From Metric Spaces to Quantale-Enriched Categories

Walter Tholen
York University, Toronto, Canada

Topology, Algebra, and Categories in Logic
Summer School at Praia de Mira, Portugal
13-18 June 2022

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Learning goals for this lecture series

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Lectures

1 Metrics: from Frechét via Hausdorff to Lawvere
2 Quantales and the (small) categories enriched in them
3 Distributors and the presheaf monad
4 Weighted colimits, tensors, conical infima
5 Pseudo-algebras of the presheaf monad, injectivity
6 Cauchy- and Lawvere-completeness
7 A glance at normed/weighted categories

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:
0 -Self $0=d(x, x)$
Sep $d(x, y)=0=d(y, x) \Longrightarrow x=y$
Sym $d(x, y)=d(y, x)$
∇-lnq $d(x, y)+d(y, z) \geq d(x, z)$
Necessarily then:
Pos $d(x, y) \geq 0$
Possible strengthenings:
Bdd $1 \geq d(x, y)$ (bounded metric)
Ult $\max \{(d(x, y), d(y, z)\} \geq d(x, z)$ (ultrametric)
Met $_{\text {Frechét }}:$ morph's $f: X \rightarrow Y$ satisfy $d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right)$; write $X\left(x, x^{\prime}\right) \geq Y\left(f x, f x^{\prime}\right)$.

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

0 -Self $0=d(x, x)$
Sep $d(x, y)=0=d(y, x) \Longrightarrow x=y$
Sym $d(x, y)=d(y, x)$
∇-Inq $d(x, y)+d(y, z) \geq d(x, z)$
Necessarily then:
Pos $d(x, y) \geq 0$
Possible strengthenings:
Bdd $1 \geq d(x, y)$ (bounded metric)
Ult $\max \{(d(x, y), d(y, z)\} \geq d(x, z)$ (ultrametric)
Met Frechét : morph's $f: X \rightarrow Y$ satisfy $d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right)$; write $X\left(x, x^{\prime}\right) \geq Y\left(f x, f x^{\prime}\right)$

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:
0 -Self $0=d(x, x)$
Sep $d(x, y)=0=d(y, x) \Longrightarrow x=y$
Sym $d(x, y)=d(y, x)$
∇-Inq $d(x, y)+d(y, z) \geq d(x, z)$
Necessarily then:
Pos $d(x, y) \geq 0$
Possible strengthenings:
Bdd $1 \geq d(x, y)$ (bounded metric)
Ult $\max \{(d(x, y), d(y, z)\} \geq d(x, z)$ (ultrametric)
Met $_{\text {Frechét }}:$ morph's $f: X \rightarrow Y$ satisfy $d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right)$; write $X\left(x, x^{\prime}\right) \geq Y\left(f x, f x^{\prime}\right)$.

1.2 Some shortcomings of Met Fréchet , Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy only (0-Self) and (\triangle-Inq) of the Fréchet axioms,
but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, etc.

1.2 Some shortcomings of Met Fréchet , Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy only (0-Self) and (\triangle-Inq) of the Fréchet axioms,
but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, etc.

1.2 Some shortcomings of Met Fréchet , Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy only (0-Self) and (\triangle-Inq)
of the Fréchet axioms,
but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, etc.

1.2 Some shortcomings of Met Fréchet, , Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$
d(A, B)=\sup _{x \in A} \inf _{y \in B} d(x, y)
$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy only (0-Self) and (\triangle-Inq) of the Fréchet axioms, ...
but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, etc.

1.2 Some shortcomings of Met Fréchet , Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$
d(A, B)=\sup _{x \in A} \inf _{y \in B} d(x, y)
$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy only (0 -Self) and (\triangle-Inq) of the Fréchet axioms, ...
... but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, etc.

1.3 Regrouping Fréchet's axioms à la Lawvere 1973

A Frechét metric $d: X \times X \longrightarrow[0, \infty]$ on a set X satisfies

0-Self-distances:	$0 \geq d(x, x)$	$1 \rightarrow X(x, x)$
∇-Inequality:	$d(x, y)+d(y, z) \geq d(y, z)$	$X(x, y) \times X(y, z) \rightarrow X(x, z)$
Symmetry:	$d(x, y)=d(y, x)$	$X(x, y) \cong X(y, x)$
Separation:	$d(x, y)=0=d(y, x) \Longrightarrow x=y$	$X(x, y) \cong 1 \cong X(y, x) \Longrightarrow x=y$
Finiteness:	$\infty>d(x, y)$	$\emptyset \neq X(x, y)$

A map $f: X \rightarrow Y$ of metric spaces is non-expansive/short/1-Lipschitz if
Contraction: $d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right)$

The category Mer is complete and cocomplete and symmetric monoidal-closed. But:
Met- :-(reflective reflective, coreflective

1.3 Regrouping Fréchet's axioms à la Lawvere 1973

A Frechét metric $d: X \times X \longrightarrow[0, \infty]$ on a set X satisfies

0-Self-distances:	$0 \geq d(x, x)$	$1 \rightarrow X(x, x)$
D-Inequality:	$d(x, y)+d(y, z) \geq d(y, z)$	$X(x, y) \times X(y, z) \rightarrow X(x, z)$
Symmetry:	$d(x, y)=d(y, x)$	$X(x, y) \cong X(y, x)$
Separation:	$d(x, y)=0=d(y, x) \Longrightarrow x=y$	$X(x, y) \cong 1 \cong X(y, x) \Longrightarrow x=y$
Finiteness:	$\infty>d(x, y)$	$\emptyset \neq X(x, y)$

A map $f: X \rightarrow Y$ of metric spaces is non-expansive/short/1-Lipschitz if
Contraction:

$$
d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right)
$$

$$
X\left(x, x^{\prime}\right) \rightarrow Y\left(f x, f x^{\prime}\right)
$$

The category Met is complete and cocomplete and symmetric monoidal-closed. But:
Met reflective reflective, coreflective

1.3 Regrouping Fréchet's axioms à la Lawvere 1973

A Frechét metric $d: X \times X \longrightarrow[0, \infty]$ on a set X satisfies

0-Self-distances:	$0 \geq d(x, x)$	$1 \rightarrow X(x, x)$
V-Inequality:	$d(x, y)+d(y, z) \geq d(y, z)$	$X(x, y) \times X(y, z) \rightarrow X(x, z)$
Symmetry:	$d(x, y)=d(y, x)$	$X(x, y) \cong X(y, x)$
Separation:	$d(x, y)=0=d(y, x) \Longrightarrow x=y$	$X(x, y) \cong 1 \cong X(y, x) \Longrightarrow x=y$
Finiteness:	$\infty>d(x, y)$	$\emptyset \neq X(x, y)$

A map $f: X \rightarrow Y$ of metric spaces is non-expansive/short/1-Lipschitz if
Contraction: $\quad d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right) \quad X\left(x, x^{\prime}\right) \rightarrow Y\left(f x, f x^{\prime}\right)$
The category Met is complete and cocomplete and symmetric monoidal-closed. But:

1.3 Regrouping Fréchet's axioms à la Lawvere 1973

A Frechét metric $d: X \times X \longrightarrow[0, \infty]$ on a set X satisfies

0-Self-distances:	$0 \geq d(x, x)$	$1 \rightarrow X(x, x)$
D-Inequality:	$d(x, y)+d(y, z) \geq d(y, z)$	$X(x, y) \times X(y, z) \rightarrow X(x, z)$
Symmetry:	$d(x, y)=d(y, x)$	$X(x, y) \cong X(y, x)$
Separation:	$d(x, y)=0=d(y, x) \Longrightarrow x=y$	$X(x, y) \cong 1 \cong X(y, x) \Longrightarrow x=y$
Finiteness:	$\infty>d(x, y)$	$\emptyset \neq X(x, y)$

A map $f: X \rightarrow Y$ of metric spaces is non-expansive/short/1-Lipschitz if
Contraction: $\quad d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(f x, f x^{\prime}\right) \quad X\left(x, x^{\prime}\right) \rightarrow Y\left(f x, f x^{\prime}\right)$
The category Met is complete and cocomplete and symmetric monoidal-closed. But:

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(X, x^{\prime}\right)=\max \left\{X\left(X, x^{\prime}\right), X\left(X^{\prime}, x\right)\right\}$
- Reflective symmetrization:

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let
\square
and the formulae remain essentially valid for BMet (bounded męts), UNPęt (ultramets) ona

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in I}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed
with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let
\square
and the formulae remain essentially valid for BMet (bounded męts), UNlęt (ultramets) oac

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in I}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} X, f_{i} X^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(X, X^{\prime}\right)=\max \left\{X\left(X, X^{\prime}\right), X\left(X^{\prime}, x\right)\right\}$
- Reflective symmetrization:

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let

$$
X / \simeq([x],[y])=X(x, y)
$$

and the formulae remain essentially valid for BMet (bounded mets), UMel (ultramets) oac

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let

$$
X / \simeq([x],[y])=X(x, y)
$$

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let

$$
X / \simeq([x],[y])=X(x, y)
$$

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

$$
X_{\text {rsym }}\left(x, x^{\prime}\right)=\inf _{x=x_{0}, \ldots, x_{n}=x^{\prime}} \sum_{j=1}^{n} \min \left\{X\left(x_{j-1}, x_{j}\right), X\left(x_{j}, x_{j-1}\right)\right\}
$$

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let
$X / \simeq([x],[y])=X(x, y)$
and the formulae remain essentially valid for BMet (bounded mets), UMlẹt (ulthamets) bace

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

$$
X_{\text {rsym }}\left(x, x^{\prime}\right)=\inf _{x=x_{0}, \ldots, x_{n}=x^{\prime}} \sum_{j=1}^{n} \min \left\{X\left(x_{j-1}, x_{j}\right), X\left(x_{j}, x_{j-1}\right)\right\}
$$

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let

$$
X / \simeq([x],[y])=X(x, y)
$$

and the formulae remain essentially valid for BMet (bounded mets), MMet (ultremets) onac

1.4 Some supporting formulae

- $\left(f_{i}: X \rightarrow Y_{i}\right)_{i \in 1}$ initial (jointly cartesian) $\Longleftrightarrow X\left(x, x^{\prime}\right)=\sup _{i \in I} Y_{i}\left(f_{i} x, f_{i} x^{\prime}\right)$
- $X \times Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{X\left(x, x^{\prime}\right), Y\left(y, y^{\prime}\right)\right\}$
- $X+Y\left(z, z^{\prime}\right)=X\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in X$, and $=Y\left(z, z^{\prime}\right)$ if $z, z^{\prime} \in Y$, and $=\infty$ otherwise
- $X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right)+Y\left(y, y^{\prime}\right)$ makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g)=\sup _{x \in X} Y(f x, g x)$
- Coreflective symmetrization: $X_{\text {csym }}\left(x, x^{\prime}\right)=\max \left\{X\left(x, x^{\prime}\right), X\left(x^{\prime}, x\right)\right\}$
- Reflective symmetrization:

$$
X_{\text {rsym }}\left(x, x^{\prime}\right)=\inf _{x=x_{0}, \ldots, x_{n}=x^{\prime}} \sum_{j=1}^{n} \min \left\{X\left(x_{j-1}, x_{j}\right), X\left(x_{j}, x_{j-1}\right)\right\}
$$

- Separation: with $(x \simeq y: \Longleftrightarrow X(x, y)=0=X(y, x))$, let

$$
x / \simeq([x],[y])=X(x, y)
$$

... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets).

2.1 Quantales

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (Sup, $\boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathrm{k})$ is a commutative monoid;
$-\quad-\otimes: \mathcal{V} \rightarrow \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$
Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means:
\mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs $[v, w]$ determined by

Some useful rules:

$$
\begin{gathered}
\mathrm{k} \leq[u, u], \quad[u, v] \otimes u \leq v,[\mathrm{k}, v]=v,\left[u_{1} \otimes u_{2}, v\right]=\left[u_{1},\left[u_{2}, v\right]\right]=\left[u_{2},\left[u_{1}, v\right]\right] \\
{\left[\bigvee_{i \in I} u_{i}, v\right]=\bigwedge_{i \in I}\left[u_{i}, v\right], \quad\left[u, \bigwedge_{i \in I} v_{i}\right]=\bigwedge_{i \in I}\left[u, v_{i}\right] .}
\end{gathered}
$$

2.1 Quantales

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (Sup, $\boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathrm{k})$ is a commutative monoid;
- $-\otimes v: \mathcal{V} \rightarrow \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means:
\mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs $[v, w]$ determined by

Some useful rules:

2.1 Quantales

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (Sup, $\boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathrm{k})$ is a commutative monoid;
- $-\otimes v: \mathcal{V} \rightarrow \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means:
\mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs [v, w] determined by

$$
u \leq[v, w] \Longleftrightarrow u \otimes v \leq w .
$$

Some useful rules:

2.1 Quantales

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, \mathrm{k})$ is a commutative monoid in (Sup, $\boxtimes, 2$); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathrm{k})$ is a commutative monoid;
- $-\otimes v: \mathcal{V} \rightarrow \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means:
\mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs $[v, w]$ determined by

$$
u \leq[v, w] \Longleftrightarrow u \otimes v \leq w .
$$

Some useful rules:

$$
\begin{gathered}
\mathrm{k} \leq[u, u],[u, v] \otimes u \leq v,[\mathrm{k}, v]=v,\left[u_{1} \otimes u_{2}, v\right]=\left[u_{1},\left[u_{2}, v\right]\right]=\left[u_{2},\left[u_{1}, v\right]\right], \\
{\left[\bigvee_{i \in I} u_{i}, v\right]=\bigwedge_{i \in I}\left[u_{i}, v\right], \quad\left[u, \bigwedge_{i \in I} v_{i}\right]=\bigwedge_{i \in I}\left[u, v_{i}\right] .}
\end{gathered}
$$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale $(L, \leq, \wedge, \top$)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, T\}, \leq, \wedge, T)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L,
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(k=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version [0,
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right) ;
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$
\bigvee_{i \in I} \varphi u_{i} \leq \varphi\left(\bigvee_{i \in I} u_{i}\right), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi\left(u \otimes_{\mathcal{V}} v\right), \quad \mathrm{k}_{\mathcal{W}} \leq \varphi\left(\mathrm{k}_{\mathcal{V}}\right)
$$

φ is a (strict) homomorphism if \leq may be replaced by $=$.

