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Topology



An example

Consider a rod:

What can we say for certain about its length ℓ?

We cannot tell that ℓ = 10 cm.

Any measurement will have finite precision:

Here maybe we measure 10.1± 0.3 cm.

But we can never be sure it is exactly 10 cm long.

1



An example

What can we say?
We can tell that ℓ < 10 cm if an even more sensitive measurement
gives 9.91± 0.02 cm.

This is related to the interval (0, 10) being an open subset of the
space R+ of all possible lengths of the rod.

The open sets U ⊆ R+ are precisely the sets such that if ℓ ∈ U we
can verify this by finite means. (If ℓ /∈ U, who knows.)
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Opens as verifiable properties

So opens can be understood as verifiable properties and topology
as the study of these properties.

• The property that is always true is verifiable.
• If U and V are a verifiable properties, then so is U ∧ V.
• If U is a set of verifiable properties, then

∨
U is verifiable.

Thus, this idea motivates the axioms of a topological space.

We call the logic of verifiability geometric logic.

Let f : X→ Y be a function we could implement in the real world.
Then we can verify that x ∈ f−1(U) by verifying f(x) ∈ U.

This motivates the definition continuous maps between spaces.
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Lattices of verifiable properties

Topological spaces identify verifiable properties with the sets of
things that satisfy them.

It is also possibly to study them more abstractly.

Definition
A frame is a poset with finite meets and arbitrary joins satisfying
the distributivity condition a ∧

∨
α bα =

∨
α a ∧ bα.

The lattice of opens of any topological space gives a frame.
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Points

In the abstract approach we no longer have explicit ‘points’ that
can satisfy the verifiable properties.

From a logical perspective points are models of the theory of
verifiable properties given by the frame.

Here a model is a consistent assignment of truth values to each
verifiable property.

• The top element 1 must hold in our model.
• If a holds and a ≤ b, then b should hold.
• If a and b hold, so should a ∧ b.
• If

∨
α aα holds, then aα should hold for some α.

We call such an assignment a point of the frame.
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Frame homomorphisms

Frames are algebraic structures (with operations 1, ∧ and a proper
class of join operations of various arities).

A frame homomorphism is a map between frames that preserves
these operations.

Continuous maps between topological spaces give frame
homomorphisms between their frames of opens in the opposite
direction!

We define the category of locales Loc to be the opposite of the
category of frames Frm.

We write OX for the frame corresponding to a locale X and f ∗ for
the frame homomorphism corresponding to a locale map f.
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Locales vs spaces

We have seen how a topological space gives rise to a locale. This
gives a functor from Top to Loc.

This has a right adjoint which sends a locale X to its set of points
equipped with the obvious topology.

Let’s look at morphisms: suppose f : X→ Y is a locale map.
Consider a point of X defined by the opens P ⊆ OX being ‘true’.
Then {a ∈ OY | f∗(a) ∈ P} gives a point of Y.

This adjunction is idempotent. Locales coming from spaces are
called spatial and spaces coming from locales are called sober.
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Constructive mathematics



Logics

Classical logic is concerned with a Platonic notion of truth.

But there are other things logics can describe:

• What we already know to be true
• Computability
• Local truth — where statements are true
• Verifiable truths
• Probabilities, possibilities, fuzzy concepts, resources, etc.
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An example — local truth

Suppose we have some proposition that varies with location.

For example, “Is the temperature greater than 0 ◦C?”

The answer to this question is not just ‘yes’ or ‘no’, but the region
in which the proposition is true.

We will suppose this region is an open set in some fixed space.
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An example — local truth

Here the usual logic constants and connectives take on new
meanings.

• > means true everywhere
• ⊥ means true nowhere
• ∧ means intersection of regions
• ∨ means union of regions

The meaning of negation is particularly subtle. When U is open the
complement Uc is seldom open. Instead we use int(Uc).

But the union U ∪ int(Uc) is not the whole space if U is not clopen.

So the principle of excluded middle p ∨ ¬p fails for local truth!
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Intuitionistic logic

Intuitionistic logic is logic ‘without the principle of excluded
middle’ (or equivalent statements like ¬¬p =⇒ p).

Without excluded middle implication cannot be defined from
negation, so we need it as a basic connective.
(Negation ¬p can still be defined as p⇒ ⊥.)

Algebraically, propositional intuitionistic logic is interpreted in
Heyting algebras instead of Boolean algebras.

Definition
A Heyting algebra is a lattice with an operation⇒ satisfying

a ≤ b⇒ c ⇐⇒ a ∧ b ≤ c.
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Intuitionistic logic versus geometric logic

In a frame, b ∧ (−) preserves joins and so has an adjoint b⇒ (−).
Thus, frames are Heyting algebras.

However, frame homomorphisms do not need to preserve⇒.
On the other hand, Heyting algebras needn’t have infinite joins.

Geometric logic is still important for topology. In topology
complements of open sets give something new: closed sets.

Intuitionistic logic is more expressive, since we can use
implication and also quantifiers (∃, ∀) and higher-order logic.
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The lattice of truth values

Classically there are exactly two truth values: ⊥, >.

Constructively, there is still a lattice of truth values Ω.

If p ∈ Ω, then p = > iff p holds and p = ⊥ iff ¬p holds.
So (p = >) ∨ (p = ⊥) is an equivalent to excluded middle.
But we still have, p 6= > =⇒ p = ⊥.

If X is a set and χ : X→ Ω, then {x ∈ X | χ(x) = >} is a subset of X.
Conversely, if S ⊆ X then we can define a map x 7→ Jx ∈ SK.
These are inverses. So ΩX is isomorphic to the powerset of X.
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The frame of truth values

The lattice Ω is a frame.

Joins exist since for S ⊆ Ω,
∨
S = J> ∈ SK.

