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Remember from yesterday: Overtness and compactness

If for every Y and every verifiable property U ∈ O(X× Y) we have a
verifiable property corresponding to {y ∈ Y | ∃x ∈ X. (x, y) ∈ X}, we
say X is overt.

Formally, this means π2 : X× Y→ Y is open for all Y.

If for every Y and every verifiable property U ∈ O(X× Y) we have a
verifiable property corresponding to {y ∈ Y | ∀x ∈ X. (x, y) ∈ X}, we
say X is compact.

Formally, this means π2 : X× Y→ Y is closed for all Y.
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Open morphisms

Definition
A locale map f : X→ Y is open if Sf! maps open sublocales to open
sublocales.

Lemma
A map f : X→ Y is open if and only if f ∗ : OY→ OX has a left
adjoint f! : OX→ OY satisfying f!(f ∗(b) ∧ a) = b ∧ f!(a).

Proof.
(=⇒) Let g : OX→ OY be such that (f ∗ × f ∗)−1(∆a) = ∆g(a). Then
f ∗(u) ∧ a = f ∗(v) ∧ a ⇐⇒ u ∧ g(a) = v ∧ g(a). Taking u = 1, we
obtain a ≤ f ∗(v) ⇐⇒ g(a) ≤ v and so g a f ∗. Now letting
v = w ∧ u, the right-hand side becomes u ∧ g(a) ≤ w and the
left-hand side becomes f ∗(u) ∧ a ≤ f ∗(w), which is equivalent to
f!(f ∗(u) ∧ a) ≤ w. So f!(f ∗(u) ∧ a) = u ∧ g(a) = u ∧ f!(a).
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Open morphisms

Lemma
A map f : X→ Y is open if and only if f ∗ : OY→ OX has a left
adjoint f! : OX→ OY satisfying f!(f ∗(b) ∧ a) = b ∧ f!(a).

Proof.
(⇐=) Conversely, f!(f ∗(b) ∧ a) = b ∧ f!(a) means that
f ∗(b) ∧ a ≤ f ∗(w) ⇐⇒ b ∧ f!(a) ≤ w.

Now x ∧ c ≤ y precisely when x ∧ c ≤ y ∧ c and so
f ∗(b) ∧ a ≤ f ∗(w) ∧ a ⇐⇒ b ∧ f!(a) ≤ w ∧ f!(a).

This is precisely what it means to have (f ∗ × f ∗)−1(∆a) = ∆f!(a)
and so we are done.
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Pullback stability of open maps

Theorem
Open maps are stable under pullback.

Explicitly, this means that in following pullback diagram in Loc, if g
is open then so is g′.

X×Z Y

X

Y

Z

g′

f ′

f

g

We omit the proof.
Here g′∗(a) = [a⊕ 1] and g′!(a⊕ b) = a ∧ f ∗g!(b).
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Overtness

Theorem
Let X be a locale. The following are equivalent.

1. For all Y, the projection π2 : X× Y→ Y is open.
2. The unique map ! : X→ 1 is open.
3. The frame map !∗ : Ω → OX has a left adjoint.
4. The frame OX has a base of positive elements.

Proof.
The implications (1) =⇒ (2) =⇒ (3) are obvious.

We will show (3) =⇒ (4) and (4) =⇒ (3) =⇒ (2) =⇒ (1).
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Overtness

Proof.
(3) =⇒ (4) Let ∃ : OX→ Ω be the left adjoint to !∗. Now ∃(a) = >
means ∃(a) ≤ p =⇒ p = > and hence a ≤ !∗(p) =⇒ p = >.

Recall !∗(p) =
∨
{> | p = >}. So if a > 0 this certainly holds.

On the other hand, suppose the implication holds and a ≤
∨
S.