- 1 is the terminal quantale $(\mathrm{k}=\perp)$
- $2=(\{\perp, \top\}, \leq, \wedge, \top)$ is the initial quantale; more generally: $(\mathcal{P} S, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0, \infty]_{+} \cong[0,1]_{\times}$, that is: $([0, \infty], \geq,+, 0) \cong([0,1], \leq, \times, 1)$
- and its "ultra" version $[0, \infty]_{\max } \cong[0,1]_{\min }:([0, \infty], \geq, \max , 0) \cong([0,1], \leq, \min , 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong[0,1]_{\odot}$, that is: $([0,1], \geq, \oplus, 0) \cong([0,1], \leq, \odot, 1)$ with $u \oplus v=\min \{u+v, 1\}$ and $u \odot v=\max \{u+v-1,0\}$

2.2 More examples of quantales

- the free quantale $(\mathcal{P} M, \subseteq, *,\{\eta\})$ over a commutative monoid $(M, *, \eta)$
- the quantale $\left(\mathcal{D} \mathcal{V}, \subseteq, \otimes_{\downarrow}, \downarrow \mathrm{k}\right)$ of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, \mathrm{k})$
- the quantale $\Delta_{\&}=(\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

for any "t-norm" \& on $[0,1]$, i.e. any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is \&-neutral.

is a coproduct in the category of quantales, since for any $\varphi \in \triangle$:

2.2 More examples of quantales

- the free quantale ($\mathcal{P} M, \subseteq, *,\{\eta\}$) over a commutative monoid $(M, *, \eta)$
- the quantale ($\mathcal{D V}, \subseteq, \otimes_{\downarrow}, \downarrow \mathrm{k}$) of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, \mathrm{k})$
- the quantale $\Delta_{\&}=(\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

for any "t-norm" \& on $[0,1]$, i.e. any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is \&-neutral.

is a coproduct in the category of quantales, since for any $\varphi \in \triangle$:

2.2 More examples of quantales

- the free quantale ($\mathcal{P} M, \subseteq, *,\{\eta\}$) over a commutative monoid $(M, *, \eta)$
- the quantale ($\mathcal{D V}, \subseteq, \otimes_{\downarrow}, \downarrow \mathrm{k}$) of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, \mathrm{k})$
- the quantale $\Delta_{\mathcal{\&}}=(\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$
\Delta=\left\{\varphi:[0, \infty] \rightarrow[0,1] \mid \forall \alpha \in[0, \infty]: \varphi(\alpha)=\sup _{\beta<\alpha} \varphi(\beta)\right\},
$$

for any "t-norm" \& on $[0,1]$, i.e. any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

$$
(\varphi \& \psi)(\gamma)=\sup _{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta) ;
$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is $\&$-neutral.

is a coproduct in the category of quantales, since for any $\varphi \in \Delta$:

2.2 More examples of quantales

- the free quantale $(\mathcal{P} M, \subseteq, *,\{\eta\})$ over a commutative monoid $(M, *, \eta)$
- the quantale ($\mathcal{D V}, \subseteq, \otimes_{\downarrow}, \downarrow \mathrm{k}$) of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, \mathrm{k})$
- the quantale $\Delta_{\mathcal{\&}}=(\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$
\Delta=\left\{\varphi:[0, \infty] \rightarrow[0,1] \mid \forall \alpha \in[0, \infty]: \varphi(\alpha)=\sup _{\beta<\alpha} \varphi(\beta)\right\},
$$

for any "t-norm" \& on $[0,1]$, i.e. any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

$$
(\varphi \& \psi)(\gamma)=\sup _{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta) ;
$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is \&-neutral.

2.2 More examples of quantales

- the free quantale ($\mathcal{P} M, \subseteq, *,\{\eta\}$) over a commutative monoid $(M, *, \eta)$
- the quantale ($\mathcal{D V}, \subseteq, \otimes_{\downarrow}, \downarrow \mathrm{k}$) of down(-closed) sets of a quantale ($\mathcal{V}, \otimes, \mathrm{k}$)
- the quantale $\Delta_{\mathcal{\&}}=(\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$
\Delta=\left\{\varphi:[0, \infty] \rightarrow[0,1] \mid \forall \alpha \in[0, \infty]: \varphi(\alpha)=\sup _{\beta<\alpha} \varphi(\beta)\right\},
$$

for any "t-norm" \& on $[0,1]$, i.e. any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

$$
(\varphi \& \psi)(\gamma)=\sup _{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta) ;
$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is \&-neutral.

$$
[0, \infty]_{+} \xrightarrow{\sigma_{+}} \Delta_{\alpha} \stackrel{\tau_{\alpha}}{\longleftarrow}[0,1]_{\alpha}
$$

is a coproduct in the category of quantales, since for any $\varphi \in \Delta$:

$$
\varphi=\sup _{0 \leq \alpha \leq \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))=\sup _{0<\alpha<\infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))
$$

2.3 Quantale-valued relations of sets

$$
X \longrightarrow r \quad Y \quad \Longleftrightarrow
$$

$$
\begin{gathered}
X \times Y \xrightarrow{r} \mathcal{V} \Longleftrightarrow \\
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
\end{gathered}
$$

\mathcal{V}-Rel is a 2 -category with 2 -cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \not{ }^{h} Z \quad\left(h^{\circ} \cdot r \cdot g_{0}\right)(w, z)=r\left(g_{0}, h_{0}\right)$

2.3 Quantale-valued relations of sets

$$
X \xrightarrow{r} Y \quad \Longleftrightarrow \quad X \times Y \xrightarrow{r} \mathcal{V} \quad \Longleftrightarrow \quad r=(r(x, y))_{x \in X, y \in Y}
$$

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

$$
\text { Set } \longrightarrow \mathcal{V} \text {-Rel }, \quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{0}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k} \text { if } f x=y,=\perp \text { else }
$$

\mathcal{V}-Rel is a 2 -category with 2 -cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")
\mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:

2.3 Quantale-valued relations of sets

$$
X \xrightarrow{r} Y \quad \Longleftrightarrow \quad X \times Y \xrightarrow{r} \mathcal{V} \quad \Longleftrightarrow \quad r=(r(x, y))_{x \in X, y \in Y}
$$

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

Set $\longrightarrow \mathcal{V}$-Rel, $\quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{\circ}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k}$ if $f x=y,=\perp$ else
\mathcal{V}-Rel is a 2-category with 2 -cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:
$\mathcal{V} \longrightarrow \mathcal{V}$-Rel, $\quad v \longmapsto(1 \xrightarrow{V} 1)$ is a homomorphism of quantaloids.

2.3 Quantale-valued relations of sets

$$
\begin{aligned}
& X \longrightarrow Y \\
&\left.\Longleftrightarrow \quad \begin{array}{c}
r \\
\\
\\
(s \cdot r)(x, z)
\end{array}\right) \xrightarrow{r} \bigvee_{y \in Y} r(x, y) \otimes s(y, z)
\end{aligned}
$$

Set $\longrightarrow \mathcal{V}$-Rel, $\quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{\circ}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k}$ if $f x=y, \quad=\perp$ else
\mathcal{V}-Rel is a 2-category with 2 -cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")
\mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:
$\mathcal{V} \longrightarrow \mathcal{V}$-Rel, $\quad v \longmapsto(1 \xrightarrow{\vee}>1)$ is a homomorphism of quantaloids

2.3 Quantale-valued relations of sets

$$
\begin{aligned}
X \longrightarrow Y & \Longleftrightarrow \quad \begin{array}{c}
r \times Y \\
\\
\\
\\
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
\end{array}
\end{aligned}
$$

Set $\longrightarrow \mathcal{V}$-Rel, $\quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{\circ}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k}$ if $f x=y, \quad=\perp$ else
\mathcal{V}-Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")
\mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:

$$
\left(\bigvee_{i \in I} s_{i}\right) \cdot r=\bigvee_{i \in I}\left(s_{i} \cdot r\right), \quad s \cdot\left(\bigvee_{i \in I} r_{i}\right)=\bigvee_{i \in I}\left(s \cdot r_{i}\right)
$$

$\mathcal{V} \longrightarrow \mathcal{V}$-Rel, $\quad V \longmapsto(1 \longrightarrow>1)$ is a homomorphism of quantaloids

2.3 Quantale-valued relations of sets

$$
\begin{aligned}
& X \longrightarrow Y \Longleftrightarrow \quad \begin{array}{c}
r \\
\\
\\
\\
(s \cdot r)(x, z)=Y \\
\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
\end{array} \\
&
\end{aligned}
$$

Set $\longrightarrow \mathcal{V}$-Rel,$\quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{\circ}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k}$ if $f x=y, \quad=\perp$ else
\mathcal{V}-Rel is a 2-category with 2 -cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")
\mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:

$$
\left(\bigvee_{i \in I} s_{i}\right) \cdot r=\bigvee_{i \in I}\left(s_{i} \cdot r\right), \quad s \cdot\left(\bigvee_{i \in I} r_{i}\right)=\bigvee_{i \in I}\left(s \cdot r_{i}\right)
$$

$\mathcal{V} \longrightarrow \mathcal{V}$-Rel, $\quad v \longmapsto(1-\stackrel{V}{\longrightarrow})$ is a homomorphism of quantaloids.

2.3 Quantale-valued relations of sets

$$
\begin{aligned}
X \longrightarrow Y & \left.\Longleftrightarrow \quad \begin{array}{c}
r \\
\\
\\
\\
\\
(s \cdot r)(x, z)
\end{array}\right) \xrightarrow{r} \bigvee_{y \in Y} r(x, y) \otimes s(y, z)
\end{aligned}
$$

Set $\longrightarrow \mathcal{V}$-Rel, $\quad(X \xrightarrow{f} Y) \longmapsto\left(X-\stackrel{f_{\circ}}{\longrightarrow} Y\right) \quad f_{\circ}(x, y)=\mathrm{k}$ if $f x=y,=\perp$ else
\mathcal{V}-Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V}-relations.
\mathcal{V}-Rel has the involution $r^{\circ}(y, x)=r(x, y)$; put $f^{\circ}=\left(f_{\circ}\right)^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V}-Rel is a quantaloid, i.e. a Sup-enriched category:

$$
\left(\bigvee_{i \in I} s_{i}\right) \cdot r=\bigvee_{i \in I}\left(s_{i} \cdot r\right), \quad s \cdot\left(\bigvee_{i \in I} r_{i}\right)=\bigvee_{i \in I}\left(s \cdot r_{i}\right)
$$

$\mathcal{V} \longrightarrow \mathcal{V}$-Rel, $\quad v \longmapsto(1-\stackrel{V}{\longrightarrow})$ is a homomorphism of quantaloids.
Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \stackrel{h}{\longleftrightarrow} Z \quad\left(h^{\circ} \cdot r \cdot g_{\circ}\right)(w, z)=r(g w, h z)$.

2.4 Extensions and liftings of \mathcal{V}-relations

Consider $X \xrightarrow{\text { r }} Y$ Y, $Y \xrightarrow{s} Z, X \xrightarrow{t} Z$. Obtain:

$$
\begin{gathered}
\mathcal{V}-\operatorname{Rel}(Y, Z) \underset{{ }_{[r,-]} \frac{-\cdot r}{\perp}}{ } \mathcal{V} \cdot \operatorname{Rel}(X, Z) \quad \mathcal{V}-\operatorname{Rel}(X, Y) \xrightarrow{\frac{s \cdot-}{\perp}} \mathcal{V} \cdot \operatorname{Rel}(X, Z) \\
s \leq[r, t] \Longleftrightarrow s \cdot r \leq t \Longleftrightarrow r \leq] s, t[
\end{gathered}
$$

2.4 Extensions and liftings of \mathcal{V}-relations

Consider $X \xrightarrow{r} Y, Y \xrightarrow{s} Z, X \xrightarrow{t} Z$. Obtain:

$$
s \leq[r, t] \Longleftrightarrow s \cdot r \leq t \Longleftrightarrow r \leq] s, t[
$$

"extension of t along r "

"lifting of t along s "

$$
\left.[r, t](y, z)=\bigwedge_{x \in X}[r(x, y), t(x, z)] \quad\right] s, t\left[(x, y)=\bigwedge_{z \in Z}[s(y, z), t(x, z)]\right.
$$

2.5 Small categories and functors enriched in \mathcal{V}

$(X, a) \in \mathcal{V}$-Cat	$\Longleftrightarrow a$ is a monoid in the monoidal category $\left(\mathcal{V}-\operatorname{Rel}(X, X), \leq, \cdot 1_{X}^{\circ}\right)$
	$\Longleftrightarrow 1_{X}^{\circ} \leq a, \quad a \cdot a \leq a$
	$\Longleftrightarrow \mathrm{k} \leq a(x, x), \quad a(x, y) \otimes a(y, z) \leq a(x, z)$
$X \in \mathcal{V}$-Cat	$\Longleftrightarrow \mathrm{k} \leq X(x, x), \quad X(x, y) \otimes X(y, z) \leq X(x, z)$

Some prominent objects in \mathcal{V}-Cat:

Lax homomorphisms of quantales facilitate change-of-base functors:

2.5 Small categories and functors enriched in \mathcal{V}

$$
\begin{array}{ll}
(X, a) \in \mathcal{V} \text {-Cat } & \Longleftrightarrow a \text { is a monoid in the monoidal category }\left(\mathcal{V} \text {-Rel }(X, X), \leq, \cdot, 1_{X}^{\circ}\right) \\
& \Longleftrightarrow 1_{X}^{\circ} \leq a, \quad a \cdot a \leq a \\
& \Longleftrightarrow \mathrm{k} \leq a(x, x), \quad a(x, y) \otimes a(y, z) \leq a(x, z) \\
X \in \mathcal{V} \text {-Cat } & \Longleftrightarrow \mathrm{k} \leq X(x, x), \quad X(x, y) \otimes X(y, z) \leq X(x, z) \\
f: X \rightarrow Y \text { in } \mathcal{V} \text {-Cat } & \Longleftrightarrow X\left(x, x^{\prime}\right) \leq Y\left(f x, f x^{\prime}\right) \\
f:(X, a) \rightarrow(Y, b) & \Longleftrightarrow a \leq f^{\circ} \cdot b \cdot f_{\circ} \Longleftrightarrow f_{\circ} \cdot a \leq b \cdot f_{\circ} \Longleftrightarrow a \cdot f^{\circ} \leq f^{\circ} \cdot b
\end{array}
$$

Some prominent objects in \mathcal{V}-Cat:

Lax homomorphisms of quantales facilitate change-of-base functors:

