Hom(C × A,B) and
Hom(C ,A→ B). This just says that any proof of B from C × A is in
one-to-one correspondence (i.e., uniform in A, B and C ) with the
proofs of A→ B from C .

Therefore, the evaluation, the commutation and the uniqueness are
not essential. They are just a presentation of a deep universal fact
that characterizes the implication.
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A Comment on Internalization

There is a one-to-one correspondence between the maps A→ B and the
maps 1→ BA. More precisely, for any f : A→ B, using p0 : A× 1→ A,
we have the map fp0 : A× 1→ B. By the definition of exponentials, there
is a unique map from 1 to BA, denoted by λf , such that:

A× 1 A

A× BA B

idA×λf

ev

p0

f
fp0
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A Comment on Internalization

Conversely, having a map g : 1→ BA, we have

A× 1 A

A× BA B

idA×g

ev

〈idA,!〉

as a map from A to B. For any map a : X → A, we denote the
composition of the previous map by a, by g · a : X → B.

Note that
(λf ) · a = f ◦ a.
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The Natural Number Object

Definition

A natural number object in a category with a terminal object is an object
N together with maps Z : 1→ N and s : N → N such that for any object
A and any maps a : 1→ A and f : A→ A, there exists a unique map
g : N → A such that

1 N N N

A A A

Z

a
g

s

f

gg
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Some Examples

Example

In Set, the set of natural numbers together with the morphism
Z : {∗} → N mapping ∗ to 0 and s : N→ N mapping any number to
its successor is a natural number object.

In SetZ, the pair (N, idN) together with the same data as before is a
natural number object.

In Rec, the pair (N,=N) together with the usual morphisms is a
natural number object.

In Prf, there is no natural number object and one may think that this
breaks the connection between proofs and categories. However, if we
extend the notion of proof as a constructive construction, then a
natural number object can also be a type of constructions.
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The Free Category

Recall that we aimed to identify the basic structure of proofs and now, we
may say that it is the bicartesian closed structure. Therefore, any of the
categories that we have seen can be interpreted as a proof system realizing
intuitionistic proofs or if you like they can be the models of intuitionistic
proofs. But what about the free category of abstract proofs? We do not
want to define free bicartesian closed categories here. Let us just say that
the free bicartesian closed category constructed from the object in a set X
is the ”smallest” bicartesian closed category containing X in its class of
objects. Smallest here means that it has all the required structures (e.g.
the terminal object, the product of the objects, the projections, the pairing
of morphisms, etc) satisfying all required equations (e.g. p0(〈f , g〉) = f )
but not anything more.
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The Free Category

For instance, the category Prf is the free bicartesian closed category
constructed from the infinite set of objects {p0, p1, · · · }. Therefore,
the category of natural deductions is actually the category of
intuitionistic propositional proofs with the atoms {p0, p1, · · · }.

In a similar way, it is possible to come up with the “smallest”
cartesian (closed) category with a natural number object denoted by
T. It has objects such as N, N × N, NN × N. Every object of the
category is constructed from N and 1, by product and exponentiation.
The morphisms are all constructed from the very basic morphisms
such as p0 and p1, by composition, pairing, etc.
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Representable Functions

In any cartesian category with a natural number object, there is a
canonical way to represent the natural number n by n̄ = sn ◦ Z : 1→ N.
Similarly, it is possible to represent numeral functions.

Definition

A function f : Nk → N is called representable in the category C with a
natural number object if there is a map F : Nk → N such that for any
(n1, · · · , nk) ∈ Nk we have

1 Nk

N

〈n̄1,··· ,n̄k 〉

F
f (n1,··· ,nk )
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Some Examples

Example

In Set, all numeral functions are representable.

In Rec, the representable functions are the total computable
functions.

In the free cartesian closed category with a natural number object,
the representable functions are called primitive recursive functionals.
Of course any primitive recursive function is representable in T. For
instance, we can represent the function n 7→ 2n by the map
g : N → N:

1 N N N

N N N

Z

Z
g

s

s◦s

gg
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Some Examples

Example

The power of T is far from the primitive recursion. For instance, it
can represent the function h(m, n) defined by h(0, n) = n + 1 and
h(m + 1, n) = hnm(n), where hm is just h(m,−). The idea simply is to
use higher order recursion on m to define hm by h0 = s and
hm+1 = λn.hnm(n). The function h has the growth rate equivalent to
that of the Ackermann function and hence is not primitive recursive.
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Consider the map F : (NN)(NN) × NN × N → N with the interpretation
ev(ev(F , f ), n) = F (f )(n) in T. Then, by exponentiality, we have a map

G : (NN)(NN) → (NN)(NN). Also, as we have a map p1 : NN × N → N, it

gives rise to a map H : 1→ (NN)(NN). Now, by the definition of natural

number object, we have a map iter : N → (NN)(NN):

1 N (NN)(NN)

N (NN)(NN) N (NN)(NN)

Z s

iter

H
G

iter

iter

Now, set h(n) = iter(n, λs).
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Thank you for your attention!
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