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Hilbert’s Program

Modern proof theory: established by David Hilbert.
He proposed a solution to the foundational crisis of mathematics:

Hilbert’s program

Main goal: provide secure foundations for mathematics (within a
finite, complete and consistent set of axioms).

Hilbert’s proposal: prove the consistency of more complicated
systems, such as real analysis, via simpler systems.
Ultimately, the consistency of all of mathematics could be reduced to
basic arithmetic.
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Consistency

§ To prove the consistency of a system, we can provide a model for it.
Example: geometry and real analysis.
The proof of this relative consistency often makes use of a more
powerful system! Which system should we map set theory to?

§ Alternative natural candidate: syntactic study.
Assuming a system is inconsistent: there is a finite proof for
contradiction.
By a syntactical analysis we may be able to show that such a proof
cannot exist for some theories.
This is safe as our usual tool for this analysis is a finite combinatorics.
This leads to his concern for finite mathematics.
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Gödel’s role

Gödel’s incompleteness theorems (1931): Hilbert’s program is impossible
to achieve.
Suppose a consistent “strong enough” system is given.

1 First theorem: such a system can never be complete.

Corollary: It is not possible to formalize all mathematical true
statements within a formal system.

2 Second theorem: such a system cannot prove its own consistency.

Corollary: Hilbert’s assumption that a finitistic system can be used
to prove the consistency of itself and of more powerful theories, such
as set theory, is refuted.
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Gentzen enters

Gentzen was Hilbert’s student. He did not believe Gödel’s results put an
end to Hilbert’s program. His goal was to prove the (relative) consistency
of PA.
He started with propositional logic and his goal was to prove its
consistency. He did not want to use model theoretic methods, as here the
model is very easy. He wanted instead to provide a method by analyzing
proofs and generalize this method to analysis or arithmetic to prove
consistency.
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Why Proof Theory?

Proof theory: syntactic study of proofs represented as formal
mathematical objects.
We focus here on one of its major areas: structural proof theory.

Advantages of proof theory:

proving consistency (originally);

proof mining: extracting information from a proof.
Example: @xDyApx , yq.

decidability;

proving logical properties: disjunction property, admissible rules,
interpolation.
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Propositional Logic

Language:

A :“ K | p | A^ A | A_ A | AÑ A where p P Prop “ tp, q, . . .u

␣A is defined as AÑ K and J as K Ñ K.

Semantics:

A valuation function is a mapping v : Prop Ñ t0, 1u which can be
extended to all formulas:

vpKq :“ 0;

vpA^ Bq “ 1 iff vpAq “ 1 and vpBq “ 1;

vpA_ Bq “ 1 iff vpAq “ 1 or vpBq “ 1;

vpAÑ Bq “ 1 iff vpAq “ 0 or vpBq “ 1.

Classical propositional logic (CPC): the set of all valid formulas.
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Constructive Reasoning

To prove the existence of a mathematical object, we have to “construct” a
specific example of it (“proof by contradiction” not acceptable).

Example

Theorem. There exist two irrational numbers x , y such that xy is rational.

Proof (nonconstructive). Consider
?
2. Either

?
2

?
2
is rational or

irrational.

1 If
?
2

?
2
is rational, take x “ y “

?
2.

2 If
?
2

?
2
is irrational, take x “

?
2

?
2
and y “

?
2, because

p
?
2

?
2
q

?
2 “ 2.

Proof (constructive). Take x “ e and y “ ln 2. Both of them are
irrational and we have e ln 2 “ 2.
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BHK-interpretation

Intuitionistic propositional logic (IPC): the logic of constructive reasoning.

An interpretation of the logical connectives in intuitionistic logic: the
proof-interpretation, called the Brouwer-Heyting-Kolmogorov
(BHK)-interpretation.

K has no proof.

A proof of A^ B is a pair such that the first element is a proof of A
and the second one is a proof of B.

A proof of A_ B is either a proof of A or a proof of B.