2.5 Small categories and functors enriched in \mathcal{V}

$$
\begin{array}{ll}
(X, a) \in \mathcal{V} \text {-Cat } & \Longleftrightarrow a \text { is a monoid in the monoidal category }\left(\mathcal{V}-\operatorname{Rel}(X, X), \leq, \cdot, 1_{X}^{\circ}\right) \\
& \Longleftrightarrow 1_{X}^{\circ} \leq a, \quad a \cdot a \leq a \\
& \Longleftrightarrow \mathrm{k} \leq a(x, x), \quad a(x, y) \otimes a(y, z) \leq a(x, z) \\
& \Longleftrightarrow \mathrm{k} \leq X(x, x), \quad X(x, y) \otimes X(y, z) \leq X(x, z) \\
f: X \rightarrow Y \text { in } \mathcal{V} \text {-Cat } & \Longleftrightarrow X\left(x, x^{\prime}\right) \leq Y\left(f x, f x^{\prime}\right) \\
f:(X, a) \rightarrow(Y, b) & \Longleftrightarrow a \leq f^{\circ} \cdot b \cdot f_{\circ} \Longleftrightarrow f_{\circ} \cdot a \leq b \cdot f_{\circ} \Longleftrightarrow a \cdot f^{\circ} \leq f^{\circ} \cdot b
\end{array}
$$

Some prominent objects in \mathcal{V}-Cat:
$\emptyset, \quad 1=(\{*\}, \top), \quad E=(\{*\}, \mathrm{k}), \quad \mathcal{V}=(\mathcal{V},[-,-])$
Lax homomorphisms of quantales facilitate change-of-base functors:

2.5 Small categories and functors enriched in \mathcal{V}

$$
\begin{array}{ll}
(X, a) \in \mathcal{V} \text {-Cat } & \Longleftrightarrow a \text { is a monoid in the monoidal category }\left(\mathcal{V}-\operatorname{Rel}(X, X), \leq, \cdot, 1_{X}^{\circ}\right) \\
& \Longleftrightarrow 1_{X}^{\circ} \leq a, \quad a \cdot a \leq a \\
& \Longleftrightarrow \mathrm{k} \leq a(x, x), \quad a(x, y) \otimes a(y, z) \leq a(x, z) \\
X \in \mathcal{V} \text {-Cat } & \Longleftrightarrow \mathrm{k} \leq X(x, x), \quad X(x, y) \otimes X(y, z) \leq X(x, z) \\
f: X \rightarrow Y \text { in } \mathcal{V} \text {-Cat } & \Longleftrightarrow X\left(x, x^{\prime}\right) \leq Y\left(f x, f x^{\prime}\right) \\
f:(X, a) \rightarrow(Y, b) & \Longleftrightarrow a \leq f^{\circ} \cdot b \cdot f_{\circ} \Longleftrightarrow f_{\circ} \cdot a \leq b \cdot f_{\circ} \Longleftrightarrow a \cdot f^{\circ} \leq f^{\circ} \cdot b
\end{array}
$$

Some prominent objects in \mathcal{V}-Cat:
$\emptyset, \quad 1=(\{*\}, \top), \quad E=(\{*\}, \mathrm{k}), \quad \mathcal{V}=(\mathcal{V},[-,-])$
Lax homomorphisms of quantales facilitate change-of-base functors:
$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ lax homomorphism $\quad \Longrightarrow \mathrm{B}_{\varphi}: \mathcal{V}$-Cat $\rightarrow \mathcal{W}$-Cat,$\quad(X, a) \mapsto(X, \varphi a)$

2.5 Small categories and functors enriched in \mathcal{V}

$$
\begin{array}{ll}
(X, a) \in \mathcal{V} \text {-Cat } & \Longleftrightarrow a \text { is a monoid in the monoidal category }\left(\mathcal{V}-\operatorname{Rel}(X, X), \leq, \cdot, 1_{X}^{\circ}\right) \\
& \Longleftrightarrow 1_{X}^{\circ} \leq a, \quad a \cdot a \leq a \\
& \Longleftrightarrow \mathrm{k} \leq a(x, x), \quad a(x, y) \otimes a(y, z) \leq a(x, z) \\
X \in \mathcal{V} \text {-Cat } & \Longleftrightarrow \mathrm{k} \leq X(x, x), \quad X(x, y) \otimes X(y, z) \leq X(x, z) \\
f: X \rightarrow Y \text { in } \mathcal{V} \text {-Cat } & \Longleftrightarrow X\left(x, x^{\prime}\right) \leq Y\left(f x, f x^{\prime}\right) \\
f:(X, a) \rightarrow(Y, b) & \Longleftrightarrow a \leq f^{\circ} \cdot b \cdot f_{\circ} \Longleftrightarrow f_{\circ} \cdot a \leq b \cdot f_{\circ} \Longleftrightarrow a \cdot f^{\circ} \leq f^{\circ} \cdot b
\end{array}
$$

Some prominent objects in \mathcal{V}-Cat:
$\emptyset, \quad 1=(\{*\}, \top), \quad E=(\{*\}, \mathrm{k}), \quad \mathcal{V}=(\mathcal{V},[-,-])$
Lax homomorphisms of quantales facilitate change-of-base functors:
$\varphi: \mathcal{V} \rightarrow \mathcal{W}$ lax homomorphism $\quad \Longrightarrow \mathrm{B}_{\varphi}: \mathcal{V}$-Cat $\rightarrow \mathcal{W}$-Cat, $\quad(X, a) \mapsto(X, \varphi$ a)
$\mathrm{p}: \mathcal{V} \rightarrow 2$ with $(p(v)=\mathrm{T} \Longleftrightarrow \mathrm{k} \leq v) \Longrightarrow \mathrm{B}_{\mathrm{p}}: \mathcal{V}$-Cat \rightarrow Ord with $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$

2.6 Some examples of (categories of) \mathcal{V}-categories

1-Cat $=$ Set

2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}$-Cat $=$ProbOrd: probabilistic (pre)ordered sets

$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
Δ_{x}-Cat = Probniet probabilistic (Lawvere) metric spaces ($X, p: X \times X \rightarrow \Delta$),
with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X "

$\mathcal{P}(M, *, \eta)$-Cat $\ni\left(X,\left(\leq_{\alpha}\right)_{\alpha \in M}\right) \quad$ with $\quad x \leq_{\eta} x, \quad\left(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z\right)$

2.6 Some examples of (categories of) \mathcal{V}-categories

```
1-Cat = Set
2-Cat = Ord: preordered sets and monotone maps
\([0, \infty]_{+}-\)Cat \(=\)Met \(\cong[0,1]_{\times}-\)Cat \(=\)ProbOrd: probabilistic (pre)ordered sets
[0,\infty}\mp@subsup{]}{\mathrm{ max }}{}-\mathrm{ Cat }=\mathrm{ UMet }\cong[0,1\mp@subsup{]}{\mathrm{ min }}{}-\mathrm{ Cat: (Lawvere) ultrametric spaces
[0, 1] -Cat - RMet \simeq [0, 1] _Cat: bounded (L_mmere) metric spaces
\Deltax
with p(x,y)(\alpha) to be interpreted as probability of "d(x,y)<\alpha for a random metric on X"
\(\left(2>[0, \infty]_{+}>\wedge_{\times}\right) \quad \longrightarrow \quad\) (Ord \(\longrightarrow\) Met \(>\) ProhMet)
P}(M,*,\eta)\mathrm{ -Cat }\ni(X,(\mp@subsup{\leq}{\alpha}{}\mp@subsup{)}{\alpha\inM}{})\mathrm{ with }x\mp@subsup{\leq}{\eta}{}x,\quad(x\mp@subsup{\leq}{\alpha}{}y&y\mp@subsup{\leq}{\beta}{}z\Longrightarrowx\mp@subsup{\leq}{\alpha*\beta}{}z
```


2.6 Some examples of (categories of) \mathcal{V}-categories

1-Cat $=$ Set
2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}$-Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
$\Lambda_{\times-C a t}=$ ProbMet nrobabilistic (I awnere) metric snaces ($X, n: X \times X \rightarrow \triangle$), with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X "
$\left(2>[0, \infty]_{+}>\Delta_{\times}\right) \quad \Longrightarrow \quad($ Ord $>$ Met $>$ ProbMet $)$
$\mathcal{P}(M, *, \eta)$-Cat $\ni\left(X,\left(\leq_{\alpha}\right)_{\alpha \in M)}\right)$ with $x \leq_{\eta} x, \quad\left(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z\right)$

2.6 Some examples of (categories of) \mathcal{V}-categories

1-Cat $=$ Set
2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}-$ Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}-$ Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
Δ_{x}-Cat $=$ ProbMet probabilistic (Lawvere) metric spaces (X, p with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X '

2.6 Some examples of (categories of) \mathcal{V}-categories

1-Cat $=$ Set
2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}$-Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces

2.6 Some examples of (categories of) \mathcal{V}-categories

1-Cat $=$ Set

2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}$-Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
Δ_{\times}-Cat $=\operatorname{ProbMet}$ probabilistic (Lawvere) metric spaces $(X, p: X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X "
$\left(2>[0, \infty]_{+}>\Delta_{x}\right) \quad \Longrightarrow \quad($ Ord $>$ Met $>$ ProbMet $)$
$\mathcal{P}(M, *, \eta)$-Cat $\ni\left(X,\left(\leq_{\alpha}\right)_{\alpha \in M}\right)$ with $x \leq_{\eta} x, \quad\left(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z\right)$

2.6 Some examples of (categories of) \mathcal{V}-categories

> 1-Cat = Set

2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}$-Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
$\Delta_{\times}-\mathbf{C a t}=\operatorname{ProbMet}$ probabilistic (Lawvere) metric spaces $(X, p: X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X " $\left(2>[0, \infty]_{+}>\Delta_{\times}\right) \quad \Longrightarrow \quad($ Ord $>$ Met \longrightarrow ProbMet $)$

2.6 Some examples of (categories of) \mathcal{V}-categories

> 1-Cat = Set

2-Cat $=$ Ord: preordered sets and monotone maps
$[0, \infty]_{+}-$Cat $=$Met $\cong[0,1]_{\times}-$Cat $=$ProbOrd: probabilistic (pre)ordered sets
$[0, \infty]_{\text {max }}-$ Cat $=$ UMet $\cong[0,1]_{\text {min }}$-Cat: (Lawvere) ultrametric spaces
$[0,1]_{\oplus}$-Cat $=$ BMet $\cong[0,1]_{\odot}$-Cat: bounded (Lawvere) metric spaces
Δ_{\times}-Cat $=\operatorname{ProbMet}$ probabilistic (Lawvere) metric spaces $(X, p: X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y)<\alpha$ for a random metric on X " $\left.(2 \gg 0, \infty]_{+}>\Delta_{\times}\right) \quad \Longrightarrow \quad($ Ord \longrightarrow Met $>$ ProbMet)
$\mathcal{P}(M, *, \eta)$-Cat $\ni\left(X,\left(\leq_{\alpha}\right)_{\alpha \in M}\right) \quad$ with $\quad x \leq_{\eta} x, \quad\left(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z\right)$

2.7 V-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with \wedge as in \mathcal{V} - $\boldsymbol{R e l}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$-Rel (X, X) has a \mathcal{V}-Cat $X_{x}-h u l l \bar{r} \geq r: \bar{r}=V_{n>0} r^{n}$.
$\mathrm{O}: \mathcal{V}$-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in l}$ initial $(=$ jointly cartesian $) \Longleftrightarrow a=\Lambda_{i \in I} f_{i} \cdot b_{i} \cdot\left(f_{i}\right)$
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)\right)_{i \in I}$ final (= jointly cocartes'n $) \Longleftrightarrow b=\overline{\bigvee_{i \in I}\left(f_{i}\right)_{\circ} \cdot a_{i} \cdot f_{i}^{\circ}}$

Consequently

-Cat is complete and cocomplete and O has both adjoints.

2.7 V-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with Λ as in \mathcal{V} - $\boldsymbol{\operatorname { R e l }}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$ - $\operatorname{Rel}(X, X)$ has a \mathcal{V}-Cat \boldsymbol{C}_{X}-hull $\bar{r} \geq r: \quad \bar{r}=\bigvee_{n \geq 0} r^{n}$.
$\mathrm{O}: \mathcal{V}$-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor.
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in I}$ initial (= jointly cartesian) $\Longleftrightarrow a=\bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot\left(f_{i}\right)_{\circ}$
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)_{i \in l}\right.$ final $(=$ jointly cocartes'n $) \Longleftrightarrow b=V_{i \in l}\left(f_{i}\right) \cdot a_{i} \cdot f_{i}$

Consequently

Cat is complete and cocomplete and O has both adjoints.

2.7 V-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with Λ as in \mathcal{V} - $\boldsymbol{\operatorname { R e l }}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$-Rel (X, X) has a \mathcal{V}-Cat Ch-hull $^{r} \geq r: \quad \bar{r}=\bigvee_{n \geq 0} r^{n}$.
$\mathrm{O}: \mathcal{V}$-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor.
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in I}$ initial $(=$ jointly cartesian $) \Longleftrightarrow a=\bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot\left(f_{i}\right) \circ$
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)\right)_{i \in I}$ final $(=$ jointly cocartes'n $) \Longleftrightarrow b=\overline{V_{i \in I}\left(f_{i}\right) \cdot} \cdot a_{i} \cdot f_{i}^{\circ}$

Consequently

V-Cat is complete and cocomplete and O has both adjoints

2.7 V-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with Λ as in \mathcal{V} - $\boldsymbol{\operatorname { R e l }}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$-Rel (X, X) has a \mathcal{V}-Cat Cl $_{x}$-hull $\bar{r} \geq r: \quad \bar{r}=\bigvee_{n \geq 0} r^{n}$.
$\mathrm{O}: \mathcal{V}$-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor.
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in I}$ initial $(=$ jointly cartesian $) \Longleftrightarrow a=\bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot\left(f_{i}\right) \circ$
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)\right)_{i \in I}$ final $(=$ jointly cocartes'n $) \Longleftrightarrow b=V_{i \in I}\left(f_{i}\right)_{0} \cdot a_{i} \cdot f_{i}^{\circ}$

Consequently

V-Cat is complete and cocomplete and O has both adjoints.

2.7 V-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with Λ as in \mathcal{V} - $\boldsymbol{\operatorname { R e l }}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$-Rel (X, X) has a \mathcal{V}-Cat Cl $_{x}$-hull $\bar{r} \geq r: \quad \bar{r}=\bigvee_{n \geq 0} r^{n}$.
$\mathrm{O}: \mathcal{V}$-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor.
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in I}$ initial (= jointly cartesian) $\Longleftrightarrow a=\bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot\left(f_{i}\right)_{\circ}$
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)\right)_{i \in I}$ final (= jointly cocartes'n) $\Longleftrightarrow b=\overline{\bigvee_{i \in I}\left(f_{i}\right)_{\circ} \cdot a_{i} \cdot f_{i}^{\circ}}$
Consequently:
\mathcal{V}-Cat is complete and cocomplete and O has both adjoints.

