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Remember from yesterday: Congruences and sublocales

A presentation 〈G | R〉 is then given the quotient of the free frame
on G by the congruence generated by R.

Frame quotients correspond to sublocales.

For every a ∈ OX there is an open sublocale of X with congruence

∆a = 〈(a, 1)〉 = {(u, v) | u ∧ a = v ∧ a}

and a closed sublocale with congruence

∇a = 〈(0,a)〉 = {(u, v) | u ∨ a = v ∨ a}.

These are complements in the lattice of sublocales.

Moreover, we have OX/∆a ∼= ↓a and OX/∇a ∼= ↑a.

1



Open and closed sublocales

Lemma
The open and closed sublocales induced by a are mutual
complements in the lattice of sublocales.

Proof.
Firstly, ∇a ∨∆a = 〈(0,a)〉 ∨ 〈(a, 1)〉 ⊇ 〈(0, 1)〉 = L× L. Now take
(u, v) ∈ ∇a ∩∆a. Consider (u ∧ v) ∨ (u ∧ a) = u ∧ (v ∨ a). Since
(u, v) ∈ ∇a, we know v ∨ a = u ∨ a. So u ∧ (v ∨ a) = u. Similarly,
(u ∧ v) ∨ (v ∧ a) = v. But also u ∧ a = v ∧ a and so these agree.
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Open sublocales of discrete locales

A set X can be viewed as a space with the discrete topology.
The frame of opens of the space X is just the powerset ΩX.

Lemma
Discrete spaces are sober — all points of ΩX come from points of X.

Proof.
The points of ΩX are filters F such that if

∪
S ∈ F then ∃S ∈ S ∩F .

But
∪
x∈X{x} = X ∈ F and so {x} ∈ F for some x ∈ X. Now suppose

U ∈ F . Then U ∩ {x} ∈ F. But U ∩ {x} =
∪
{{x} (fixed) | x ∈ U} ∈ F .

Thus, this set is inhabited and x ∈ U. So F = {U ⊆ X | x ∈ U}.

Open sublocales of the discrete locale X are simply subsets.
Opens are, of course, subsets S ⊆ X and ↓S ∼= ΩS.
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Closed sublocales of discrete locales

Since closed sublocales and open sublocales are complements,
sublocales of discrete spaces which are both closed and open
correspond to decidable subsets.

Closed sublocales can be specified by their complementary
subsets. This explains some strange definitions in constructive
algebra.

Definition
Let R be a ring. An anti-ideal of R is a subset A ⊆ R such that

• 0 /∈ A,
• if x+ y ∈ A then x ∈ A ∨ y ∈ A,
• If xy ∈ A then x ∈ A ∧ y ∈ A.
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Preimages of sublocales

We can easily define preimages of sublocales categorically.

Sf ∗(S)

X

S

Y

f ′

f

This makes the sublocale lattice into a functor S : Locop → Pos.

By standard algebraic arguments, if CS is the congruence for S
then the congruence corresponding to Sf ∗(S) is 〈(f ∗ × f ∗)(CS)〉.

Note that preimages of open/closed sublocales are open/closed.
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Images of sublocales

Like for any algebraic structure, frame homomorphisms have
image factorisations.

L Mh

Im(h)

Thus a locale map f : X→ Y factorises into an epimorphism
followed by a sublocale inclusion. We can use this to define
images of sublocales.

S

X

Sf!(S)

Y
f

We have CSf!(S) = (f ∗× f ∗)−1(CS). The map Sf! is left adjoint to Sf∗.
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Products of locales



Coproducts of frames

Products of locales correspond to coproducts of their frames.

These coproducts can be computed as in any algebraic structure.

The coproduct L⊕M can be presented by generators
{ι1(ℓ) | ℓ ∈ L} t {ι2(m) | m ∈ M} and relations making the maps ι1,2
frame homomorphisms.

Define ℓ⊕m = ι1(ℓ) ∧ ι2(m). These elements correspond to (basic)
open rectangles in the product topology.

More generally, L ∼= 〈GL | RL〉 and M ∼= 〈GM | RM〉 then

L⊕M ∼= 〈GL t GM | RL t RM〉.
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Discrete locales

Recall: a set X can be viewed as a discrete locale with frame ΩX.
Basic opens are given by singletons {x}.
Lemma
The binary products of discrete locales agree with the product of
the underlying sets.
Proof.
The coproduct frame ΩX⊕ΩY has basic opens {x}⊕{y}. The points
are given by Hom(ΩX ⊕ ΩY,Ω) ∼= Hom(ΩX,Ω)× Hom(ΩY,Ω) ∼= X× Y.

