Pointfree topology and Constructive Mathematics

Graham Manuell graham@manuell.me

University of Coimbra

TACL Summer School June 2022

An application to fibrewise topology

Let's end with a simple example, which shows the power this approach to topology.

We will prove a constructive version of the Extreme Value Theorem. Classically this says that if X is compact, then every continuous function $f: X \to \mathbb{R}$ attains its maximum value.

Our proof will be based on that given in Paul Taylor. "A lambda calculus for real analysis". In: J. Log. Anal. 2.5 (2010), pp. 1–115 Classically, real numbers have all bounded, inhabited suprema and infima.

This is not so constructively. What should the supremum of $\{0\} \cup \{1 \mid p\}$ be?

Completing \mathbb{Q} under inhabited suprema gives the lower reals.

These are constructed via one-sided Dedekind cuts using only lower sets L instead of pairs (L, U).

Completing under inhabited infima gives the upper reals, which are constructed using only upper sets *U*.

For the lower reals we have a basic proposition ℓ_q for each $q \in \mathbb{Q}$ and the three axioms of Dedekind cuts that apply only to *L*:

- $\ell_q \vdash \ell_p$ for $p \le q$
- $\ell_p \vdash \bigvee_{q > p} \ell_q$ for $p \in \mathbb{Q}$
- $\top \vdash \bigvee_{q \in \mathbb{Q}} \ell_q$

This gives the presentation

$$\mathcal{O}\overrightarrow{\mathbb{R}} = \langle \ell_q, \ q \in \mathbb{Q} \mid \ell_p = \bigvee_{q > p} \ell_q, \ \bigvee_{q \in \mathbb{Q}} \ell_q = 1 \rangle.$$

Similarly, for the upper reals we have

$$\mathcal{O}\overline{\mathbb{R}} = \langle u_q, \ q \in \mathbb{Q} \mid u_q = \bigvee_{p < q} u_p, \ \bigvee_{q \in \mathbb{Q}} u_q = 1 \rangle.$$

Let V be a positive overt sublocale of \mathbb{R} .

We can define the supremum of V as a lower real λ by $q < \lambda \iff \exists x \in V. \ q < x.$

It is fairly intuitive that this defines a lower real, but let us spell it out formally. This means $q \in \ell_q \iff V \ \ \ell_q$. From the properties of \mathbb{R} , we have $\ell_p = \bigvee_{q>p} \ell_q$. Now $V \not (-)$ is given by the composite of the frame quotient $\mathcal{O}R \twoheadrightarrow \mathcal{O}V$ and the left adjoint \exists_V and hence preserves joins. So $V \ \ \ell_p \iff V \ \ \ \bigvee_{q>p} \ell_q$. Thus, the assignment of truth values given by λ satisfies the first relation of $\mathcal{O}\overrightarrow{\mathbb{R}}$. Now in $\mathcal{O}\mathbb{R}$ we have $\bigvee_{q\in\mathbb{O}} \ell_q = 1$ and since V is positive we know V (1, 1)Thus, we similarly have that λ satisfies the second relation and λ is indeed a lower real.

Let *K* be a compact sublocale of \mathbb{R} .

We can define the supremum of *K* as an *upper* real v by $v < q \iff \forall x \in K. \ x < q$.

This time we omit the details, but we use that by compactness $[K \subseteq (-)]$ preserves the directed joins $\bigvee_{p < q} u_p$ and $\bigvee_{q \in \mathbb{O}} u_q$.

Let *K* be a sublocale of \mathbb{R} that is positive, overt *and* compact. We claim the prior definitions define the supremum as a Dedekind real ρ .

It just remains to check

- 1. if $p < \rho$ and $\rho < q$ then p < q,
- 2. if p < q then either $p < \rho$ or $\rho < q$.

Suppose $p < \rho$ and $\rho < q$. By definition this means $\exists x \in K$. p < x and $\forall x \in K$. x < q.

Intuitively, we should be able to argue p < x < q and hence p < q.

This is justified formally by noting $K \not ((p, \infty))$ and $K \subseteq ((-\infty, q))$ implies $((-\infty, q)) \not ((p, \infty))$. But by this very axiom in $\mathcal{O}\mathbb{R}$ we have $((-\infty, q)) \land ((p, \infty)) = 0$ for $q \le p$ and hence p < q. Now suppose p < q. We must prove that either $p < \rho$ or $\rho < q$.

By the definition of ρ we must show $\exists x \in K$. p < x or $\forall x \in K$. x < q, or in other words $K \notin ((p, \infty))$ or $K \subseteq ((-\infty, q))$.

By the similar axiom in \mathbb{R} we have $((-\infty, q)) \vee ((p, \infty)) = 1$ and so $K \subseteq ((-\infty, q)) \vee ((p, \infty))$.

The result then follows from the following lemma.