$2.7 \mathcal{V}$-Cat as a concrete category over Set

\mathcal{V}-Cat ${ }_{X}=(\mathrm{O}: \mathcal{V} \text {-Cat } \rightarrow \text { Set })^{-1} X$ is a complete lattice, with Λ as in \mathcal{V} - $\boldsymbol{\operatorname { R e l }}(X, X), \perp=1_{X}^{\circ}$ Every $r \in \mathcal{V}$-Rel (X, X) has a \mathcal{V}-Cat \boldsymbol{C}_{X}-hull $\bar{r} \geq r: \quad \bar{r}=\bigvee_{n \geq 0} r^{n}$.
O: \mathcal{V}-Cat \rightarrow Set is a bifibration with complete fibres and, hence, a topological functor.
$\left(f_{i}:(X, a) \rightarrow\left(Y_{i}, b_{i}\right)\right)_{i \in I}$ initial (= jointly cartesian) $\Longleftrightarrow a=\bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot\left(f_{i}\right)$ 。
$\left(f_{i}:\left(X_{i}, a_{i}\right) \rightarrow(Y, b)\right)_{i \in I}$ final (= jointly cocartes'n) $\Longleftrightarrow b=\overline{\bigvee_{i \in I}\left(f_{i}\right)_{\circ} \cdot a_{i} \cdot f_{i}^{\circ}}$
Consequently:
\mathcal{V}-Cat is complete and cocomplete and O has both adjoints.

2.8 \mathcal{V}-Cat as a closed category and a 2-category

For $X, Y \in \mathcal{V}$-Cat, consider $\left(\mathrm{ev}_{X}: \mathcal{V} \text { - } \operatorname{Cat}(X, Y) \longrightarrow Y\right)_{x \in X}$ and put the initial structure on $[X, Y]:=\mathcal{V}-\operatorname{Cat}(X, Y): \quad[X, Y](f, g)=\bigwedge_{x \in X} Y(f x, g x)$

$$
=\bigwedge_{x, x^{\prime} \in X}\left[X\left(x, x^{\prime}\right), Y\left(f x, g x^{\prime}\right)\right]
$$

The induced (pre)order on $[X, Y]$ is

With its 2 -cells given by \leq, \mathcal{V}-Cat is thus a 2 -category.
Adjunction in \mathcal{V}-Cat:

Note: RHS forces f, g to be \mathcal{V}-functors and gives $f \dashv g$ in Ord, i.e. $f g \leq 1_{Y}$ and $1_{X} \leq g f$, but $f \dashv g$ in Ord secures $f \dashv g$ in \mathcal{V}-Cat only when f, g are actually \mathcal{V}-functors.

2.8 \mathcal{V}-Cat as a closed category and a 2-category

For $X, Y \in \mathcal{V}$-Cat, consider $\left(\mathrm{ev}_{X}: \mathcal{V} \text { - } \operatorname{Cat}(X, Y) \longrightarrow Y\right)_{x \in X}$ and put the initial structure on $[X, Y]:=\mathcal{V}-\mathbf{C a t}(X, Y): \quad[X, Y](f, g)=\bigwedge_{x \in X} Y(f x, g x)$

$$
=\bigwedge_{x, x^{\prime} \in X}\left[X\left(x, x^{\prime}\right), Y\left(f x, g x^{\prime}\right)\right]
$$

The induced (pre)order on $[X, Y]$ is

$$
f \leq g \Longleftrightarrow \forall x \in X: \mathrm{k} \leq Y(f x, g x) \Longleftrightarrow \forall x \in X: f x \leq g x
$$

With its 2 -cells given by \leq, \mathcal{V}-Cat is thus a 2-category.

Adjunction in \mathcal{V}-Cat:

Note: RHS forces f, g to be \mathcal{V}-functors and gives $f \dashv g$ in Ord, i.e. $f g \leq 1_{Y}$ and $1_{X} \leq g f$, but $f \dashv g$ in Ord secures $f \dashv g$ in \mathcal{V}-Cat only when f, g are actually \mathcal{V}-functors.

2.8 \mathcal{V}-Cat as a closed category and a 2-category

For $X, Y \in \mathcal{V}$-Cat, consider $\left(\mathrm{ev}_{X}: \mathcal{V} \text { - } \operatorname{Cat}(X, Y) \longrightarrow Y\right)_{x \in X}$ and put the initial structure on $[X, Y]:=\mathcal{V}-\mathbf{C a t}(X, Y): \quad[X, Y](f, g)=\bigwedge_{x \in X} Y(f x, g x)$

$$
=\bigwedge_{x, x^{\prime} \in X}\left[X\left(x, x^{\prime}\right), Y\left(f x, g x^{\prime}\right)\right]
$$

The induced (pre)order on $[X, Y]$ is

$$
f \leq g \Longleftrightarrow \forall x \in X: \mathrm{k} \leq Y(f x, g x) \Longleftrightarrow \forall x \in X: f x \leq g x
$$

With its 2-cells given by \leq, \mathcal{V}-Cat is thus a 2-category.
Adjunction in \mathcal{V}-Cat:

$$
(X \xrightarrow{f} Y) \dashv(Y \stackrel{g}{\longleftrightarrow} X) \quad \Longleftrightarrow \quad X(x, g y)=Y(f x, y) \quad \Longleftrightarrow \quad g^{\circ} \cdot a=b \cdot f_{\circ}
$$

2.8 \mathcal{V}-Cat as a closed category and a 2-category

For $X, Y \in \mathcal{V}$-Cat, consider $\left(\mathrm{ev}_{X}: \mathcal{V} \text {-Cat }(X, Y) \longrightarrow Y\right)_{x \in X}$ and put the initial structure on $[X, Y]:=\mathcal{V}-\operatorname{Cat}(X, Y): \quad[X, Y](f, g)=\Lambda_{x \in X} Y(f x, g x)$

$$
=\bigwedge_{x, x^{\prime} \in X}\left[X\left(x, x^{\prime}\right), Y\left(f x, g x^{\prime}\right)\right]
$$

The induced (pre)order on $[X, Y]$ is

$$
f \leq g \Longleftrightarrow \forall x \in X: \mathrm{k} \leq Y(f x, g x) \Longleftrightarrow \forall x \in X: f x \leq g x
$$

With its 2-cells given by \leq, \mathcal{V}-Cat is thus a 2-category.
Adjunction in \mathcal{V}-Cat:

$$
(X \xrightarrow{f} Y) \dashv(Y \stackrel{g}{\longleftrightarrow} X) \Longleftrightarrow X(x, g y)=Y(f x, y) \quad \Longleftrightarrow \quad g^{\circ} \cdot a=b \cdot f_{\circ}
$$

Note: RHS forces f, g to be \mathcal{V}-functors and gives $f \dashv g$ in Ord, i.e. $f g \leq 1_{Y}$ and $1_{X} \leq g f$, but $f \dashv g$ in Ord secures $f \dashv g$ in \mathcal{V}-Cat only when f, g are actually \mathcal{V}-functors.

$2.9 \mathcal{V}$-Cat as a symmetric monoidal-closed category, Yoneda

$$
X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right), \quad E(*, *)=\mathrm{k}
$$

Enriched Universal Property: $\quad[Z \otimes X, Y] \cong[Z,[X, Y]]$

Yoneda \mathcal{V}-functor

$\mathbf{y}_{X}: X \longrightarrow \mathcal{P} \mathcal{\nu} X=\left[X^{\mathrm{op}}, \mathcal{\nu}\right], y \longmapsto X(-, y)$,

Yoneda Lemma

$$
\mathcal{P}_{\mathcal{V}} X\left(\mathbf{y}_{X} y, \sigma\right)=\sigma y,
$$

$2.9 \mathcal{V}$-Cat as a symmetric monoidal-closed category, Yoneda

$$
X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right), \quad E(*, *)=\mathrm{k}
$$

Enriched Universal Property: $\quad[Z \otimes X, Y] \cong[Z,[X, Y]]$

Yoneda \mathcal{V}-functor:

$$
\mathbf{y}_{X}: X \longrightarrow \mathcal{P}_{\mathcal{V}} X=\left[X^{\mathrm{op}}, \mathcal{V}\right], y \longmapsto X(-, y), \quad \mathbf{y}_{X}^{\sharp}: X \longrightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X=[X, \mathcal{V}]^{\mathrm{op}}, x \longmapsto X(x,-)
$$

Yoneda Lemma:

$2.9 \mathcal{V}$-Cat as a symmetric monoidal-closed category, Yoneda

$$
X \otimes Y\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right), \quad E(*, *)=\mathrm{k}
$$

Enriched Universal Property: $\quad[Z \otimes X, Y] \cong[Z,[X, Y]]$

Yoneda \mathcal{V}-functor:

$$
\mathbf{y}_{X}: X \longrightarrow \mathcal{P}_{\mathcal{V}} X=\left[X^{\mathrm{op}}, \mathcal{V}\right], y \longmapsto X(-, y), \quad \mathbf{y}_{X}^{\sharp}: X \longrightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X=[X, \mathcal{V}]^{\mathrm{op}}, x \longmapsto X(x,-)
$$

Yoneda Lemma:

$$
\mathcal{P}_{\mathcal{V}} X\left(\mathbf{y}_{X} y, \sigma\right)=\sigma y, \quad \mathcal{P}_{\mathcal{V}}^{\sharp} X\left(\tau, \mathbf{y}_{X}^{\sharp} x\right)=\tau X
$$

3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor
For $\mathcal{V}=[0, \infty]_{+}$, think of them as "compatible one-way metrics" between two spaces.

Generally:

\mathcal{V}-distributors are closed under \mathcal{V}-relational composition and under Λ, \vee formed in \mathcal{V}-Rel.
V-Dist: objects are V-categories $X=(X, a)$; identity distributor on $X: 1^{*}=(X \quad \stackrel{a}{\circ}=X)$
\mathcal{V}-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched:
\mathcal{V}-Dist $(X, Y)=\left[X^{\mathrm{op}} \otimes Y, \mathcal{V}\right], \quad \mathcal{V}$-Dist $(X, Y) \otimes \mathcal{V}$-Dist $(Y, Z) \longrightarrow \mathcal{V}$-Dist (X, Z)

3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor
For $\mathcal{V}=[0, \infty]_{+}$, think of them as "compatible one-way metrics" between two spaces.
Generally:

$$
\begin{aligned}
(X, a) \wp_{\circ}^{\rho}(Y, b) & \Longleftrightarrow b \cdot \rho \cdot a \leq \rho \\
& \Longleftrightarrow X\left(x^{\prime}, x\right) \otimes \rho(x, y) \otimes Y\left(y, y^{\prime}\right) \leq \rho\left(x^{\prime}, y^{\prime}\right) \\
& \Longleftrightarrow X^{\mathrm{op}}\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right) \leq\left[\rho(x, y), \rho\left(x^{\prime}, y^{\prime}\right)\right] \\
& \Longleftrightarrow \rho: X^{\mathrm{op}} \otimes Y \rightarrow \mathcal{V} \text { is a } \mathcal{V} \text {-functor }
\end{aligned}
$$

\mathcal{V}-distributors are closed under \mathcal{V}-relational composition and under $\wedge, ~ \vee$ formed in \mathcal{V}-Rel.
\mathcal{V}-Dist: objects are \mathcal{V}-categories $X=(X, a)$; identity distributor on $X: 1_{X}^{*}=(X \xrightarrow{a} \rightarrow X)$
v - Dist is Sup-enriched (a quantaloid) AND also (V)Cat)-enriched

3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation $=$ functor/distributor
For $\mathcal{V}=[0, \infty]_{+}$, think of them as "compatible one-way metrics" between two spaces.
Generally:

$$
\begin{aligned}
(X, a) ـ_{\circ}^{\rho} \rightarrow(Y, b) & \Longleftrightarrow b \cdot \rho \cdot a \leq \rho \\
& \Longleftrightarrow X\left(x^{\prime}, x\right) \otimes \rho(x, y) \otimes Y\left(y, y^{\prime}\right) \leq \rho\left(x^{\prime}, y^{\prime}\right) \\
& \Longleftrightarrow X^{\mathrm{op}}\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right) \leq\left[\rho(x, y), \rho\left(x^{\prime}, y^{\prime}\right)\right] \\
& \Longleftrightarrow \rho: X^{\mathrm{op}} \otimes Y \rightarrow \mathcal{V} \text { is a } \mathcal{V} \text {-functor }
\end{aligned}
$$

\mathcal{V}-distributors are closed under \mathcal{V}-relational composition and under \bigwedge, \bigvee formed in \mathcal{V}-Rel.
\mathcal{V}-Dist: objects are \mathcal{V}-categories $X=(X, a)$; identity distributor on $X: 1_{X}^{*}=(X \xrightarrow{a} \rightarrow X)$
\mathcal{V}-Dist is Sup-enriched (a quantaloid) AND also (\mathcal{V}-Cat)-enriched:

3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation $=$ functor/distributor
For $\mathcal{V}=[0, \infty]_{+}$, think of them as "compatible one-way metrics" between two spaces.
Generally:

$$
\begin{aligned}
(X, a) \wp_{\circ}^{\rho} \rightarrow(Y, b) & \Longleftrightarrow b \cdot \rho \cdot a \leq \rho \\
& \Longleftrightarrow X\left(x^{\prime}, x\right) \otimes \rho(x, y) \otimes Y\left(y, y^{\prime}\right) \leq \rho\left(x^{\prime}, y^{\prime}\right) \\
& \Longleftrightarrow X^{\circ \mathrm{op}}\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right) \leq\left[\rho(x, y), \rho\left(x^{\prime}, y^{\prime}\right)\right] \\
& \Longleftrightarrow \rho: X^{\mathrm{op}} \otimes Y \rightarrow \mathcal{V} \text { is a } \mathcal{V} \text {-functor }
\end{aligned}
$$