To show ΩX ⊕ ΩY ∼= ΩX×Y is suffices to show that opens are
distinguished by the points by contain. The open u =

∨
α Sα ⊕ Tα

contains the points (x, y) for which x ∈ Sα and y ∈ Tα for some α.

But x ∈ Sα iff {x} ∈ Sα and so (x, y) ∈ U iff {x} ⊕ {y} ≤ u, and we
know the basic opens contained in an open determine it.
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Hausdorffness



Hausdorffness

Definition
A locale X is Hausdorff if the diagonal in X× X is closed.

According to our intuition this means equality is refutable — that
is, inequality is verifiable.

In terms of the frames, the codiagonal map is ∆∗ : u⊕ v 7→ u ∧ v.
This is clearly surjective. It being closed means
u∧ v = u′ ∧ v′ ⇐⇒ (u⊕ v)∨a = (u′⊕ v′)∨a for some a ∈ OX⊕OX.
In fact, we must have a =

∨
{u⊕ v | u ∧ v = 0}, the largest element

that ∆∗ maps to 0. (Then the backward implication is automatic.)
It suffices to show u⊕ v ≤ (u ∧ v)⊕ (u ∧ v) ∨ a (with a as above).

It is not hard to see that sublocales and products of Hausdorff
locales are Hausdorff.
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The reals are Hausdorff

Recall the presentation of the locale of reals.

OR =
⟨
((q,∞)), ((−∞,q)), q ∈ Q |
((p,∞)) =

∨
q>p((q,∞)), ((−∞,q)) =

∨
p<q((−∞,p)),∨

q((q,∞)) = 1,
∨
q((−∞,q)) = 1,

((−∞,q)) ∧ ((p,∞)) = 0 for p ≥ q,
1 ≤ ((p,∞)) ∨ ((−∞,q)) for p < q

⟩
.

The putative diagonal complement is
d =

∨
r ((−∞, r))⊕ ((r,∞)) ∨

∨
r ((r,∞))⊕ ((−∞, r)).

To show Hausdorffness there are a few cases, but a representative
one is ((p,∞))⊕ ((−∞,q)) ≤ ((p,q))⊕ ((p,q)) ∨ d.
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The reals are Hausdorff

We must show ((p,∞))⊕ ((−∞,q)) ≤ ((p,q))⊕ ((p,q)) ∨ d.

(p,q)

This diagram suggests trying ((p,∞))⊕ ((−∞,q)) ≤
((p,q))⊕ ((p,q)) ∨ ((p,∞))⊕ ((−∞,p)) ∨ ((q,∞))⊕ ((−∞,q)).
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The reals are Hausdorff

We must show ((p,∞))⊕ ((−∞,q)) ≤ ((p,q))⊕ ((p,q)) ∨ d.

(p,q)

ε

ε

But this suggests we do have ((p+ ε,∞))⊕ ((−∞,q− ε)) ≤
((p,q))⊕((p,q))∨((p+ε,∞))⊕((−∞,p+ε))∨((q−ε,∞))⊕((−∞,q−ε)).
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The reals are Hausdorff

(p,q)

ε

ε

First consider
((p+ ε,q))⊕ ((p,q− ε)) ∨ ((p+ ε,q))⊕ ((−∞,p+ ε))

= ((p+ ε,q))⊕ [((p,q− ε)) ∨ ((−∞,p+ ε))]

= ((p+ ε,q))⊕ [((p,∞)) ∧ ((−∞,q− ε)) ∨ ((−∞,p+ ε))]

= ((p+ ε,q))⊕ [(((p,∞)) ∨ ((−∞,p+ ε))) ∧ ((−∞,q− ε))]

= ((p+ ε,q))⊕ ((−∞,q− ε)).
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The reals are Hausdorff

(p,q)

ε

ε

Now we have
((p+ ε,q))⊕ ((−∞,q− ε)) ∨ ((q− ε,∞))⊕ ((−∞,q− ε))

= [((p+ ε,q)) ∨ ((q− ε,∞))]⊕ ((−∞,q− ε))

= [((p+ ε,∞)) ∧ ((−∞,q)) ∨ ((q− ε,∞))]⊕ ((−∞,q− ε))

= [((p+ ε,∞)) ∧ (((−∞,q)) ∨ ((q− ε,∞)))]⊕ ((−∞,q− ε))

= ((p+ ε,∞))⊕ ((−∞,q− ε)).
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The reals are Hausdorff

In summary, we have shown
((p+ ε,q))⊕ ((p,q− ε)) ∨ ((p+ ε,q))⊕ ((−∞,p+ ε))

∨ ((q− ε,∞))⊕ ((−∞,q− ε))

= ((p+ ε,q))⊕ ((−∞,q− ε)) ∨ ((q− ε,∞))⊕ ((−∞,q− ε))

= ((p+ ε,∞))⊕ ((−∞,q− ε)).