Then a ≤
∨
{s | s ∈ S} ≤

∨
{1 | s ∈ S} = !∗(J∃s ∈ SK) and so ∃s ∈ S

by assumption. Thus, a > 0. So we have shown ∃(a) = Ja > 0K.
Now by adjointness a ≤ !∗∃(a) =

∨
{> | a > 0}. So then

a =
∨
{a | a > 0}, which is a join of positive elements as

required.
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Overtness

Proof.
(4) =⇒ (3) Suppose OX is overt. We claim ∃ : a 7→ Ja > 0K is a left
adjoint to !∗ : Ω → OX.

It is clear that if
∨
{1 | p = >} > 0 then p = >. Thus, ∃ ◦ !∗ ≤ idΩ.

Now take a ∈ OX and write a =
∨

α aα where each aα > 0. Then
a =

∨
{aα | aα > 0} ≤

∨
{1 | aα > 0} ≤

∨
{1 | a > 0} = !∗∃(a).

So ∃ a !∗.

(3) =⇒ (2) Let ∃ a !∗. We must show ∃(!∗(p) ∧ a) = p ∧ ∃(a). A
meet !∗(p) ∧ a can be written as a join

∨
{a | p = >}. Since the left

adjoint ∃ preserves joins the desired equality follows.

(2) =⇒ (1) The projection π2 : X× Y→ Y is the pullback of the
open map ! : X→ 1 along ! : Y→ 1.
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Preservation of overtness

Lemma
Open sublocales of overt locales are overt.

Proof.
The positive base for the frame ↓a can be taken to be the
restriction of the positive base for the parent frame.

Lemma
Images of overt (sub)locales are overt.

Proof.
It suffices to show that subframes of overt frames are overt. Let M
be a subframe of an overt frame L and consider a ∈ M. In L we
have a =

∨
{a | a > 0}, but this join works equally well in M.
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Preservation of overtness

Lemma
Binary products of overt locales are overt.

Proof.
Let X and Y be overt locales. Then π2 : X× Y→ Y is open. But
! : Y→ 1 is open too. Thus, the composite map ! : X× Y→ Y→ 1 is
open and hence X× Y is overt.
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Non-overt locales

Lemma
Every overt sublocale V of a discrete locale X is open.
Proof.
Intuitively, we can verify x ∈ V by showing ∃y ∈ V. x = y. More
formally, consider the following pullback.

V

X

X× V

X× X

i

(i, id)

(id, id)

X× i

Since the diagonal (id, id) is open, so is (i, id). Since V is overt,
π1 : X× V→ X is open. Thus, the composite i = π1(i, id) is open.

Corollary
If every closed sublocale of 1 is overt, then excluded middle holds.
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Discrete locales

Proposition
A locale X is discrete if and only if it is overt and its diagonal is
open.

Proof.
We have already proved the forward direction. We omit the proof
of the reverse direction.

So in a sense, discrete locales (sets) are dual to compact
Hausdorff locales.
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Compactness



Closed morphisms

Definition
A locale map f : X→ Y is closed if Sf! maps closed sublocales to
closed sublocales.

Since frame homomorphisms f ∗ preserve all joins, they have right
adjoints f∗.

Lemma
A map f : X→ Y is closed if and only if the frame map f ∗ and its
right adjoint f∗ satisfy f∗(f ∗(b) ∨ a) = b ∨ f∗(a).

Proof.
Omitted.
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Compactness

Definition
A locale X is compact if whenever

∨
S = 1 in OX then there is some

Kuratowski-finite subset F ⊆ S such that
∨
F = 1.

Definition
A poset S is called directed if every Kuratowski-finite subset F ⊆ S
has an upper bound b ∈ S.

A locale X is compact if and only if, for every directed subset
S ⊆ OX,

∨
S = 1 implies 1 ∈ S.

Note that 1 = !∗(>) ≤ a ⇐⇒ > ≤ !∗(a) and so
!∗(a) = > ⇐⇒ a = 1. So !∗ preserves directed joins if and only if
for S directed,

∨
S = 1 implies ∃s ∈ S. s = 1. Thus, X is compact iff

!∗ preserves directed joins.
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Compactness and properness

Definition
A locale map f : X→ Y is proper if it is closed and f∗ preserves
directed joins.

Note: unlike open maps, closed maps are not stable under
pullback. However, proper maps are.