\mathcal{V}-distributors are closed under \mathcal{V}-relational composition and under \wedge, \bigvee formed in \mathcal{V}-Rel.
\mathcal{V}-Dist: objects are \mathcal{V}-categories $X=(X, a)$; identity distributor on $X: 1_{X}^{*}=(X \xrightarrow{a} \rightarrow X)$
\mathcal{V}-Dist is Sup-enriched (a quantaloid) AND also (\mathcal{V}-Cat)-enriched:

$$
\mathcal{V} \text {-Dist }(X, Y)=\left[X^{\circ \mathrm{p}} \otimes Y, \mathcal{V}\right], \quad \mathcal{V} \text {-Dist }(X, Y) \otimes \mathcal{V} \text {-Dist }(Y, Z) \longrightarrow \mathcal{V} \text {-Dist }(X, Z)
$$

3.2 \mathcal{V}-functors vs. \mathcal{V}-distributors; extensions, liftings, tensor products

$$
(X, a) \xrightarrow{f}(Y, b) \quad \Longrightarrow \quad X \xrightarrow{f_{*}=b \cdot f_{0}} Y, \quad Y \xrightarrow{f^{*}=f^{\circ} \cdot b} X, \quad f_{*} \dashv f^{*} \text { in } \mathcal{V} \text {-Dist }
$$

$$
(-)_{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{co}} \quad(-)^{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{pp}}
$$

\mathcal{V}-distributors are closed under the formation of extensions and liftings in \mathcal{V}-Rel: "extension of τ along ρ " $\quad, \quad{ }^{\circ}{ }_{o}^{\sigma}>Z \quad$ "lifting of τ along σ "

$$
\mathcal{V} \text {-Dist }(Y, Z)(\sigma,[\rho, \tau])=\mathcal{V} \text {-Dist }(X, Z)(\sigma \cdot \rho, \tau)=\mathcal{V} \text { - } \operatorname{Dist}(X, Y)(\rho,] \sigma, \tau[)
$$

Dist is symmetric monoidal: $\rho \otimes \varphi: X \otimes S \rightarrow Y \otimes T$
3.2 \mathcal{V}-functors vs. \mathcal{V}-distributors; extensions, liftings, tensor products

$$
(X, a) \xrightarrow{f}(Y, b) \quad \Longrightarrow \quad X \xrightarrow{f_{*}=b \cdot f_{0}} Y, \quad Y \xrightarrow{f^{*}=f^{\circ} \cdot b} X, \quad Y, \quad f_{*} \dashv f^{*} \text { in } \mathcal{V} \text {-Dist }
$$

$$
(-)_{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{co}} \quad(-)^{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{op}}
$$

$$
f \dashv g \Longleftrightarrow f_{*}=g^{*} \Longleftrightarrow g^{*} \dashv f^{*} \Longleftrightarrow g_{*} \dashv f_{*}
$$

\mathcal{V}-distributors are closed under the formation of extensions and liftings in \mathcal{V}-Rel

\mathcal{V} - $\operatorname{Dist}(Y, Z)(\sigma,[\rho, \tau])=\mathcal{V}$-Dist $(X, Z)(\sigma \cdot \rho, \tau)=\mathcal{V}$-Dist $(X, Y)(\rho,] \sigma, \tau[)$
-Dist is symmetric monoidal: $\rho \otimes \varphi: X \otimes S \rightarrow Y \otimes T$
3.2 \mathcal{V}-functors vs. \mathcal{V}-distributors; extensions, liftings, tensor products

$$
(X, a) \xrightarrow{f}(Y, b) \quad \Longrightarrow \quad X \xrightarrow{f_{*}=b \cdot f_{0}} Y, \quad Y \xrightarrow{f^{*}=f^{\circ} \cdot b} X, \quad f_{*} \dashv f^{*} \text { in } \mathcal{V} \text {-Dist }
$$

$$
(-)_{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{co}} \quad(-)^{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{op}}
$$

$$
f \dashv g \Longleftrightarrow f_{*}=g^{*} \Longleftrightarrow g^{*} \dashv f^{*} \Longleftrightarrow g_{*} \dashv f_{*}
$$

\mathcal{V}-distributors are closed under the formation of extensions and liftings in \mathcal{V}-Rel:
"extension of τ along ρ "

"lifting of τ along $\sigma "$

$$
\mathcal{V} \text {-Dist }(Y, Z)(\sigma,[\rho, \tau])=\mathcal{V} \text {-Dist }(X, Z)(\sigma \cdot \rho, \tau)=\mathcal{V} \text {-Dist }(X, Y)(\rho,] \sigma, \tau[)
$$

[^0]3.2 \mathcal{V}-functors vs. \mathcal{V}-distributors; extensions, liftings, tensor products
$$
(X, a) \xrightarrow{f}(Y, b) \quad \Longrightarrow \quad X \xrightarrow{f_{*}=b \cdot f_{0}} Y, \quad Y \xrightarrow{f^{*}=f^{\circ} \cdot b} X, \quad f_{*} \dashv f^{*} \text { in } \mathcal{V} \text {-Dist }
$$
$$
(-)_{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{co}} \quad(-)^{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{op}}
$$
$$
f \dashv g \Longleftrightarrow f_{*}=g^{*} \Longleftrightarrow g^{*} \dashv f^{*} \Longleftrightarrow g_{*} \dashv f_{*}
$$
\mathcal{V}-distributors are closed under the formation of extensions and liftings in \mathcal{V}-Rel:
"extension of τ along ρ "

"lifting of τ along $\sigma "$
$$
\mathcal{V}-\operatorname{Dist}(Y, Z)(\sigma,[\rho, \tau])=\mathcal{V}-\operatorname{Dist}(X, Z)(\sigma \cdot \rho, \tau)=\mathcal{V}-\operatorname{Dist}(X, Y)(\rho,] \sigma, \tau[)
$$
\mathcal{V}-Dist is symmetric monoidal:
3.2 \mathcal{V}-functors vs. \mathcal{V}-distributors; extensions, liftings, tensor products
$(X, a) \xrightarrow{f}(Y, b) \quad \Longrightarrow \quad X \xrightarrow{f_{*}=b \cdot f_{0}} Y, \quad Y \xrightarrow{f^{*}=f^{\circ} \cdot b} X, \quad f_{*} \dashv f^{*}$ in \mathcal{V}-Dist
$$
(-)_{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{co}} \quad(-)^{*}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Dist }{ }^{\mathrm{op}}
$$
$$
f \dashv g \Longleftrightarrow f_{*}=g^{*} \Longleftrightarrow g^{*} \dashv f^{*} \Longleftrightarrow g_{*} \dashv f_{*}
$$
\mathcal{V}-distributors are closed under the formation of extensions and liftings in \mathcal{V}-Rel:
"extension of τ along ρ "

"lifting of τ along $\sigma "$
$$
\mathcal{V}-\operatorname{Dist}(Y, Z)(\sigma,[\rho, \tau])=\mathcal{V}-\operatorname{Dist}(X, Z)(\sigma \cdot \rho, \tau)=\mathcal{V}-\operatorname{Dist}(X, Y)(\rho,] \sigma, \tau[)
$$
\mathcal{V}-Dist is symmetric monoidal: $\rho \otimes \varphi: X \otimes S \rightarrow Y \otimes T$
$$
\rho \otimes \varphi((x, s),(y, t))=\rho(x, y) \otimes \varphi(s, t)
$$
$$
\mathcal{V} \text {-Dist }(X, Y)=\left[X^{\mathrm{op}} \otimes Y, \mathcal{V}\right] \cong\left[Y, \mathcal{P}_{\mathcal{V}} X\right] \cong\left[X^{\mathrm{op}},[Y, \mathcal{V}]\right] \cong\left[X, \mathcal{P}_{\mathcal{V}}^{\sharp} Y\right]^{\mathrm{op}}
$$

The Fundamental Presheaf Adjunction:

$$
\mathcal{V} \text {-Dist }(X, Y)=\left[X^{\mathrm{op}} \otimes Y, \mathcal{V}\right] \cong\left[Y, \mathcal{P}_{\mathcal{V}} X\right] \cong\left[X^{\mathrm{op}},[Y, \mathcal{V}]\right] \cong\left[X, \mathcal{P}_{\mathcal{V}}^{\sharp} Y\right]^{\mathrm{op}}
$$

$$
\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} \text {-Dist }(X, E) \quad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong(\mathcal{V} \text {-Dist }(E, Y))^{\mathrm{op}}
$$

The Fundamental Presheaf Adjunction:

$$
\mathcal{V} \text {-Dist }(X, Y)=\left[X^{\mathrm{op}} \otimes Y, \mathcal{V}\right] \cong\left[Y, \mathcal{P}_{\mathcal{V}} X\right] \cong\left[X^{\mathrm{op}},[Y, \mathcal{V}]\right] \cong\left[X, \mathcal{P}_{\mathcal{V}}^{\sharp} Y\right]^{\mathrm{op}}
$$

$$
\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} \text {-Dist }(X, E) \quad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong(\mathcal{V} \text {-Dist }(E, Y))^{\mathrm{op}}
$$

The Fundamental Presheaf Adjunction: $\quad \mathcal{V}$-Dist ${ }^{\mathrm{op}} \frac{(-)^{*}}{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V} \text {-Dist }(-, E)} \mathcal{D}$-Cat
For $X \xrightarrow{\rho}{ }^{\rho} Y: \quad \mathcal{P} \mathcal{V} \rho: \mathcal{P}_{\mathcal{V}} Y \longrightarrow \mathcal{P} \mathcal{V} X, \quad\left(Y \longrightarrow{ }_{\circ}^{\sigma} E\right) \longmapsto(X \underset{\circ}{\sigma \cdot \rho} E)$

$$
(\mathcal{P} \mathcal{V} \rho)(\sigma)(x)=\bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)
$$

$$
\mathcal{V} \text {-Dist }(X, Y)=\left[X^{\mathrm{op}} \otimes Y, \mathcal{V}\right] \cong\left[Y, \mathcal{P}_{\mathcal{V}} X\right] \cong\left[X^{\mathrm{op}},[Y, \mathcal{V}]\right] \cong\left[X, \mathcal{P}_{\mathcal{V}}^{\sharp} Y\right]^{\mathrm{op}}
$$

$$
\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} \text {-Dist }(X, E) \quad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong(\mathcal{V} \text {-Dist }(E, Y))^{\mathrm{op}}
$$

The Fundamental Presheaf Adjunction: $\quad \mathcal{V}$-Dist ${ }^{\mathrm{op}} \frac{(-)^{*}}{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V} \text {-Dist }(-, E)} \mathcal{D}$-Cat
For $X \xrightarrow{\rho} \stackrel{\rho}{\longrightarrow} Y: \quad \mathcal{P} \mathcal{V} \rho: \mathcal{P}_{\mathcal{V}} Y \longrightarrow \mathcal{P} \mathcal{V} X, \quad(Y \xrightarrow{\sigma} \rightarrow E) \longmapsto(X \underset{\circ}{\sigma \cdot \rho} E)$

$$
(\mathcal{P} \mathcal{V} \rho)(\sigma)(x)=\bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)
$$

adjunction units: $\mathbf{y}_{X}: X \longrightarrow \mathcal{P}_{\mathcal{V}} X, \quad$ adjunction counits: $\left(\mathbf{y}_{X}\right)_{*}: X \longrightarrow 0 \mathcal{P}_{\mathcal{V}} X$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{array}{ll}
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, } & (f: X \rightarrow Y) \longmapsto\left(\mathcal{P}_{\mathcal{V}} f^{*}: \mathcal{P}_{\mathcal{V}} X \rightarrow \mathcal{P}_{\mathcal{V}} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x
\end{array}
$$

$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is lax idempotent (Kock-Zöberlein): $\mathcal{P} \mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P} X}$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{aligned}
& \mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, } \quad(f: X \rightarrow Y) \longmapsto\left(\mathcal{P}_{\mathcal{V}} f^{*}: \mathcal{P}_{\mathcal{V}} X \rightarrow \mathcal{P}_{\mathcal{V}} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x \\
& \mathbf{s}_{X}: \mathcal{P} \mathcal{P} X \longrightarrow \mathcal{P} X \quad \mathbf{s}_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X}\right)_{*}, \quad \mathbf{s}_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}} X} \Sigma(\sigma) \otimes \sigma(x) \\
& (\mathcal{P}, \mathbf{s}, \mathbf{y}) \text { is lax idempotent (Kock-Zöberlein): } \mathcal{P} \mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P} X}
\end{aligned}
$$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{array}{ll}
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, }, & (f: X \rightarrow Y) \longmapsto\left(\mathcal{P} \vee f^{*}: \mathcal{P} \mathcal{V} X \rightarrow \mathcal{P} \mathcal{V} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x
\end{array}
$$

$$
\mathbf{s}_{X}: \mathcal{P} \mathcal{P} X \longrightarrow \mathcal{P} X \quad \mathbf{s}_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X}\right)_{*}, \quad \mathbf{s}_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}} X} \Sigma(\sigma) \otimes \sigma(x)
$$

$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \Longleftrightarrow \mathcal{P} f \leq \mathcal{P} g)$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{array}{ll}
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, } & (f: X \rightarrow Y) \longmapsto\left(\mathcal{P}_{\mathcal{V}} f^{*}: \mathcal{P}_{\mathcal{V}} X \rightarrow \mathcal{P}_{\mathcal{V}} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x
\end{array}
$$

$$
\mathbf{s}_{X}: \mathcal{P} \mathcal{P} X \longrightarrow \mathcal{P} X \quad \mathbf{s}_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X}\right)_{*}, \quad \mathbf{s}_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}} X} \Sigma(\sigma) \otimes \sigma(x)
$$

$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \Longleftrightarrow \mathcal{P} f \leq \mathcal{P} g)$
$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is lax idempotent (Kock-Zöberlein): $\mathcal{P} \mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P} X}$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{array}{ll}
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, }, & (f: X \rightarrow Y) \longmapsto\left(\mathcal{P} \vee f^{*}: \mathcal{P} \mathcal{V} X \rightarrow \mathcal{P} \mathcal{V} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x
\end{array}
$$

$$
\mathbf{s}_{X}: \mathcal{P} \mathcal{P} X \longrightarrow \mathcal{P} X \quad \mathbf{s}_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X}\right)_{*}, \quad \mathbf{s}_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}} X} \Sigma(\sigma) \otimes \sigma(x)
$$

$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \Longleftrightarrow \mathcal{P} f \leq \mathcal{P} g)$
($\mathcal{P}, \mathbf{s}, \mathbf{y}$) is lax idempotent (Kock-Zöberlein): $\mathcal{P} \mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P} X}$