In fact, Ω is the initial frame!

Let L be a frame. The unique map ! : Ω → L sends p to
∨
{1 | p}.

Frame homomorphisms h : L→ Ω correspond to points of L.

In Loc these are maps from 1 as we might expect.
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Decidable propositions

The set Ω is larger than 2 = {⊥,>} in general, but the latter still
has a role to play.

The elements of elements of 2X correspond to decidable subsets
of X — subsets S ⊆ X such that x ∈ S ∨ x /∈ S.

Decidable subsets are analogous to clopen subsets in topology (or
complemented elements in a frame).

Equality is a decidable relation on the set of natural numbers N
and the rationals Q. So ∀n,m ∈ N. n = m ∨ n 6= m.
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Why work constructively?

If results are proved constructively they hold more generally than
classical results do.

Topos Interpretation Principles allowed

Set Classical results Axiom of Choice
G-Set G-equivariant topology Excluded middle
Eff Computable analysis Dependent choice
Sh(B) Fibrewise topology over B –
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Presentations and classifying locales



Frame presentations

Since frames are algebraic structures, we can present them by
generators and relations.

Consider the presentation 〈g1,g2, · · · | g1 ∧ g2 ≤ g3, g4 ≤
∨∞
i=5 gi〉.

Homomorphisms from this frame to another frame L are uniquely
defined by given an element gi of L for each generator gi, where
we must check that the gi’s satisfy the necessary relations in L.

In particular, points of this frame correspond to subsets S of
{gi | i ∈ Z+} such that

• g1 ∈ S ∧ g2 ∈ S =⇒ g3 ∈ S,
• g4 ∈ S =⇒ ∃i ≥ 5. gi ∈ S.
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Geometric theories

Presentations can be understood as defining geometric theories.

• The generators give basic propositions.
• The relations give axioms.

Recall that points are models of the theory. A model tells us which
propositions are true!

Geometric definitions of the points are actually enough to define
the topology.
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Example — the reals

The real numbers R can be constructed by Dedekind cuts.

A Dedekind cut is a pair (L,U) of sets of rational numbers.
They satisfy the following axioms.

• If p ≤ q and q ∈ L then p ∈ L (L is downward closed)
• If p ∈ L then q ∈ L for some q > p (L is rounded)
• There is some q ∈ L (L is inhabited)
• If p ≤ q and p ∈ U then q ∈ U (U is upwards closed)
• If q ∈ U then p ∈ U for some p < q (U is rounded)
• There is some q ∈ U (U is inhabited)
• If p ∈ L and q ∈ U then p < q (L and U are disjoint)
• If p < q then either p ∈ L or q ∈ U (locatedness)
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Example — the reals

This has the form of a geometric theory!

We have a basic proposition ℓq for each q ∈ Q — think “q ∈ L”,
and a basic proposition uq for each q ∈ Q — think “q ∈ U”.

The axioms give:

• ℓq ` ℓp for p ≤ q
• ℓp `

∨
q>p ℓq for p ∈ Q

• > `
∨
q∈Q ℓq

• up ` uq for p ≤ q
• uq `

∨
p<q up for q ∈ Q

• > `
∨
q∈Q uq

• ℓp ∧ uq ` Jq < pK for q,p ∈ Q
• > ` ℓp ∨ uq for p < q
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Example — the reals

Combining some of these relations together we arrive at

OR = 〈ℓq,uq, q ∈ Q | ℓp =
∨
q>p

ℓq, uq =
∨
p<q

up,∨
q∈Q

ℓq = 1,
∨
q∈Q

uq = 1,

ℓp ∧ uq = 0 for p ≥ q,
ℓp ∨ uq = 1 for p < q〉

The generator ℓq corresponds to the open interval (q,∞) and
the generator uq corresponds to the open interval (−∞,q).

From just the geometric definition of the points we have obtained
the entire locale of reals!
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Example — Cantor space

The points of Cantor space 2N are infinite sequences of bits 0 or 1.

We can verify if the nth element of the sequence is 0 and 1, giving
generators zn and un.

This suggests O(2N) ∼= 〈zn,un, n ∈ N | zn ∧ un = 0, zn ∨ un = 1〉.

The points correspond to the decidable subsets of N as we expect.
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Example — Sierpiński space

Consider the frame 〈g〉 with one generator and no relations.

Points correspond to truth values.

This is the frame of opens of Sierpiński space: the set of points is
Ω and the topology is generated by the single subbasic open {>}.

More generally, the points of the free frame on G generators will
be given by subsets of G. The space is homeomorphic to SG.
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Example — the Stone spectrum of a distributive lattice

Let L be a bounded distributive lattice. The Stone spectrum of L is
the space of prime filters of L.

A prime filter is a subset F ⊆ L such that

• if a ≤ b and a ∈ F then b ∈ F,
• 1 ∈ F,
• if a ∈ F and b ∈ F then a ∧ b ∈ F,
• 0 /∈ F,
• if a ∨ b ∈ F then a ∈ F or b ∈ F.

This gives the presentation

〈a, a ∈ L | 1 = 1, a ∧ b = a ∧ b, 0 = 0, a ∨ b = a ∨ b〉.

where a is a basic proposition asserting that a lies in the filter.
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Example — surjections from N to X

Fix a set X and consider the following geometric theory.

Basic propositions are denoted by [f(n) = x] for n ∈ N and x ∈ X.

• [f(n) = x] ∧ [f(n) = y] ` Jx = yK for x, y ∈ X,
• > `

∨
x∈X[f(n) = x] for n ∈ N,

• > `
∨
n∈N[f(n) = x] for x ∈ X.

The points correspond to surjections from N to X.

If X is chosen to be large enough there are no such surjections!

However, it is still a nontrivial locale.
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