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An application to fibrewise topology



An example application

Let’s end with a simple example, which shows the power this
approach to topology.

We will prove a constructive version of the Extreme Value Theorem.

Classically this says that if X is compact, then every continuous
function f : X→ R attains its maximum value.

Our proof will be based on that given in
Paul Taylor. “A lambda calculus for real analysis”. In: J. Log. Anal.
2.5 (2010), pp. 1–115
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Upper and lower reals

Classically, real numbers have all bounded, inhabited suprema
and infima.

This is not so constructively. What should the supremum of
{0} ∪ {1 | p} be?

Completing Q under inhabited suprema gives the lower reals.

These are constructed via one-sided Dedekind cuts using only
lower sets L instead of pairs (L,U).

Completing under inhabited infima gives the upper reals, which
are constructed using only upper sets U.
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Upper and lower reals

For the lower reals we have a basic proposition ℓq for each q ∈ Q
and the three axioms of Dedekind cuts that apply only to L:

• ℓq ⊢ ℓp for p ≤ q
• ℓp ⊢

∨
q>p ℓq for p ∈ Q

• ⊤ ⊢
∨
q∈Q ℓq

This gives the presentation

O
−→
R = ⟨ℓq, q ∈ Q | ℓp =

∨
q>p

ℓq,
∨
q∈Q

ℓq = 1⟩.

Similarly, for the upper reals we have

O
←−
R = ⟨uq, q ∈ Q | uq =

∨
p<q

up,
∨
q∈Q

uq = 1⟩.
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Suprema of overt locales

Let V be a positive overt sublocale of R.

We can define the supremum of V as a lower real λ by
q < λ ⇐⇒ ∃x ∈ V. q < x.

It is fairly intuitive that this defines a lower real, but let us spell it
out formally. This means q ∈ ℓq ⇐⇒ V ≬ ℓq. From the properties
of R, we have ℓp =

∨
q>p ℓq. Now V ≬ (−) is given by the composite

of the frame quotient OR↠ OV and the left adjoint ∃V and hence
preserves joins. So V ≬ ℓp ⇐⇒ V ≬

∨
q>p ℓq. Thus, the assignment

of truth values given by λ satisfies the first relation of O−→R . Now in
OR we have

∨
q∈Q ℓq = 1 and since V is positive we know V ≬ 1.

Thus, we similarly have that λ satisfies the second relation and λ

is indeed a lower real.
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Suprema of compact locales

Let K be a compact sublocale of R.

We can define the supremum of K as an upper real υ by
υ < q ⇐⇒ ∀x ∈ K. x < q.

This time we omit the details, but we use that by compactnessJK ⊆ (−)K preserves the directed joins ∨p<q up and
∨
q∈Q uq.
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Suprema of compact overt locales

Let K be a sublocale of R that is positive, overt and compact.

We claim the prior definitions define the supremum as a Dedekind
real ρ.

It just remains to check

1. if p < ρ and ρ < q then p < q,
2. if p < q then either p < ρ or ρ < q.
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Suprema of compact overt locales

Suppose p < ρ and ρ < q. By definition this means ∃x ∈ K. p < x
and ∀x ∈ K. x < q.

Intuitively, we should be able to argue p < x < q and hence p < q.

This is justified formally by noting K ≬ ((p,∞)) and K ⊆ ((−∞,q))
implies ((−∞,q)) ≬ ((p,∞)). But by this very axiom in OR we have
((−∞,q)) ∧ ((p,∞)) = 0 for q ≤ p and hence p < q.
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Suprema of compact overt locales

Now suppose p < q. We must prove that either p < ρ or ρ < q.

By the definition of ρ we must show ∃x ∈ K. p < x or ∀x ∈ K. x < q,
or in other words K ≬ ((p,∞)) or K ⊆ ((−∞,q)).

By the similar axiom in R we have ((−∞,q)) ∨ ((p,∞)) = 1 and so
K ⊆ ((−∞,q)) ∨ ((p,∞)).

The result then follows from the following lemma.