$\mathcal{P}_{\mathrm{d}}:$ Set \longrightarrow Set

$$
\begin{aligned}
& (f: X \rightarrow Y) \longmapsto\left(\mathcal{P}_{\mathrm{d}} f: \mathcal{V}^{X} \rightarrow \mathcal{V}^{Y}, \sigma \mapsto \sigma \cdot f^{\circ}\right) \\
& \left(\mathcal{P}_{\mathrm{d}} f\right)(\sigma)(y)=\bigvee_{x \in f^{-1} y} \sigma(x)
\end{aligned}
$$

$\left(\mathrm{y}_{\mathrm{d}}\right) x$
$\left(\mathbf{s}_{\mathrm{d}}\right) \times$

3.4 The \mathcal{V}-presheaf monad $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ and its discretization

$$
\begin{array}{ll}
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat, }, & (f: X \rightarrow Y) \longmapsto\left(\mathcal{P} \vee f^{*}: \mathcal{P} \mathcal{V} X \rightarrow \mathcal{P} \mathcal{V} Y, \sigma \mapsto \sigma \cdot f^{*}\right) \\
& (\mathcal{P} f)(\sigma)(y)=\bigvee_{x \in X} Y(y, f x) \otimes \sigma x
\end{array}
$$

$$
\mathbf{s}_{X}: \mathcal{P} \mathcal{P} X \longrightarrow \mathcal{P} X \quad \mathbf{s}_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X}\right)_{*}, \quad \mathbf{s}_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}} X} \Sigma(\sigma) \otimes \sigma(x)
$$

$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \Longleftrightarrow \mathcal{P} f \leq \mathcal{P} g)$
$(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is lax idempotent (Kock-Zöberlein): $\mathcal{P} \mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P} X}$

$$
(f: X \rightarrow Y) \longmapsto\left(\mathcal{P}_{\mathrm{d}} f: \mathcal{V}^{X} \rightarrow \mathcal{V}^{Y}, \sigma \mapsto \sigma \cdot f^{\circ}\right)
$$

$\mathcal{P}_{\mathrm{d}}:$ Set \longrightarrow Set

$$
\left(\mathcal{P}_{\mathrm{d}} f\right)(\sigma)(y)=\bigvee_{x \in f^{-1} y} \sigma(x)
$$

$\left(\mathbf{y}_{\mathrm{d}}\right)_{x}: X \longrightarrow \mathcal{P}_{\mathrm{d}} X$

$$
\left(\mathbf{y}_{\mathrm{d}}\right)_{x}(y)=\mathbf{y}_{\chi_{d}}(y)=1_{x}^{\circ}(-, y)
$$

$\left(\mathbf{s}_{\mathrm{d}}\right)_{X}: \mathcal{P}_{\mathrm{d}} \mathcal{P}_{\mathrm{d}} X \rightarrow \mathcal{P}_{\mathrm{d}} X$

$$
\left(\mathbf{s}_{\mathrm{d}}\right)_{X}(\Sigma)=\Sigma \cdot\left(\mathbf{y}_{X_{\mathrm{d}}}\right)_{*}, \quad\left(\mathbf{s}_{\mathrm{d}}\right)_{X}(\Sigma)(x)=\bigvee_{\sigma \in \mathcal{V}^{x}} \Sigma(\sigma) \otimes \sigma(x)
$$

3.5 Distributors are Kleisli morphisms

$$
\begin{aligned}
& X \xrightarrow{\varphi} \xrightarrow{\varphi} Y \Longleftrightarrow Y \xrightarrow{\varphi^{\sharp}} \mathcal{P} X \\
& X \xrightarrow{1_{0}^{*}} X X \Longrightarrow X \xrightarrow{\mathrm{y}_{x}} \mathcal{P} X
\end{aligned}
$$

$(\mathcal{V} \text {-Dist })^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P})$
$(\mathcal{V}-\text { Rel })^{\mathrm{op}} \cong \mathrm{Kl}\left(\mathcal{P}_{\mathrm{d}}\right)$

3.5 Distributors are Kleisli morphisms

$$
\begin{aligned}
& X \xrightarrow{\natural} \rightarrow Y \Longleftrightarrow Y \xrightarrow{\varphi^{\sharp}} \mathcal{P} X \\
& X \xrightarrow{\mathcal{L}_{\infty}^{*}} X \Longleftrightarrow X \xrightarrow{y_{X}} \mathcal{P} X \\
& (X \xrightarrow{\natural} \rightarrow Y \xrightarrow{\psi} \rightarrow Z)^{\sharp}=\left(Z \xrightarrow{\psi^{\sharp}} \mathcal{P} Y \xrightarrow{\mathcal{P}_{\varphi}} \mathcal{P} \mathcal{P} X \xrightarrow{\mathrm{~s}_{X}} \mathcal{P} X\right)
\end{aligned}
$$

3.5 Distributors are Kleisli morphisms

$$
\begin{aligned}
& X \xrightarrow{\natural} \rightarrow Y \Longleftrightarrow Y \xrightarrow{\varphi^{\sharp}} \mathcal{P} X \\
& X \xrightarrow{1_{0}^{*}} X \Longleftrightarrow X \xrightarrow{y_{x}} \mathcal{P} X \\
& (X \xrightarrow{\natural} \rightarrow Y \xrightarrow{\psi} \rightarrow Z)^{\sharp}=\left(Z \xrightarrow{\psi^{\sharp}} \mathcal{P} Y \xrightarrow{\mathcal{P}_{\varphi}} \mathcal{P} \mathcal{P} X \xrightarrow{\mathrm{~s}_{X}} \mathcal{P} X\right) \\
& (\mathcal{V} \text {-Dist })^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}) \\
& (\mathcal{V}-\mathrm{Rel})^{\mathrm{op}} \cong \mathrm{Kl}\left(\mathcal{P}_{\mathrm{d}}\right)
\end{aligned}
$$

3.5 Distributors are Kleisli morphisms

$$
\begin{aligned}
& X \xrightarrow{\natural} \rightarrow Y \Longleftrightarrow Y \xrightarrow{\varphi^{\sharp}} \mathcal{P} X \\
& X \xrightarrow{\mathcal{D}_{\infty}^{*}} X \Longleftrightarrow X \xrightarrow{\mathrm{Y}_{X}} \mathcal{P} X \\
& (X \xrightarrow{\natural} \rightarrow Y \xrightarrow{\psi} \rightarrow Z)^{\sharp}=\left(Z \xrightarrow{\psi^{\sharp}} \mathcal{P} Y \xrightarrow{\mathcal{P}_{\varphi}} \mathcal{P} \mathcal{P} X \xrightarrow{\mathrm{~s}_{X}} \mathcal{P} X\right) \\
& (\mathcal{V} \text {-Dist })^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}) \\
& (\mathcal{V}-\mathrm{Rel})^{\mathrm{op}} \cong \mathrm{Kl}\left(\mathcal{P}_{\mathrm{d}}\right)
\end{aligned}
$$

4.1 Order completeness vs. conical (co)completeness

Consider $X \in \mathcal{V}$-Cat with its induced order $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$. Then:

$$
\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(z, y) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(z, x_{i}\right)\right)
$$

X conically complete
$\Longleftrightarrow X$ has all conical infima
$\Longleftrightarrow X$ has all infima and y_{X} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X} is an inf-map
X conically cocompl.
\square
$\Longleftarrow \forall z\left(X(y, z)=\bigwedge_{i \in 1} X\left(x_{i}, z\right)\right)$
$\Longleftrightarrow X$ has all conical suprema
$\Longleftrightarrow X$ has all sups and y_{X}^{*} preserves them
$\Longleftrightarrow X$ is order-complete, $y_{X}^{\#}$ is an sup-map

4.1 Order completeness vs. conical (co)completeness

Consider $X \in \mathcal{V}$-Cat with its induced order $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$. Then:

$$
\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(z, y) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(z, x_{i}\right)\right)
$$

$$
\Longleftarrow \forall z\left(X(z, y)=\bigwedge_{i \in 1} X\left(z, x_{i}\right)\right)
$$

$$
\Longleftrightarrow: y \simeq \bigwedge_{i \in 1}^{\nabla} x_{i}
$$

X conically complete

$$
\Longleftrightarrow \mathbf{y}_{X} y=\bigwedge_{i \in 1} \mathbf{y}_{X} x_{i} \quad \text { in } \mathcal{P} \mathcal{V} X=\left[X^{\mathrm{op}}, \mathcal{V}\right]
$$

$\Longleftrightarrow X$ has all conical infima
$\Longleftrightarrow X$ has all infima and y_{X} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X} is an inf-map
X conically cocompl.
$\Longleftrightarrow X$ has all conical suprema
$\Longleftrightarrow X$ has all sups and \mathbf{v}^{\sharp}, preserves them
$\Longleftrightarrow X$ is order-complete, $y_{X}^{\#}$ is an sup-map

4.1 Order completeness vs. conical (co)completeness

Consider $X \in \mathcal{V}$-Cat with its induced order $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$. Then:
$y \simeq \bigwedge_{i \in I} x_{i}$
$\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(z, y) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(z, x_{i}\right)\right)$
$\Longleftarrow \forall z\left(X(z, y)=\bigwedge_{i \in I} X\left(z, x_{i}\right)\right)$
$\Longleftrightarrow: y \simeq \bigwedge_{i \in 1}^{\nabla} x_{i}$
$\Longleftrightarrow \mathbf{y}_{X} y=\bigwedge_{i \in 1} \mathbf{y}_{X} X_{i} \quad$ in $\mathcal{P}_{\nu} X=\left[X^{\text {op }}, \mathcal{V}\right]$
X conically complete
$\Longleftrightarrow X$ has all conical infima
$\Longleftrightarrow X$ has all infima and \mathbf{y}_{X} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X} is an inf-map
X conically cocompl.

4.1 Order completeness vs. conical (co)completeness

Consider $X \in \mathcal{V}$-Cat with its induced order $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$. Then:
$y \simeq \bigwedge_{i \in 1} x_{i}$
$\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(z, y) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(z, x_{i}\right)\right)$
$\Longleftarrow \forall z\left(X(z, y)=\bigwedge_{i \in I} X\left(z, x_{i}\right)\right)$
$\Longleftrightarrow: y \simeq \bigwedge_{i \in 1}^{\nabla} x_{i}$
$\Longleftrightarrow \mathbf{y}_{X} y=\bigwedge_{i \in 1} \mathbf{y}_{X} x_{i} \quad$ in $\mathcal{P}_{\nu} X=\left[X^{\text {op }}, \mathcal{V}\right]$
X conically complete
$\Longleftrightarrow X$ has all conical infima
$\Longleftrightarrow X$ has all infima and \mathbf{y}_{X} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X} is an inf-map
$y \simeq \bigvee_{i \in 1} x_{i}$
$\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(y, z) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(x_{i}, z\right)\right)$
$\Longleftarrow \forall z\left(X(y, z)=\bigwedge_{i \in I} X\left(x_{i}, z\right)\right)$
$\Longleftrightarrow: y \simeq \bigvee_{i \in 1}^{\nabla} x_{i}$
$\Longleftrightarrow \mathbf{y}_{X}^{\sharp} y=\bigvee_{i \in 1} y_{X}^{\sharp} x_{i} \quad$ in $\mathcal{P}_{V}^{\sharp} X=[X, \mathcal{V}]^{\text {op }}$
X conically cocompl.
$\Longleftrightarrow X$ has all conical suprema
$\Longleftrightarrow X$ has all sups and y_{X}^{\sharp} preserves them
$\Longleftrightarrow X$ is order-complete, $y_{X}^{\#}$ is an sup-map

4.1 Order completeness vs. conical (co)completeness

Consider $X \in \mathcal{V}$-Cat with its induced order $(x \leq y \Longleftrightarrow \mathrm{k} \leq X(x, y))$. Then:
$y \simeq \bigwedge_{i \in 1} x_{i}$
$\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(z, y) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(z, x_{i}\right)\right)$
$\Longleftarrow \forall z\left(X(z, y)=\bigwedge_{i \in I} X\left(z, x_{i}\right)\right) \quad \Longleftrightarrow: y \simeq \bigwedge_{i \in I}^{\nabla} x_{i}$
$\Longleftrightarrow \mathbf{y}_{X} y=\bigwedge_{i \in 1} \mathbf{y}_{X} x_{i} \quad$ in $\mathcal{P}_{V} X=\left[X^{\text {op }}, \mathcal{V}\right]$
X conically complete
$\Longleftrightarrow X$ has all conical infima
$\Longleftrightarrow X$ has all infima and \mathbf{y}_{X} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X} is an inf-map
$y \simeq \bigvee_{i \in 1} x_{i}$
$\Longleftrightarrow \forall z\left(\mathrm{k} \leq X(y, z) \Longleftrightarrow \forall i \in I: \mathrm{k} \leq X\left(x_{i}, z\right)\right)$
$\Longleftarrow \forall z\left(X(y, z)=\bigwedge_{i \in 1} X\left(x_{i}, z\right)\right) \quad \Longleftrightarrow: y \simeq \bigvee_{i \in I}^{\nabla} x_{i}$
$\Longleftrightarrow \mathbf{y}_{X}^{\sharp} y=\bigvee_{i \in 1} y_{X}^{\sharp} x_{i} \quad$ in $\mathcal{P}_{V}^{\sharp} X=[X, \mathcal{V}]^{\text {op }}$
X conically cocompl.
$\Longleftrightarrow X$ has all conical suprema
$\Longleftrightarrow X$ has all sups and \mathbf{y}_{X}^{\sharp} preserves them
$\Longleftrightarrow X$ is order-complete, \mathbf{y}_{X}^{\sharp} is an sup-map

4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete

Cat $=$ Met, not even binary infs/sups have to be conical
 The order of $X \in \mathbf{M e t}_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$

$V \in V$-Gat is always conically (co)complete, and so is $\mathcal{P} v, X$, for all $X \in V$-Cat
For \mathcal{V} non-integral $(\mathrm{k}<\top)$, one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl.
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need

a condition on a \mathcal{V}-category securing the implication (order-complete \Rightarrow conically compl.)!

4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete
In $X \in[0, \infty]$-Cat $=$ Met, not even binary infs/sups have to be conical.
The order of $X \in \operatorname{Met}_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$.
$\mathcal{V} \in \mathcal{V}$-Cat is always conically (co)complete, and so is $\mathcal{P} \mathcal{V} X$, for all $X \in \mathcal{V}$-Cat.
For \mathcal{V} non-integral $(\mathrm{k}<\top)$, one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl.
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:
a condition on a V-category securing the implication (order-complete \Rightarrow conically compl.)!