Thus, ((p+ ε,∞))⊕ ((−∞,q− ε)) ≤ ((p,q))⊕ ((p,q)) ∨ d.
Now taking the join over all sufficiently small ε > 0 we have
((p,q))⊕ ((p,q)) ∨ d ≥

∨
ε
((p+ ε,∞))⊕ ((−∞,q− ε))

≥
∨

ε,ε′
((p+ ε,∞))⊕ ((−∞,q− ε′))

=
∨

ε
ι1(((p+ ε,∞))) ∧

∨
ε′
ι2(((−∞,q− ε′)))

= ((p,∞))⊕ ((−∞,q)).
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Diagonals of discrete locales

Let X be a discrete locale. Since the diagonal of X× X is a subset it
is open. So in discrete locales equality is verifiable.

If the diagonal is also closed, this means it has a complement and
thus is a decidable subset.

So for a discrete locale to be Hausdorff means it has decidable
equality.
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Compactness and overtness



Verifying universal quantification

Recall the verifiability interpretation of topology.

Suppose we have an open U ⊆ X× Y.
Can we verify when y ∈ Y satisfies ∀x ∈ X. (x, y) ∈ U?

This is easy if X is a finite set — just check each (xi, y) ∈ U in turn.

For an infinite set X this would appear to be impossible.

However, there are other locales X which act like (Kuratowski-)
finite sets in this regard!

These will turn out to be the compact locales.
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Verifying universal quantification

In set-theoretic terms, we are asking if the set
{y ∈ Y | ∀x ∈ X. (x, y) ∈ U} is open.

Taking the classical complement, we are asking if the set
{y ∈ Y | ∃x ∈ X. (x, y) /∈ U} is closed.

This is just the image of the closed set Uc under the projection
π2 : X× Y→ Y.

Thus, the universal quantification over a locale X of a verifiable
property is verifiable whenever the images of closed sublocales
under π2 : X× Y→ Y are closed (for all Y).
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Verifying existential quantification

Suppose we have an open U ⊆ X× Y.
Can we verify when y ∈ Y satisfies ∃x ∈ X. (x, y) ∈ U?

If X is a set (a discrete locale) then we can just take an x ∈ X that
works and verify (x, y) ∈ U.

More explicitly, we are asking if {y ∈ Y | ∃x ∈ X. (x, y) ∈ U} is open.
This is just the image of U under the projection π2 : X× Y→ Y.

Thus, the existential quantification over a locale X of a verifiable
property is verifiable whenever the images of open sublocales
under π2 : X× Y→ Y are open (for all Y).

This property is called overtness and is dual to compactness.
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Another definition of overtness

Definition
An element a in a frame OX is said to be positive (written a > 0) if
a ≤

∨
S implies S is inhabited.

Definition
A locale X is overt if OX has a base of positive elements.

Classically, a > 0 ⇐⇒ a 6= 0 and so every locale is overt!

Discrete locales are overt since singletons form a positive base.

The locale R of reals is overt since the elements ((p,q)) for p < q
form a base. These are positive since intuitively any cover of them
is built from the basic relations in which all the nontrivial joins are
inhabited.
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Open morphisms

Definition
A locale map f : X→ Y is open if Sf! maps open sublocales to open
sublocales.

Lemma
A map f : X→ Y is open if and only if f ∗ : OY→ OX has a left
adjoint f! : OX→ OY satisfying f!(f ∗(b) ∧ a) = b ∧ f!(a).

Proof.
(=⇒) Let g : OX→ OY be such that (f ∗ × f ∗)−1(∆a) = ∆g(a). Then
f ∗(u) ∧ a = f ∗(v) ∧ a ⇐⇒ u ∧ g(a) = v ∧ g(a). Taking u = 1, we
obtain a ≤ f ∗(v) ⇐⇒ g(a) ≤ v and so g a f ∗. Now letting
v = w ∧ u, the right-hand side becomes u ∧ g(a) ≤ w and the
left-hand side becomes f ∗(u) ∧ a ≤ f ∗(w), which is equivalent to
f!(f ∗(u) ∧ a) ≤ w. So f!(f ∗(u) ∧ a) = u ∧ g(a) = u ∧ f!(a).
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Open morphisms

Lemma
A map f : X→ Y is open if and only if f ∗ : OY→ OX has a left
adjoint f! : OX→ OY satisfying f!(f ∗(b) ∧ a) = b ∧ f!(a).