A proof of AÑ B is a construction that transforms any proof of A to
a proof of B.
(special case: a proof of ␣A is a construction that transforms any
hypothetical proof of A to a proof of K.)
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Formalism of Proofs

We are concerned with formalizing the notion of proof. Considering
propositional classical and intuitionistic logics, there are three well-known
kinds of formalism:

Hilbert system (Hilbert calculus)

natural deduction

sequent calculus (or Gentzen’s calculus)
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Hilbert Proof System

Hilbert system: an axiomatization with axioms and rules of inference.
The Hilbert system HJ for IPC has the following axioms:

1 AÑ pB Ñ Aq

2 pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq

3 AÑ A_ B

4 B Ñ A_ B

5 pAÑ C q Ñ ppB Ñ C q Ñ pA_ B Ñ C qq

6 A^ B Ñ A

7 A^ B Ñ B

8 AÑ pB Ñ pA^ Bqq

9 K Ñ A

and the modus ponens rule:

A AÑ B
pMPq

B
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Proof in Hilbert System

Hilbert system HK for CPC: HJ plus an addition axiom

␣␣AÑ A (law of double negation)

Equivalently, we could take the law of excluded middle: A_␣A.

Deduction from assumptions

By a proof (deduction) of A from a set of assumptions Γ, denoted by
Γ $HJ A, we mean a sequence of formulas A1, . . . ,An such that:
An “ A and each Ai is either an element of Γ, or is an instance of an
axiom, or is derived from Aj and Ak for j , k ă i by the modus ponens rule.
Similarly we define Γ $HK A.
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Example

The example presents a proof of AÑ A in HJ, using the following axioms:

AÑ pB Ñ Aq pH1q

pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq pH2q

Example

1 AÑ ppAÑ Aq Ñ Aq pH1q

2 AÑ ppAÑ Aq Ñ Aq Ñ ppAÑ pAÑ Aqq Ñ pAÑ Aqq pH2q

3 pAÑ pAÑ Aqq Ñ pAÑ Aq 1, 2,MP

4 AÑ pAÑ Aq pH1q

5 AÑ A 3, 4,MP
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Drawbacks of Hilbert System

Hilbert systems are not useful for proof search.

Example: Show that K cannot be derived in HJ, i.e., it is consistent.
(Hilbert’s program in a toy model)

Suppose K is provable and A1, . . . ,An is its proof. Therefore, An “ K.

As K is not an axiom, the last step of the proof is MP. It means that
there is a formula A such that both A and AÑ K are proved.

Now, either A is an axiom and we analyze the proof of AÑ K, or A
is derived from B and B Ñ A using MP. Either B is an axiom or it is
derived via MP . . .

In a backward proof search, each time that we reach MP, a new
formula appears.
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Remarks on Hilbert Systems

§ Weakness of Hilbert system is not on the positive side, i.e., in the sense
of proving theorems. After proving some (and not many) metatheorems
(this is the hard part), we can prove theorems rather quickly.

Some common metatheorems:

The deduction theorem: Γ,A $ B if and only if Γ $ AÑ B

Contraposition: If Γ,A $ B then Γ,␣B $ ␣A

§ The problem appears when you want to prove a formula is not provable.
Then you have to consider all the proofs, and as we observed, guessing the
structure of the proof is a very combinatorially complicated task.
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Gentzen designs other systems

Hilbert systems help us to understand the notion of proof. However,
Gentzen observed that Hilbert systems are not useful in achieving the goal
of proving consistency.
Therefore, he introduced two other proof systems to study proofs
systematically. Being in a transparent context, they are regarded as
elegant systems.
These two systems are natural deduction and sequent calculi.
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Natural Deduction

Proof trees in a natural deduction system have the following properties:

nodes are labelled by formulas;

leaf nodes are assumptions and the root node is the conclusion;

assumptions are either open or closed ; we use the notation rAs for a
closed assumption. Intuitively it means ...

Inductively define ND proof trees:

a single node tree labelled by A is a proof tree, and

new trees are constructed using the rules of ND.
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Natural Deduction for IPC, NJ

D1

A

D2

B
pI^q

A^ B

D
A^ B

pE^1q
A

D
A^ B

pE^2q
B

rAsi

D
B i pI Ñq

AÑ B

D1

A

D2

AÑ B
pE Ñq

B

D
A

pI_1q
A_ B

D
B

pI_2q
A_ B

D
A_ B

rAsi

D1

C

rBsj

D2

C i , j pE_q
C

D
K
pKq

A
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Natural Deduction for CPC, NK

D1

A

D2

B
pI^q

A^ B

D
A^ B

pE^1q
A

D
A^ B

pE^2q
B

rAsi

D
B i pI Ñq

AÑ B

D1

A

D2

AÑ B
pE Ñq

B

D
A

pI_1q
A_ B

D
B

pI_2q
A_ B

D
A_ B

rAsi

D1

C

rBsj

D2

C i , j pE_q
C

D
K
pKq

A

r␣Asi

D
K i pRAAq
A
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Notes on NJ and NK

The rule pKq is called the intuitionistic absurdity rule.