4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete
In $X \in[0, \infty]$-Cat $=$ Met, not even binary infs/sups have to be conical.
The order of $X \in$ Met $_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$.
$\mathcal{V} \in \mathcal{V}$-Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}} X$, for all $X \in \mathcal{V}$-Cat.
For \mathcal{V} non-integral $(k<\top)$, one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:
a condition on a V-category securing the implication (order-complete \Rightarrow conically compl.)!

4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete
In $X \in[0, \infty]$-Cat $=$ Met, not even binary infs/sups have to be conical.
The order of $X \in$ Met $_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$.
$\mathcal{V} \in \mathcal{V}$-Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}} X$, for all $X \in \mathcal{V}$-Cat.
For \mathcal{V} non-integral ($\mathrm{k}<\mathrm{T}$), one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl.
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:
a condition on a \mathcal{V}-category securing the implication (order-complete \Rightarrow conically compl.)!

4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete
In $X \in[0, \infty]$-Cat $=$ Met, not even binary infs/sups have to be conical.
The order of $X \in$ Met $_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$.
$\mathcal{V} \in \mathcal{V}$-Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}} X$, for all $X \in \mathcal{V}$-Cat.
For \mathcal{V} non-integral ($\mathrm{k}<\mathrm{T}$), one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl.
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

```
We need:
a condition on a V-category securing the implication (order-complete }=>\mathrm{ conically compl.)!
```


4.2 Conical completeness: examples and remarks

In $X \in 2$-Cat $=$ Ord, every inf/sup is conical; hence:
X conically (co)complete $\Longleftrightarrow X$ order-complete
In $X \in[0, \infty]$-Cat $=$ Met, not even binary infs/sups have to be conical.
The order of $X \in$ Met $_{\text {sym,sep }}$ is discrete, so that X is order-complete only when $|X|=1$.
$\mathcal{V} \in \mathcal{V}$-Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}} X$, for all $X \in \mathcal{V}$-Cat.
For \mathcal{V} non-integral ($\mathrm{k}<\mathrm{T}$), one finds $X \in \mathcal{V}$-Cat order-compl., but not conically (co)compl.
There is a subspace of $[0, \infty] \in[0, \infty]_{+}$-Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:
a condition on a \mathcal{V}-category securing the implication (order-complete \Rightarrow conically compl.)!

4.3 Tensored and cotensored \mathcal{V}-categories

Recall:

X conically complete $\Longleftrightarrow X$ order complete and $(\forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ pres. infs)

Definition:

X tensored $: \Longleftrightarrow \forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V} \rightarrow X$


```
X cotensored : \Longleftrightarrow }\Longleftrightarrowy\inX:X(-,y):\mp@subsup{X}{}{\circp}->\mathcal{V}\mathrm{ has a left adjoint }-\pitchforky:\mathcal{V}->
X(x,u\pitchforky)=[u,X(x,y)]
```

```
Note:
Necessarily u Ox=\{y\inX|
but the the existence of these infima does not guarantee (*)!
```

Trivially: $X(\mathrm{co})$ tensored $\Longrightarrow(X$ conically (co)complete
X order-complete).

4.3 Tensored and cotensored \mathcal{V}-categories

Recall:

X conically complete $\Longleftrightarrow X$ order complete and $(\forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ pres. infs)
Definition:
X tensored $: \Longleftrightarrow \forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V} \rightarrow X$

$$
X(u \odot x, y)=[u, X(x, y)] \quad(*)
$$

X cotensored
 \square $X^{o p} \rightarrow \mathcal{V}$ has a left adjoint $X(x, u \pitchfork y)=[u, X(x, y)]$

```
Note:
Necessarily \(u \odot x=\bigwedge\{y \in X \mid u \leq X(x, y)\}\)
but the the existence of these infima does not guarantee (*)!
```


4.3 Tensored and cotensored \mathcal{V}-categories

Recall:
X conically complete $\Longleftrightarrow X$ order complete and $(\forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ pres. infs)
Definition:
X tensored $: \Longleftrightarrow \forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V} \rightarrow X$

$$
\begin{equation*}
X(u \odot x, y)=[u, X(x, y)] \tag{*}
\end{equation*}
$$

X cotensored $: \Longleftrightarrow \forall y \in X: X(-, y): X^{\mathrm{op}} \rightarrow \mathcal{V}$ has a left adjoint $-\pitchfork y: \mathcal{V} \rightarrow X$

$$
X(x, u \pitchfork y)=[u, X(x, y)]
$$

Note

Necessarily $u \odot x=\bigwedge\{y \in X \mid u \leq X(x, y)\}$,
but the the existence of these infima does not guarantee $(*)$!

4.3 Tensored and cotensored \mathcal{V}-categories

Recall:
X conically complete $\Longleftrightarrow X$ order complete and $(\forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ pres. infs)
Definition:
X tensored $: \Longleftrightarrow \forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V} \rightarrow X$

$$
\begin{equation*}
X(u \odot x, y)=[u, X(x, y)] \tag{*}
\end{equation*}
$$

X cotensored $: \Longleftrightarrow \forall y \in X: X(-, y): X^{\mathrm{op}} \rightarrow \mathcal{V}$ has a left adjoint $-\pitchfork y: \mathcal{V} \rightarrow X$

$$
X(x, u \pitchfork y)=[u, X(x, y)]
$$

Note:
Necessarily $u \odot x=\bigwedge\{y \in X \mid u \leq X(x, y)\}$, but the the existence of these infima does not guarantee (*)!

4.3 Tensored and cotensored \mathcal{V}-categories

Recall:
X conically complete $\Longleftrightarrow X$ order complete and $(\forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ pres. infs)
Definition:
X tensored $: \Longleftrightarrow \forall x \in X: X(x,-): X \rightarrow \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V} \rightarrow X$

$$
\begin{equation*}
X(u \odot x, y)=[u, X(x, y)] \tag{*}
\end{equation*}
$$

X cotensored $: \Longleftrightarrow \forall y \in X: X(-, y): X^{\mathrm{op}} \rightarrow \mathcal{V}$ has a left adjoint $-\pitchfork y: \mathcal{V} \rightarrow X$

$$
X(x, u \pitchfork y)=[u, X(x, y)]
$$

Note:
Necessarily $u \odot x=\bigwedge\{y \in X \mid u \leq X(x, y)\}$, but the the existence of these infima does not guarantee (*)!
Trivially: X (co)tensored $\Longrightarrow(X$ conically (co)complete $\Longleftrightarrow X$ order-complete $)$.

4.4: Tensored \mathcal{V}-categories: examples and remarks

$\emptyset \neq X \in 2$-Cat $=$ Ord is tensored $\Longleftrightarrow X$ has a least element.
$\nu \in \mathcal{V}$-Cat is tensored and cotensored, with $u \odot x=u \otimes x$ and $u \pitchfork x=[u, x]$. More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V}-category X.

A full v-subcategory of $\mathcal{V} \in \mathcal{V}$-Cat may fail to be tensored or cotensored.
$[0, \infty]_{\text {csym }}(=[0, \infty]$ with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored \mathcal{V}-categories are (co)tensored.

4.4: Tensored \mathcal{V}-categories: examples and remarks

$\emptyset \neq X \in 2$-Cat $=$ Ord is tensored $\Longleftrightarrow X$ has a least element.
$\mathcal{V} \in \mathcal{V}$-Cat is tensored and cotensored, with $u \odot x=u \otimes x$ and $u \pitchfork x=[u, x]$. More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V}-category X.

A full \mathcal{V}-subcategory of $\mathcal{V} \in \mathcal{V}$-Cat may fail to be tensored or cotensored.
$[0, \infty]_{\text {csym }}(=[0, \infty]$ with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored \mathcal{V}-categories are (co)tensored

4.4: Tensored \mathcal{V}-categories: examples and remarks

$\emptyset \neq X \in$ 2-Cat $=$ Ord is tensored $\Longleftrightarrow X$ has a least element.
$\mathcal{V} \in \mathcal{V}$-Cat is tensored and cotensored, with $u \odot x=u \otimes x$ and $u \pitchfork x=[u, x]$. More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V}-category X.

A full \mathcal{V}-subcategory of $\mathcal{V} \in \mathcal{V}$-Cat may fail to be tensored or cotensored.
$[0, \infty]_{\text {csym }}(=[0, \infty]$ with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored \mathcal{V}-categories are (co)tensored.

4.4: Tensored \mathcal{V}-categories: examples and remarks

$\emptyset \neq X \in$ 2-Cat $=$ Ord is tensored $\Longleftrightarrow X$ has a least element.
$\mathcal{V} \in \mathcal{V}$-Cat is tensored and cotensored, with $u \odot x=u \otimes x$ and $u \pitchfork x=[u, x]$.
More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V}-category X.
A full \mathcal{V}-subcategory of $\mathcal{V} \in \mathcal{V}$-Cat may fail to be tensored or cotensored.
$[0, \infty]_{\text {csym }}(=[0, \infty]$ with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored \mathcal{V}-categories are (co)tensored.

4.4: Tensored \mathcal{V}-categories: examples and remarks

$\emptyset \neq X \in$ 2-Cat $=$ Ord is tensored $\Longleftrightarrow X$ has a least element.
$\mathcal{V} \in \mathcal{V}$-Cat is tensored and cotensored, with $u \odot x=u \otimes x$ and $u \pitchfork x=[u, x]$.
More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V}-category X.
A full \mathcal{V}-subcategory of $\mathcal{V} \in \mathcal{V}$-Cat may fail to be tensored or cotensored.
$[0, \infty]_{\text {csym }}(=[0, \infty]$ with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored \mathcal{V}-categories are (co)tensored.

4.5.1 Presenting tensored \mathcal{V}-categories via the action of \mathcal{V} : prelims

Rules for the action of \mathcal{V} on a tensored \mathcal{V}-category X :

$$
\begin{equation*}
\mathrm{k} \odot x \simeq x \tag{1}
\end{equation*}
$$

(2) $(u \otimes v) \odot x \simeq u \odot(v \odot x)$
(3) $\left(\bigvee_{i \in I} u_{i}\right) \odot x \simeq \bigvee_{i \in I}\left(u_{i} \odot x\right)$ (with the RHS \bigvee existing in X, as part of the condition)
(4-) $x \leq y \Longrightarrow u \odot x \leq u \odot y$
Conversely:
Let X be just a preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying (1) - (4-). Then, for every $x \in X$, the map $-\odot x: \mathcal{V} \longrightarrow X$ has a right adjoint $X(x,-)$, defined by
making X a \mathcal{V}-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$
X(u \odot x, y)=[u, X(x, y)],
$$

4.5.1 Presenting tensored \mathcal{V}-categories via the action of \mathcal{V} : prelims

Rules for the action of \mathcal{V} on a tensored \mathcal{V}-category X :

$$
\begin{equation*}
\mathrm{k} \odot x \simeq x \tag{1}
\end{equation*}
$$

(2) $(u \otimes v) \odot x \simeq u \odot(v \odot x)$
(3) $\left(\bigvee_{i \in I} u_{i}\right) \odot x \simeq \bigvee_{i \in I}\left(u_{i} \odot x\right)$ (with the RHS \bigvee existing in X, as part of the condition)
$\left(4^{-}\right) \quad x \leq y \Longrightarrow u \odot x \leq u \odot y$
Conversely:
Let X be just a preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying (1) $-\left(4^{-}\right)$. Then, for every $x \in X$, the map $-\odot x: \mathcal{V} \longrightarrow X$ has a right adjoint $X(x,-)$, defined by

$$
X(x, y)=\bigvee\{u \mid u \odot x \leq y\}
$$

making X a \mathcal{V}-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$
X(u \odot x, y)=[u, X(x, y)]
$$

making X a tensored \mathcal{V}-category.

4.5.2 Presenting tensored \mathcal{V}-categories via the action of \mathcal{V} : theorem

Theorem (Martinelli 2021)

There is a 2-equivalence

$$
\mathcal{V} \text {-Cat } \text { tensor }^{\sim \text { Ord }_{\frac{1}{2} \text { cocts }}^{\mathcal{V}} .}
$$

\mathcal{V}-Cat ${ }_{\text {tensor }}$:
small tensored \mathcal{V}-categories, with tensor-preserving \mathcal{V}-functors
Ord $_{\frac{1}{2} \text { cocts }}^{\nu}$:
preordered sets on which \mathcal{V} acts, satisfying conditions (1), (2), (3), (4-), with monotone and pseudo-equivariant maps.

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} \rightarrow W$ and $W \xrightarrow[\circ]{v} Z$. Then:

$$
\left.(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h: \Longleftrightarrow q_{*}=\left[\omega, h_{*}\right], \quad(W \xrightarrow{p} X) \simeq \lim ^{v} h: \Longleftrightarrow p^{*}=\right] v, h^{*}[
$$

for all $x \in X, t \in W$.

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} W$. Then:

$$
\left.(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h: \Longleftrightarrow q_{*}=\left[\omega, h_{*}\right], \quad(W \xrightarrow{p} X) \simeq \lim ^{v} h: \Longleftrightarrow p^{*}=\right] v, h^{*}[
$$

$X(q t, x)=\bigwedge_{z \in Z}[\omega(z, t), X(h z, x)]$

$$
X(x, p t)=\bigwedge_{z \in Z}[v(t, z), X(x, h z)]
$$

for all $x \in X, t \in W$.