Lemma
Let K be a compact overt locale and suppose a ∨ b = 1 in OK. Then
either b > 0 or a = 1.
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Proving the lemma

Lemma
Let K be a compact overt locale and suppose a ∨ b = 1 in OK. Then
either b > 0 or a = 1.

Proof.
By overtness we have b =

∨
{b | b > 0}. Then by compactness

1 = a ∨ b = a ∨
∨
{b | b > 0} has a Kuratowski-finite subcover.

Thus we have c1 ∨ c2 ∨ · · · ∨ cn = 1 where for each i, either ci = a or
ci = b > 0. Since there are finitely many of these we can conclude
that either ci = a for all i or b > 0.

In the former case a = 1 and in the latter case b > 0.
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The supremum is a maximum

Thus, the positive compact overt locale K has a Dedekind real ρ as
its supremum. We now show it is a maximum.

Since R is Hausdorff and K is compact, K is a closed sublocale. To
show ρ ∈ K we must show ρ does not lie in its open complement.

Intuitively, ρ lies in this open if ∀x ∈ K. x ̸= ρ. More formally, this
says K ⊆

∨
p<ρ((−∞,p)) ∨

∨
ρ<q((q,∞)). We must show this is false.

Suppose it is true. By compactness, K ⊆ ((−∞,p)) ∨ ((q,∞)) for
some p < ρ and some q > ρ. By the lemma this implies that either
K ⊆ ((−∞,p)) or K ≬ ((q,∞)).

Now recall that ρ is defined by p < ρ ⇐⇒ K ≬ ((p,∞)) and
ρ < q ⇐⇒ K ⊆ ((−∞,q)). But since ((−∞,p)) ∧ ((p,∞)) = 0 and
((q,∞)) ∧ ((−∞,q)) = 0, these contradict both options above!
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The Extreme Value Theorem

Now since the image of a compact overt positive locale under a
locale map is compact, overt and positive, we have arrive at the
theorem.

Theorem (Extreme Value Theorem)
If K is any compact overt positive locale and f : K→ R, then f has a
maximum value given by a Dedekind real number ρ.

Note that since R is Hausdorff, ρ is a closed sublocale of R. So its
preimage under f is a closed and hence compact sublocale of K.

This sublocale of K is positive since the sublocale {ρ} is. (Though
it does not necessary contain a point.)
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Sheaf toposes

We can now interpret this result in a topos.
In particular, if B is a locale there is a topos Sh(B) of sheaves on B.

We can use the following dictionary.

Constructive concept Interpretation in Sh(B)

Locale Locale map into B
Point Section
Compact locale Proper map
Overt locale Open map
Positive compact locale Proper surjection
Positive overt locale Open surjection
R π1 : B× R→ B
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A consequence of our theorem

In this way, we can immediately obtain the following diagram.

X B× R

B

χ

(f, χ)

π1 (id, s)

Finally, translating from locales to spaces, we obtain the following.

Corollary
Let B be a TD topological space, χ : X→ B a proper and open
surjection and f : X→ R a continuous function. Then the function
s : B→ R defined by s(b) = maxx∈χ−1(b) f(x) is continuous.
Moreover, even if χ is not open, s is still upper semi-continuous.
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Summary and further resources



What we have learnt

• Topology is the study of verifiable properties.
• Pointfree topology studies these properties abstractly as a
lattice with arbitrary joins satisfying a ∧

∨
α bα =

∨
α a ∧ bα.

• These frames can be presented by generators and relations.
• The presentations axiomatise geometric theories.
• The theory of Dedekind cuts gives the locale of reals!

• Hausdorff locales are those for which equality is refutable.
• In discrete locales, equality is always verifiable.
• We can universally quantify over compact locales.
• We can existentially quantify over overt locales.
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What we have learnt

• Constructive proofs can be interpreted in many different
toposes, yielding different results for free.

• Thinking topologically makes some of the surprising aspects
of constructive mathematics more intuitive.

• With the pointfree approach we can almost always recover
some version of the classical results constructively.

• This even includes versions of the excluded middle and the
axiom of choice!
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