The rule pRAAq is called the classic absurdity rule (reductio ad
absurdum). This rule embodies proofs by contradiction. It says that if
by assuming that A is false we can derive a contradiction, then A
must be true.

Natural deduction systems NJ and NK that Gentzen introduced are a
bit different. They are the same as the ones introduced here except
that ␣ is treated as a primitive and there are two additional rules:

rAsi

D
K i pI␣q
␣A

D1

A

D2

␣A
pE␣q

K

They reduce to pI Ñq and pE Ñq if ␣A is defined.
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Proofs in Natural Deduction

Definition

Derivation Γ $NK A means that there is a proof tree whose open
assumptions are among Γ and the root is A.

Theorem

HrJKs and NrJKs are equivalent, i.e.,

Γ $HrJKs A if and only if Γ $NrJKs A.

Proof.

Left to right: we have to show all axioms of HJ and the modus ponens
rule are provable in NJ.
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Proof of the equivalence of HJ and NJ

Proof.

As an example, we will prove pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq.

rAÑ pB Ñ C qs1 rAs2
pE Ñq

B Ñ C

rAs2 rAÑ Bs3
pE Ñq

B
pE Ñq

C
2 pI Ñq

AÑ C
3 pI Ñq

pAÑ Bq Ñ pAÑ C q
1 pI Ñq

pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq
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Proof of the equivalence of HJ and NJ

Proof.

As an example, we will prove pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq.

rpAÑ pB Ñ C qqs1 rAs2
pE Ñq

B Ñ C

rAs2 rpAÑ Bqs3
pE Ñq

B
pE Ñq

C
2 pI Ñq

AÑ C
3 pI Ñq

pAÑ Bq Ñ pAÑ C q
1 pI Ñq

pAÑ pB Ñ C qq Ñ ppAÑ Bq Ñ pAÑ C qq

As for the other direction, to prove every proof π in NJ is a proof in HJ,
we use induction on the height of π.
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Example

Example

A proof tree in NJ for p␣A_ Bq Ñ pAÑ Bq:

rAs1 r␣As2
pE Ñq

K
pKq

B rBs3 r␣A_ Bs4
2, 3 pE_q

B
1 pI Ñq

AÑ B
4 pI Ñq

p␣A_ Bq Ñ pAÑ Bq
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Example

Example

A proof trees in NK for ␣␣AÑ A:

r␣␣As1 r␣As2
pE Ñq

K
2 pRAAq

A
1 pI Ñq

␣␣AÑ A

Exercise

Prove the following formulas in NK:

A_␣A

ppAÑ Bq Ñ Aq Ñ A (Peirce law)
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Hilbert System vs. Natural Deduction

Hilbert systems:

not useful for proof search;
it is difficult to use them for reasoning about reasoning;
they do not tell us much about the meaning of the logical symbols.

Natural deduction:

the introduction and elimination rules are in harmony;
the rules convey the meaning of the logical symbols;
proof search is still difficult because too many proofs are allowed.

Example:

rAs1 rAs1

A^ A
A

1
AÑ A

rAs1
1

AÑ A
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Consistency via ND

The goal of introducing natural deduction was to prove the consistency of
propositional logic. Does it help?

Suppose K is proved in NJ.

Looking at the last rule of the proof, here are several possibilities:
it is possible that the last rule is pE Ñq and A and AÑ K are proved.
Or the last rule can be pE^q and A^K is proved, and so on.

This is more complex than Hilbert system! The situation has become
worse, as in Hilbert system we had to only deal with MP, while in natural
deduction there are several possibilities. Gentzen had some ideas...
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Redundancies

Gentzen’s idea: Avoid redundancies in a proof.

β-reduction: introducing a connective and immediately in the next
step eliminating it.