Proof.
(⇐=) Conversely, f!(f ∗(b) ∧ a) = b ∧ f!(a) means that
f ∗(b) ∧ a ≤ f ∗(w) ⇐⇒ b ∧ f!(a) ≤ w.

Now x ∧ c ≤ y precisely when x ∧ c ≤ y ∧ c and so
f ∗(b) ∧ a ≤ f ∗(w) ∧ a ⇐⇒ b ∧ f!(a) ≤ w ∧ f!(a).

This is precisely what it means to have (f ∗ × f ∗)−1(∆a) = ∆f!(a)
and so we are done.

21



Pullback stability of open maps

Theorem
Open maps are stable under pullback.

Explicitly, this means that in following pullback diagram in Loc, if g
is open then so is g′.

X×Z Y

X

Y

Z

g′

f ′

f

g

We omit the proof.
Here g′∗(a) = [a⊕ 1] and g′!(a⊕ b) = a ∧ f ∗g!(b).
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Overtness

Theorem
Let X be a locale. The following are equivalent.

1. For all Y, the projection π2 : X× Y→ Y is open.
2. The unique map ! : X→ 1 is open.
3. The frame map !∗ : Ω → OX has a left adjoint.
4. The frame OX has a base of positive elements.

Proof.
The implications (1) =⇒ (2) =⇒ (3) are obvious.

We will show (3) =⇒ (4) and (4) =⇒ (3) =⇒ (2) =⇒ (1).

23



Overtness

Proof.
(3) =⇒ (4) Let ∃ : OX→ Ω be the left adjoint to !∗. Now ∃(a) = >
means ∃(a) ≤ p =⇒ p = > and hence a ≤ !∗(p) =⇒ p = >.

Recall !∗(p) =
∨
{> | p = >}. So if a > 0 this certainly holds.

On the other hand, suppose the implication holds and a ≤
∨
S.

Then a ≤
∨
{s | s ∈ S} ≤

∨
{1 | s ∈ S} = !∗(J∃s ∈ SK) and so ∃s ∈ S

by assumption. Thus, a > 0. So we have shown ∃(a) = Ja > 0K.
Now by adjointness a ≤ !∗∃(a) =

∨
{> | a > 0}. So then

a =
∨
{a | a > 0}, which is a join of positive elements as

required.
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Overtness

Proof.
(4) =⇒ (3) Suppose OX is overt. We claim ∃ : a 7→ Ja > 0K is a left
adjoint to !∗ : Ω → OX.

It is clear that if
∨
{1 | p = >} > 0 then p = >. Thus, ∃ ◦ !∗ ≤ idΩ.

Now take a ∈ OX and write a =
∨

α aα where each aα > 0. Then
a =

∨
{aα | aα > 0} ≤

∨
{1 | aα > 0} ≤

∨
{1 | a > 0} = !∗∃(a).

So ∃ a !∗.

(3) =⇒ (2) Let ∃ a !∗. We must show ∃(!∗(p) ∧ a) = p ∧ ∃(a). A
meet !∗(p) ∧ a can be written as a join

∨
{a | p = >}. Since the left

adjoint ∃ preserves joins the desired equality follows.

(2) =⇒ (1) The projection π2 : X× Y→ Y is the pullback of the
open map ! : X→ 1 along ! : Y→ 1.
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Preservation of overtness

Lemma
Open sublocales of overt locales are overt.

Proof.
The positive base for the frame ↓a can be taken to be the
restriction of the positive base for the parent frame.

Lemma
Images of overt (sub)locales are overt.

Proof.
It suffices to show that subframes of overt frames are overt. Let M
be a subframe of an overt frame L and consider a ∈ M. In L we
have a =

∨
{a | a > 0}, but this join works equally well in M.
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Non-overt locales

Lemma
Every overt sublocale V of a discrete locale X is open.
Proof.
Intuitively, we can verify x ∈ V by showing ∃y ∈ V. x = y. More
formally, consider the following pullback.

V

X

X× V

X× X

i

(i, id)

(id, id)

X× i

Since the diagonal (id, id) is open, so is (i, id). Since V is overt,
π1 : X× V→ X is open. Thus, the composite i = π1(i, id) is open.

Corollary
If every closed sublocale of 1 is overt, then excluded middle holds.
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