Theorem
Let X be a locale. The following are equivalent.

1. For all Y, the projection π2 : X× Y→ Y is closed.
2. For all Y, the projection π2 : X× Y→ Y is proper.
3. The unique map ! : X→ 1 is proper.
4. The right adjoint !∗ : OX→ Ω preserves directed joins.
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Preservation of compactness

Lemma
Closed sublocales of compact locales are compact.

Lemma
Images of compact (sub)locales are compact.

Lemma
Binary products of of compact locales are compact.
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Examples of compact locales

Lemma
A set X is compact (as a discrete locale) iff is Kuratowski-finite.
Proof.
Suppose X is compact. We have X =

∪
x∈X{x} and so by

compactness, X is a Kuratowski-finite join of singletons. Hence X is
Kuratowski-finite.

Suppose X is Kuratowski-finite. Then X is the image of some set
[n] = {m ∈ N | m < n}. Thus, it suffices to show [n] is compact.
We proceed by induction. Certainly, [0] is compact. Suppose [n] is
compact and consider a union

∪
S= [n] ∪ {n}. Then [n] ⊆

∪
S

and so there is a Kuratowski-finite subset F⊆ S such that
[n] ⊆ F. Moreover, n ∈ S for some S ∈ S. Thus, F∪ {S} ⊆ S is a
Kuratowski-finite subcover. So [n+ 1] is compact.
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Examples of compact locales

Lemma
The Cantor space 2N is compact.

Proof sketch.
We recall its presentation 〈zn,un, n ∈ N | zn ∧ un = 0, zn ∨ un = 1〉.
We need only consider covers by basic opens, zn and un.

Since the presentation only uses finite joins, a general join can
only equal 1 if it is “forced to by a finite join” — that is, if it has a
(Kuratowski-)finite subcover.

Lemma
The real closed interval [0, 1] is compact.

Proof sketch.
One can show that [0, 1] is an image of 2N. The result follows.
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Compactness of the unit interval

When constructivists say [0, 1] or 2N might not be compact, they
are referring the topological space of points.

But we have seen that the localic versions are compact. So in
these cases they are just not spatial.

In particular, they are not spatial in the Effective Topos.

Andrej Bauer. König’s Lemma and Kleene Tree.
http://math.andrej.com/wp-
content/uploads/2006/05/kleene-tree.pdf. 2006

18

http://math.andrej.com/wp-content/uploads/2006/05/kleene-tree.pdf
http://math.andrej.com/wp-content/uploads/2006/05/kleene-tree.pdf


The pointfree approach recovers
classical principles constructively



Excluded middle

Constructively we do not have that every subset of a set has a
complement unless excluded middle holds.

On the other hand, every subset of a set is an open sublocale and
this always has a complementary sublocale.

Similarly, ¬¬p ⇐⇒ p is not constructively valid.

On the other hand, for a truth value p ∈ Ω, let P we the
corresponding open sublocale. Then the exponential 0P in Loc is
isomorphic to the closed complement of P in 1 and 00P ∼= P!

Steven Vickers. Generalized point-free spaces, pointwise.
arXiv:2206.01113. 2022
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Tychonoff theorem

The Tychonoff theorem for spaces is famously equivalent to the
Axiom of Choice. But even constructively we have:

Theorem
Arbitrary products of compact locales are compact.

Peter Johnstone and Steven Vickers. “Preframe presentations
present”. In: Category theory: Proceedings of the International
Conference held in Como. Ed. by A Carboni, M C Pedicchio, and
G Rosolini. Vol. 1488. Lecture Notes in Mathematics. Berlin:
Springer, 1991, pp. 193–212
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The axiom of choice

The Axiom of Choice can be thought of as saying that the product
of nonempty sets is nonempty. But even constructively we have:

Theorem
A product of positive overt locales indexed by a set with decidable
equality is positive and overt.

Simon Henry. “Localic metric spaces and the localic Gelfand
duality”. In: Adv. Math. 294 (2016), pp. 634–688
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