D1

A

D2

B
A^ B
A

ù
D1

A

rAs1

D
B

1
AÑ B

D1

A
B

ù

D1

A
D
B
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Redundancies

D
A

A_ B

rAs1

D1

C

rBs2

D2

C
1, 2

C

ù

D
A
D1

C

D
B

A_ B

rAs1

D1

C

rBs2

D2

C
1, 2

C

ù

D
B
D2

C
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Normalization

Normalization is omitting all the redundancies in a proof. The resulting
proof is a normal proof.
It is not trivial to see that this task is possible for any given proof (it may
be the case that two introduction elimination rules are not after each
other, but in the steps of omitting the redundancies, these two rules
become after one another. So, new redundancies may appear.)
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η-equivalence

β-reduction gives rise to an equivalence between proofs called
β-equivalence. There is another notion of equivalence, called
η-equivalence.

η :

D
A^ B
A

D
A^ B
B

A^ B

D
AÑ B rAs1

B
1

AÑ B

η-equivalence is complicated in some cases and not useful for our
purposes.

An example of η-reduction: first eliminating and immediately
introducing.

η-equivalence for K: any two derivations of a formula A from K are
considered to be equivalent.
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Does normalization solve our problem?

Suppose we have proved the normalization theorem, i.e., it is possible to
make any proof normal. So, we are sure that if a formula is provable, there
exists a finite and algorithmic process that takes a proof and makes it
normal such that it does not contain any β-redex. Now, can we prove the
consistency?

Theorem

Every normal proof, without any open assumptions, ends with an
introduction rule.
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Proof of consistency via normalization

Proof.

Suppose on the contrary that there are normal proofs ending with an
elimination rule. Take the shortest such proof. We investigate all the
possibilities of elimination rules in the last step. For instance, if it is E^,
then as the proof above it is shorter, then it must end with an introduction
rule. This is not possible: (introduction, elimination), as our proof was
normal.

Proof of consistency is immediate after the above theorem. Also proof of
DP in intuitionistic logic.
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Moving to Sequent Calculi

Recall that Gentzen’s goal was to efficiently study the form of the proof
and ND is one such system, up to normalization. We will define the next
system that Gentzen introduced, sequent calculi.
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Sequents

Sequents are expressions of the form

Γñ ∆

where Γ and ∆ are finite multisets of formulas called the antecedent and
the succedent of the sequent, respectively. The formula interpretation, I ,
corresponding to the above sequent is

Ź

ΓÑ
Ž

∆.
Convention:

Ź

∅ “ J and
Ž

∅ “ K.

Example

The formula interpretation of the sequent p, q Ñ r , q Ñ r ñ s,␣q is
pp ^ pq Ñ rq ^ pq Ñ rqq Ñ ps _␣qq.
Moreover, I pAñq “ AÑ K “ ␣A and I pñ Aq “ J Ñ A, which is
equivalent to A.
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Sequent calculus

A rule is an expression of the form

S1 . . . Sn
S

where S1, . . . ,Sn and S are sequents called the premises and the
conclusion of the rule, respectively.

A sequent Calculus (also called a Gentzen system or a Gentzen calculus) is
a set of rules.
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Sequent Calculus G3c for CPC

Axioms

Γ,A ñ A,∆ Γ,K ñ ∆

Logical rules

Γ,A,B ñ ∆
pL^q

Γ,A ^ B ñ ∆

Γ ñ A,∆ Γ ñ B,∆
pR^q

Γ ñ A ^ B,∆

Γ,A ñ ∆ Γ,B ñ ∆
pL_q

Γ,A _ B ñ ∆

Γ ñ A,B,∆
pR_q

Γ ñ A _ B,∆

Γ ñ A,∆ Γ,B ñ ∆
pL Ñq

Γ,A Ñ B ñ ∆

Γ,A ñ B,∆
pR Ñq

Γ ñ A Ñ B,∆

The cut rule

Γ ñ A,∆ Γ1,A ñ ∆1

pcutq
Γ, Γ1 ñ ∆,∆1
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Sequent Calculus for CPC