Lemma

Let K be a compact overt locale and suppose $a \lor b = 1$ in OK. Then either b > 0 or a = 1.

Lemma

Let K be a compact overt locale and suppose $a \lor b = 1$ in OK. Then either b > 0 or a = 1.

Proof.

By overtness we have $b = \bigvee \{b \mid b > 0\}$. Then by compactness $1 = a \lor b = a \lor \bigvee \{b \mid b > 0\}$ has a Kuratowski-finite subcover.

Thus we have $c_1 \lor c_2 \lor \cdots \lor c_n = 1$ where for each *i*, either $c_i = a$ or $c_i = b > 0$. Since there are finitely many of these we can conclude that either $c_i = a$ for all *i* or b > 0.

In the former case a = 1 and in the latter case b > 0.

Thus, the positive compact overt locale K has a Dedekind real ρ as its supremum. We now show it is a maximum.

Since \mathbb{R} is Hausdorff and K is compact, K is a *closed* sublocale. To show $\rho \in K$ we must show ρ does not lie in its open complement. Intuitively, ρ lies in this open if $\forall x \in K$. $x \neq \rho$. More formally, this says $K \subseteq \bigvee_{p < \rho} ((-\infty, p)) \lor \bigvee_{\rho < q} ((q, \infty))$. We must show this is *false*. Suppose it is true. By compactness, $K \subseteq ((-\infty, p)) \lor ((q, \infty))$ for some $p < \rho$ and some $q > \rho$. By the lemma this implies that either $K \subseteq ((-\infty, p))$ or $K \lor ((q, \infty))$.

Now recall that ρ is defined by $p < \rho \iff K \not ((p, \infty))$ and $\rho < q \iff K \subseteq ((-\infty, q))$. But since $((-\infty, p)) \land ((p, \infty)) = 0$ and $((q, \infty)) \land ((-\infty, q)) = 0$, these contradict both options above!

Now since the image of a compact overt positive locale under a locale map is compact, overt and positive, we have arrive at the theorem.

Theorem (Extreme Value Theorem)

If K is any compact overt positive locale and $f: K \to \mathbb{R}$, then f has a maximum value given by a Dedekind real number ρ .

Note that since \mathbb{R} is Hausdorff, ρ is a closed sublocale of \mathbb{R} . So its preimage under *f* is a closed and hence compact sublocale of *K*.

This sublocale of K is positive since the sublocale $\{\rho\}$ is. (Though it does *not* necessary contain a point.)

We can now interpret this result in a topos.

In particular, if B is a locale there is a topos Sh(B) of sheaves on B.

We can use the following dictionary.

Constructive concept	Interpretation in Sh(B)
Locale	Locale map into B
Point	Section
Compact locale	Proper map
Overt locale	Open map
Positive compact locale	Proper surjection
Positive overt locale	Open surjection
\mathbb{R}	$\pi_1\colon B\times\mathbb{R}\to B$

A consequence of our theorem

In this way, we can immediately obtain the following diagram.

Finally, translating from locales to spaces, we obtain the following.

Corollary

Let B be a T_D topological space, $\chi: X \to B$ a proper and open surjection and $f: X \to \mathbb{R}$ a continuous function. Then the function $s: B \to \mathbb{R}$ defined by $s(b) = \max_{x \in \chi^{-1}(b)} f(x)$ is continuous. Moreover, even if χ is not open, s is still upper semi-continuous.

Summary and further resources

What we have learnt

- Topology is the study of verifiable properties.
- Pointfree topology studies these properties abstractly as a lattice with arbitrary joins satisfying $a \wedge \bigvee_{\alpha} b_{\alpha} = \bigvee_{\alpha} a \wedge b_{\alpha}$.
- These frames can be presented by generators and relations.
- The presentations axiomatise geometric theories.
- The theory of Dedekind cuts gives the locale of reals!
- Hausdorff locales are those for which equality is refutable.
- In discrete locales, equality is always verifiable.
- We can universally quantify over compact locales.
- We can existentially quantify over overt locales.

- Constructive proofs can be interpreted in many different toposes, yielding different results for free.
- Thinking topologically makes some of the surprising aspects of constructive mathematics more intuitive.
- With the pointfree approach we can almost always recover some version of the classical results constructively.
- This even includes versions of the excluded middle and the axiom of choice!

Useful references

Steven Vickers. *Topology via logic*. Cambridge: Cambridge University Press, 1989.

Jorge Picado and Aleš Pultr. *Frames and Locales: Topology without Points.* Frontiers in Mathematics. Basel: Springer, 2012.

- Graham Manuell. "Quantalic spectra of semirings". PhD thesis. University of Edinburgh, 2019.
- Simon Henry. "Des topos à la géométrie non commutative par l'étude des espaces de Hilbert internes". PhD thesis. Université Paris 7, 2014.
- Peter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Vol. 2. Oxford: Oxford University Press, 2002.