Axioms

Γ,A ñ A,∆ Γ,K ñ ∆

Logical rules

Γ,A,B ñ ∆
pL^q

Γ,A ^ B ñ ∆

Γ ñ A,∆ Γ ñ B,∆
pR^q

Γ ñ A ^ B,∆

Γ,A ñ ∆ Γ,B ñ ∆
pL_q

Γ,A _ B ñ ∆

Γ ñ A,B,∆
pR_1q

Γ ñ A _ B,∆

Γ ñ A,∆ Γ,B ñ ∆
pL Ñq

Γ,A Ñ B ñ ∆

Γ,A ñ B,∆
pR Ñq

Γ ñ A Ñ B,∆

The cut rule

Γ ñ A,∆ Γ1,A ñ ∆1

pcutq
Γ, Γ1 ñ ∆,∆1
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Sequent Calculus G3i for IPC

Axioms

Γ,A ñ A Γ,K ñ ∆

Logical rules

Γ,A,B ñ ∆
pL^q

Γ,A ^ B ñ ∆

Γ ñ A Γ ñ B
pR^q

Γ ñ A ^ B

Γ,A ñ ∆ Γ,B ñ ∆
pL_q

Γ,A _ B ñ ∆

Γ ñ A
pR_q

Γ ñ A _ B
Γ ñ B

pR_q
Γ ñ A _ B

Γ,A Ñ B ñ A Γ,B ñ ∆
pL Ñq

Γ,A Ñ B ñ ∆

Γ,A ñ B
pR Ñq

Γ ñ A Ñ B

The cut rule

Γ ñ A Γ1,A ñ ∆1

pcutq
Γ, Γ1 ñ ∆1
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Notes on Sequent Calculi

Original sequent calculi for CPC and IPC introduced by Gentzen,
denoted by LK and LJ, respectively, (also called G1 calculi) were
defined using sequences of formulas instead of multisets. In these
systems roles of structural rules and logical rules are kept distinct. In
G3 style, the structural rules are absorbed into the logical rules. (G2
calculi are intermediate ones, where the weakening rules are built in.)

Structural rules:

Γ ñ ∆
pLwq

Γ,A ñ ∆
Γ ñ ∆

pRwq
Γ ñ A,∆

Γ,A,A ñ ∆
pLcq

Γ,A ñ ∆

Γ ñ A,A∆
pRcq

Γ ñ A∆

Γ,A,B,Σ ñ ∆
pLeq

Γ,B,A,Σ ñ ∆

Γ,ñ ∆,A,B,Π
pReq

Γ ñ ∆,B,A,Π
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Notes on Sequent Calculi (Cont.)

There are several variants of sequent calculi, no variants preferable
over others; choose one suitable for your purpose.

There are three types of formulas in the rules of the sequent calculus:

Principal : The formula introduced in conclusion
Auxiliary : The formula(s) mentioned in the premise(s)
Side: The formulas in Γ and ∆
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Proofs in Sequent Calculi

Proofs in sequent calculi are finite trees labelled with sequents such that:

there is one root, labelled with the result of the proof (called
endsequent or conclusion of the proof);

labels of the leaves are axioms;

all the other nodes are labelled and connected to the immediate
successors with respect to one of the rules of the sequent calculus.
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Example I

Example

Sequent pñ AÑ ppAÑ Bq Ñ Bqq is derivable in both G3c and G3i:

Añ A B ñ B
pLÑq

A,AÑ B ñ B
pR Ñq

Añ pAÑ Bq Ñ B
pR Ñq

ñ AÑ ppAÑ Bq Ñ Bq

Exercise

Provide proofs for the sequents pñ A_␣Aq and pñ ␣␣AÑ Aq and
p␣A_ B ñ AÑ Bq in G3c.
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Example II

Example

Peirce’s law is provable in G3c:

Añ A,B
pR Ñq

ñ A,AÑ B Añ A
pLÑq

pAÑ Bq Ñ Añ A
pR Ñq

ñ ppAÑ Bq Ñ Aq Ñ A

Exercise

Show that if we allow sequents in the sequent calculus to have at most
one formula in the succedent, Peirce’s law cannot be provable.
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The importance of the cut rule

We have included the cut rule in the sequent calculi, and we will show
it can be eliminated from the calculi. Why include it in the first place?

The cut rule is useful to prove the soundness and completeness of the
sequent calculi (i.e., every formula true in the logic must be provable
in the system and vice versa).
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Equivalence of Sequent Calculi and Hilbert Systems

Theorem

HrJKs and G3rics are equivalent, i.e.,

Γ $HrJKs A if and only if $G3rics Γñ A.

Proof.

We will sketch the proof for the intuitionistic case.
Left to right: by induction. Hilbert axioms are provable in G3i. To show
the provability of MP in G3i, suppose both ñ A and ñ AÑ B are
provable in G3i.
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Proof of the equivalence

Proof (continued).

The following proof serves our goal:

ñ A
Añ A B ñ B

pLÑq
A,AÑ B ñ B

(cut)
AÑ B ñ B ñ AÑ B (cut)

ñ B

Therefore, the cut rule is practically useful to simulate Hilbert system in
the sequent calculus. The converse, that is HJ simulates G3i is easy.
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Cut is problematic

Gentzen provided this system to prove the consistency. However, we face
the same problem as the one for natural deduction:

Suppose ñ K is proved.

It is not an axiom. What rule can be above this sequent?

Not a left rule, as the antecedent is empty; and not a right rule as
there is no connective so that it can be introduced. The only possible
rule is cut.

The rest is similar as the investigation of the case where MP above K
in natural deduction.

Cut makes the discussion for consistency problematic. Can we eliminate
this rule from the sequent calculus? Yes.
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Cut elimination

Theorem

Cut elimination holds for G3rcis, i.e., every sequent derivable in G3rcis has
a derivation in G3rcis´Cut.

Idea of the proof: permute cut upward until there exist no more cuts.

Definition

level of a cut: sum of the depths of the derivations of its premises;

rank of a cut on A is |A| ` 1 (number of symbols in A plus one);

cutrank of a derivation D, crpDq: maximum of the ranks of the cut
formulas occurring in it.
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Proof of Cut Elimination

Proof.

We use induction on the cutrank of the derivation with a subinduction on
the level. Throughout the proof, we use the fact that G3c is closed under
weakening and contraction. Consider

D1

Γñ ∆,A

D2

Γ1,Añ ∆1

(cut)
Γ, Γ1 ñ ∆,∆1

There are three possibilities:

at least one of D1 and D2 is an axiom;

none of D1 and D2 is an axiom, and at least in one of the premises A
is auxiliary;

A is principal in both premises.
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Cut formula is auxiliary

Cut formula A is auxiliary in the left premise:

D1

Γ,B ñ C ,A,∆

Γñ B Ñ C ,A,∆

D2

Γ1,Añ ∆1

(cut)
Γ, Γ1 ñ B Ñ C ,∆,∆1

then it reduces to

D1

Γ,B ñ C ,A,∆

D2

Γ1,Añ ∆1

(cut)
Γ, Γ1,B ñ C ,∆,∆1

Γ, Γ1 ñ B Ñ C ,∆,∆1

Cutrank is the same; level of the cut is lower.

We permute the cut upwards.
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Cut formula is principal

Suppose the cut formula is A^ B and it is principal in both premises:

D1

Γñ A,∆

D2

Γñ B,∆

Γñ A^ B,∆

D3

A,B, Γ1 ñ ∆1

A^ B, Γ1 ñ ∆1

(cut)
Γ, Γ1 ñ ∆,∆1

will be replaced by

D1

Γñ A,∆

D2

Γñ B,∆

D3

A,B, Γ1 ñ ∆1

(cut)
Γ, Γ1,Añ ∆,∆1

(cut)
Γ, Γ, Γ1 ñ ∆,∆,∆1

Cutrank of the second proof tree is lower.

G3c is closed under contraction, so we get Γ, Γ1 ñ ∆,∆1.
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On the importance of G3-style systems

Suppose the contraction rules are explicitly present in the system.
Consider the case:

Γ,A,Añ ∆

Γ,Añ ∆ Γ1 ñ A
(cut)

Γ, Γ1 ñ ∆

How do we eliminate the cut in this case? Possibly:

Γ,A,Añ ∆ Γ1 ñ A
(cut)

Γ, Γ1,Añ ∆ Γ1 ñ A
(cut)

Γ, Γ1, Γ1 ñ ∆

Neither the cutrank, nor the level of the cut is lower than the original
derivation. (A derivable generalization of cut is introduced: multi-cut or
mix, that allows eliminating several copies of the cut formula in one step.)
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Complexity of Cut-elimination

Define 2i0 :“ i and 2ik`1 :“ 22
i
k . Similarly define 4ik .

Theorem (Hyperexponential bounds on cut elimination)

For every derivation D in G3c ` cut or G3i ` cut with cutrank k, there
exists a cut free derivation D˚ with the same conclusion as the one in D
such that

|D˚| ď 2
|D|

k for G3c and |D˚| ď 4
|D|

k for G3i
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Applications of Cut Elimination

In fact, applications of a cut-free proof system.

Consistency : pñ Kq is not derivable in either G3rcis. immediate!
Corollary: IPC and CPC are consistent.
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Applications of Cut Elimination

in an intuitionistic setting:
Disjunction property : if pñ A_ Bq is provable, then either pñ Aq or
pñ Bq is provable; or more generally:
Visser’s admissible rules: if G3i $ tAi Ñ BiuiPI ñ B _ C then one of
the following is provable:

G3i $ tAi Ñ BiuiPI ñ B, or
G3i $ tAi Ñ BiuiPI ñ C , or
G3i $ tAi Ñ BiuiPI ñ Ai , for some i P I .

Corollary: IPC enjoys DP and admissibility of Visser’s rules.
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Applications of Cut Elimination

G3rcis are terminating; proof search. Termination implies the
decidability of a logic. Not only it proves the decidability, but also if it
is provable, it constructs the proof.
Corollary: CPC and IPC are decidable, i.e., there is an algorithm that
reads a formula A and determines whether A is logically valid or not.
Moreover, using the cut-free systems, if A is valid the algorithm
outputs a proof of it.
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Applications of Cut Elimination

Subformula Property : every derivable sequent has a derivation in
which all the formulas throughout the proof are subformulas of
formulas of the endsequent. Eliminating the cut rule gives us more
control over the presence of formulas. (G3rcis have subformula
property, which is immediate by inspection of the rules.)
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Applications of Cut Elimination (Interpolation)

Interpolation:

Definition

Craig interpolation property for a logic L: if L $ AÑ B, then there exists
a formula I pA,Bq, such that varpI q Ď varpAq X varpBq and moreover
L $ AÑ I and L $ I Ñ B.

Theorem

IPC and CPC enjoy the Craig interpolation property.
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We will consider G3c. Main idea: split sequents, due to Maehara.

Definition

For a sequent Γñ ∆ a split sequent (also called partition) is an
expression Γ1; Γ2 ùñ ∆1; ∆2 such that Γ1, Γ2 “ Γ and ∆1,∆2 “ ∆.

Definition

Let Γñ ∆ be a provable sequent and Γ1; Γ2 ùñ ∆1; ∆2 be one of its split
sequents. We say I is an interpolant for Γ1; Γ2 ùñ ∆1; ∆2 if

Γ1 ñ ∆1, I and Γ2, I ñ ∆2, and

varpI q Ď varpΓ1 Y∆1q X varpΓ2 Y∆2q
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In G3c:

Theorem

Let Γñ ∆ be provable. If Γ1; Γ2 ùñ ∆1; ∆2 is an split sequent for it,
then there exists an interpolant for it.

Proof.

By induction on the length of the cut-free proofs in G3c. We consider the
last rule used in the proof and show how to construct an interpolant for a
partition of the conclusion from the interpolants of suitable partitions of
the premises.

Corollary

CPC enjoys Craig interpolation.

68 / 71



Proof.

Last rule: pLÑq. Two cases based on the position of the principal formula:

Γ; Γ1 ùñ ∆A; ∆1 Γ1;BΓ ùñ ∆1; ∆

ΓpAÑ Bq; Γ1 ùñ ∆;∆1
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Proof.

Last rule: pLÑq. Two cases based on the position of the principal formula:

Γ; Γ1 D
ùñ ∆A; ∆1 Γ1;BΓ

C
ùñ ∆1; ∆

ΓpAÑ Bq; Γ1 CÑD
ùùùùñ ∆;∆1

By IH:

Γñ D,A,∆ p1q and Γ1,D ñ ∆1 p2q.

Γ1 ñ C ,∆1 p3q and Γ,C ,B ñ ∆ p4q.

By p1q and p4q we get Γ,AÑ B ñ C Ñ D,∆ and by p2q and p3q we get
Γ1,C Ñ D ñ ∆1. Variable check is easy.

Exercise

Show that this method does not work for G3i to prove the Craig
interpolation property. (Hint: think about partitions of the axioms.)
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Thank you!
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