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \Longleftrightarrow x: E=(\{*\}, \mathrm{k}) \rightarrow X)$ and $\left(f=\left(x_{i}\right)_{i \in 1}\right.$ in $\left.X \Longleftrightarrow f: I_{\mathrm{d}} \cong \coprod_{i \in I} E \rightarrow X\right)$, let $\nabla: \coprod_{i \in I} E \rightarrow E$ be the "codiagonal". Then:

Theorem

Let $Z^{h}=X$ be a diagram in the tensored ν-category X with weight $Z \underset{\sim}{\omega}=W$. Then $\left(\operatorname{colim}^{\omega} h\right)(t) \simeq \bigvee^{\nabla} \omega(z, t) \odot h(z)$
for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.
4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \Longleftrightarrow x: E=(\{*\}, \mathrm{k}) \rightarrow X)$ and $\left(f=\left(x_{i}\right)_{i \in I}\right.$ in $\left.X \Longleftrightarrow f: I_{\mathrm{d}} \cong \coprod_{i \in I} E \rightarrow X\right)$, let $\nabla: \coprod_{i \in I} E \rightarrow E$ be the "codiagonal". Then:

$$
u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla^{*}} f, \quad u \pitchfork x \simeq \lim ^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim ^{\nabla^{*}} f
$$

Theorem

Let $Z^{h} \times X$ be a diagram in the tensored ν-category X with weight $Z \xrightarrow{\omega} \neq W$. Then $\left(\operatorname{colim}^{\omega} h\right)(t) \simeq \bigvee^{\nabla} \omega(z, t) \odot h(z)$
for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.
4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \Longleftrightarrow x: E=(\{*\}, \mathrm{k}) \rightarrow X)$ and $\left(f=\left(x_{i}\right)_{i \in 1}\right.$ in $\left.X \Longleftrightarrow f: I_{\mathrm{d}} \cong \coprod_{i \in I} E \rightarrow X\right)$, let $\nabla: \coprod_{i \in I} E \rightarrow E$ be the "codiagonal". Then:

$$
u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla^{*}} f, \quad u \pitchfork x \simeq \lim ^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim ^{\nabla^{*}} f
$$

Theorem

Let $Z \xrightarrow{h} X$ be a diagram in the tensored \mathcal{V}-category X with weight $Z \xrightarrow{\omega}$. W. Then

$$
\left(\operatorname{colim}^{\omega} h\right)(t) \simeq \bigvee_{z \in Z}^{\nabla} \omega(z, t) \odot h(z)
$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

4.8 Hiding the diagram in the weight

Corollary

(1) X cocomplete $\Longleftrightarrow X$ is tensored and conically cocomplete;
(2) X complete $\Longleftrightarrow X$ is cotensored and conically complete.
(X complete and cocomplete $\Longleftrightarrow X$ tensored, cotensored and order-complete.

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:
$u \odot x \cong \operatorname{colim}^{u} x \cong \operatorname{colim}^{u \cdot x^{*}} 1_{x}=\operatorname{colim}^{u \cdot y_{x}{ }_{1}} 1 x$ and $V^{\nabla} x_{i} \simeq \operatorname{colim}^{\omega 1} x$, with $\omega=V / \mathbf{y}_{x} x_{i}$

4.8 Hiding the diagram in the weight

Corollary

(1) X cocomplete $\Longleftrightarrow X$ is tensored and conically cocomplete;
(2) X complete $\Longleftrightarrow X$ is cotensored and conically complete.
(X complete and cocomplete $\Longleftrightarrow X$ tensored, cotensored and order-complete.
Given a diagram $Z \xrightarrow{h} X$ in X and weights $Z \xrightarrow{\omega}$, W and $W \xrightarrow{v} \rightarrow Z$. Then

$$
\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^{*}} 1_{X} \quad \text { and } \quad \lim ^{v} h \simeq \lim ^{h_{*} \cdot v} 1_{X}
$$

with the (co) limit on either side of \simeq existing when the (co)limit on the other side exists.
in particular:
$u \odot x \cong \operatorname{colim}^{u} x \cong \operatorname{colim}^{u \cdot x^{*}} 1_{X}=\operatorname{colim}^{u \cdot y_{X} x} 1_{X}$ and $\bigvee^{\nabla} x_{i} \simeq \operatorname{colim}^{\omega} 1_{X}$, with $\omega=\bigvee \mathbf{y}_{X} x_{i}$. Hence: It suffices to let $Z=X, h=1 \times$ and $W=E$; presheaves on X, șuffice,

4.8 Hiding the diagram in the weight

Corollary

(1) X cocomplete $\Longleftrightarrow X$ is tensored and conically cocomplete;
(2) X complete $\Longleftrightarrow X$ is cotensored and conically complete.
(X complete and cocomplete $\Longleftrightarrow X$ tensored, cotensored and order-complete.
Given a diagram $Z \xrightarrow{h} X$ in X and weights $Z \xrightarrow{\omega}$, W and $W \xrightarrow{v} \rightarrow Z$. Then

$$
\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^{*}} 1_{X} \quad \text { and } \quad \lim ^{v} h \simeq \lim ^{h_{*} \cdot v} 1_{X}
$$

with the (co) limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:
$u \odot x \cong \operatorname{colim}^{u} x \cong \operatorname{colim}^{u \cdot x^{*}} 1_{X}=\operatorname{colim}^{u \cdot y_{X} x} 1_{X}$ and $\bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\omega} 1_{X}$, with $\omega=\bigvee_{i \in I} \mathbf{y}_{X} x_{i}$.
Hence: It suffices to let $Z=X, h=1_{X}$ and $W=E$; presheaves on X suffice as weigh̆ts!

4.9.1 Preservation of (co)limits: definition

Definition

Let $h: Z \rightarrow X, f: X \rightarrow Y$ be \mathcal{V}-functors and $Z \xrightarrow{\omega} \rightarrow W \xrightarrow[\circ]{\sim} Z Z$ be \mathcal{V}-distributors.
(1) If $q \simeq$ colim $^{\omega} h$ exists in X, one says that $f: X \rightarrow Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$
q_{*}=\left[\omega, h_{*}\right] \quad \Longrightarrow \quad(f \cdot q)_{*}=\left[\omega,(f \cdot h)_{*}\right] .
$$

(2) Dually, if $p \simeq \lim ^{v} h$ exists in X, one says that $f: X \rightarrow Y$ preserves the limit if the limit $\lim ^{v}(f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

(3) The \mathcal{V}-functor f is (co)continuous if it preserves all existing (co)limits in X.

4.9.1 Preservation of (co)limits: definition

Definition

Let $h: Z \rightarrow X, f: X \rightarrow Y$ be \mathcal{V}-functors and $Z \xrightarrow{\omega} \rightarrow W \xrightarrow{v} \rightarrow Z$ be \mathcal{V}-distributors.
(1) If $q \simeq$ colim $^{\omega} h$ exists in X, one says that $f: X \rightarrow Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$
q_{*}=\left[\omega, h_{*}\right] \quad \Longrightarrow \quad(f \cdot q)_{*}=\left[\omega,(f \cdot h)_{*}\right]
$$

(2) Dually, if $p \simeq \lim ^{v} h$ exists in X, one says that $f: X \rightarrow Y$ preserves the limit if the limit $\lim ^{v}(f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

$$
\left.p^{*}=\right] v, h^{*}\left[\quad \Longrightarrow \quad(f \cdot p)^{*}=\right] v,(f \cdot h)^{*}[.
$$

(3) The \mathcal{V}-functor f is (co)continuous if it preserves all existing (co)limits in X.

4.9.2 Preservation of (co)limits: criteria, examples

Let $f: X \rightarrow Y, g: Y \rightarrow X, h: Z \rightarrow[X, Y]$ be \mathcal{V}-functors, $x \in X, Z \xrightarrow{\omega} \rightarrow W$.
(1) If X is tensored: f is cocontinuous $\Longleftrightarrow f$ preserves tensors and conical suprema.
(2) If X is cotensored: f is continuous $\Longleftrightarrow f$ preserves cotensors and conical infima.
(8) $X(x,-): X \rightarrow \mathcal{V}$ is continuous,
(4) $\operatorname{colim}^{\omega}(h: Z \rightarrow[X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{x} h$ exists in Y for all x, and it is then preserved by every ev ${ }_{X}$
(5) $\mathrm{y}_{X}: X \rightarrow \mathcal{P}_{\nu} X=\left[X^{\mathrm{op}}, \mathcal{\nu}\right]$ is continuous, $y_{X}^{f}: X \rightarrow \mathcal{P}_{\nu}^{F} X=[X, \mathcal{\nu}]^{\mathrm{op}}$ is cocontinuous.
(6) If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)
(1) Y complete:
(2) X cocomplete: $f: X \rightarrow Y$ has a right adjoint \mathcal{V}-functor g is continuous.

4.9.2 Preservation of (co)limits: criteria, examples

Let $f: X \rightarrow Y, g: Y \rightarrow X, h: Z \rightarrow[X, Y]$ be \mathcal{V}-functors, $x \in X, Z \xrightarrow{\omega} \rightarrow W$.
(1) If X is tensored: f is cocontinuous $\Longleftrightarrow f$ preserves tensors and conical suprema.
(2) If X is cotensored: f is continuous $\Longleftrightarrow f$ preserves cotensors and conical infima.
(3) $X(x,-): X \rightarrow \mathcal{V}$ is continuous, $X(-, x): X \rightarrow \mathcal{V}^{\text {op }}$ is cocontinuous.
(4) $\operatorname{colim}^{\omega}(h: Z \rightarrow[X, Y])$ exists if colim $^{\omega} \mathrm{ev}_{x} h$ exists in Y for all x, and it is then
preserved by every ev ${ }_{X}:[X, Y] \rightarrow Y$
(6) $\mathbf{y}_{X}: X \rightarrow \mathcal{P}_{\nu}, X=\left[X^{\mathrm{op}}, \mathcal{V}\right]$ is continuous, $\quad \mathrm{y}_{X}^{f}: X \rightarrow \mathcal{P}_{\mathcal{V}} X=[X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
(6) If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

- Y complete:
(2) X cocomplete: $f: X \rightarrow Y$ has a right adjoint v-functor $\Longleftrightarrow f$ is cocontinuous.

4.9.2 Preservation of (co)limits: criteria, examples

Let $f: X \rightarrow Y, g: Y \rightarrow X, h: Z \rightarrow[X, Y]$ be \mathcal{V}-functors, $x \in X, Z \underset{\sim}{\omega} \rightarrow W$.
(1) If X is tensored: f is cocontinuous $\Longleftrightarrow f$ preserves tensors and conical suprema.
(2) If X is cotensored: f is continuous $\Longleftrightarrow f$ preserves cotensors and conical infima.
(3) $X(x,-): X \rightarrow \mathcal{V}$ is continuous, $X(-, x): X \rightarrow \mathcal{V}^{\text {op }}$ is cocontinuous.
(4) $\operatorname{colim}^{\omega}(h: Z \rightarrow[X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all x, and it is then preserved by every ev ${ }_{X}:[X, Y] \rightarrow Y$.

4.9.2 Preservation of (co)limits: criteria, examples

Let $f: X \rightarrow Y, g: Y \rightarrow X, h: Z \rightarrow[X, Y]$ be \mathcal{V}-functors, $x \in X, Z \underset{\sim}{\omega} \rightarrow W$.
(1) If X is tensored: f is cocontinuous $\Longleftrightarrow f$ preserves tensors and conical suprema.
(2) If X is cotensored: f is continuous $\Longleftrightarrow f$ preserves cotensors and conical infima.
(3) $X(x,-): X \rightarrow \mathcal{V}$ is continuous, $X(-, x): X \rightarrow \mathcal{V}^{\mathrm{op}}$ is cocontinuous.
(4) $\operatorname{colim}^{\omega}(h: Z \rightarrow[X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all x, and it is then preserved by every ev ${ }_{X}:[X, Y] \rightarrow Y$.
(5) $\mathbf{y}_{X}: X \rightarrow \mathcal{P}_{\mathcal{V}} X=\left[X^{\text {op }}, \mathcal{V}\right]$ is continuous, $y_{X}^{\sharp}: X \rightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X=[X, \mathcal{V}]^{\text {op }}$ is cocontinuous.
(6) If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

- Y complete g: $V \rightarrow V$ has a 'eft adjoint V-functor $\Longleftrightarrow g$ is continuous. (3) X cocomplete: $f: X \rightarrow Y$ has a right adjoint V-functor $\Longleftrightarrow f$ is cocontinuous.

4.9.2 Preservation of (co)limits: criteria, examples

Let $f: X \rightarrow Y, g: Y \rightarrow X, h: Z \rightarrow[X, Y]$ be \mathcal{V}-functors, $x \in X, Z \xrightarrow{\omega} \rightarrow W$.
(1) If X is tensored: f is cocontinuous $\Longleftrightarrow f$ preserves tensors and conical suprema.
(2) If X is cotensored: f is continuous $\Longleftrightarrow f$ preserves cotensors and conical infima.
(3) $X(x,-): X \rightarrow \mathcal{V}$ is continuous, $X(-, x): X \rightarrow \mathcal{V}^{\mathrm{op}}$ is cocontinuous.
(4) $\operatorname{colim}^{\omega}(h: Z \rightarrow[X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{x} h$ exists in Y for all x, and it is then preserved by every ev ${ }_{X}:[X, Y] \rightarrow Y$.
(5) $\mathbf{y}_{X}: X \rightarrow \mathcal{P}_{\mathcal{V}} X=\left[X^{\mathrm{op}}, \mathcal{V}\right]$ is continuous, $\mathbf{y}_{X}^{\sharp}: X \rightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X=[X, \mathcal{V}]^{\text {op }}$ is cocontinuous.
(6) If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

(1) Y complete: $g: Y \rightarrow X$ has a left adjoint \mathcal{V}-functor $\Longleftrightarrow g$ is continuous.
(2) X cocomplete: $f: X \rightarrow Y$ has a right adjoint \mathcal{V}-functor $\Longleftrightarrow f$ is cocontinuous.

4.10 Completeness Theorem

Theorem

For every \mathcal{V}-category X, the following statements are equivalent:
(i) X is cocomplete;
(ii) for every presheaf ω on X, the colimit of 1_{X} weighted by ω exists in X;
(iii) $\mathbf{y}_{X}: X \rightarrow\left[X^{\circ \mathrm{p}}, \mathcal{V}\right]$ has a left adjoint \mathcal{V}-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
(vi) for every copresheaf v on X, the limit of 1_{X} weighted by v exists in X;
(vii) $\mathbf{y}_{X}^{\sharp}: X \rightarrow[X, \mathcal{V}]^{\text {op }}$ has a right adjoint \mathcal{V}-functor.

4.10 Completeness Theorem

Theorem

For every \mathcal{V}-category X, the following statements are equivalent:
(i) X is cocomplete;
(ii) for every presheaf ω on X, the colimit of 1_{X} weighted by ω exists in X;
(iii) $\mathbf{y}_{X}: X \rightarrow\left[X^{\mathrm{op}}, \mathcal{V}\right]$ has a left adjoint \mathcal{V}-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
(vi) for every copresheaf v on X, the limit of $1 x$ weighted by v exists in X;
(vii) $\mathbf{y}_{X}^{\forall}: X \rightarrow[X, \mathcal{V}]^{\text {op }}$ has a right adjoint \mathcal{V}-functor.

4.10 Completeness Theorem

Theorem

For every \mathcal{V}-category X, the following statements are equivalent:
(i) X is cocomplete;
(ii) for every presheaf ω on X, the colimit of 1_{X} weighted by ω exists in X;
(iii) $\mathbf{y}_{X}: X \rightarrow\left[X^{\mathrm{op}}, \mathcal{V}\right]$ has a left adjoint \mathcal{V}-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
(vi) for every copresheaf v on X, the limit of 1_{X} weighted by v exists in X;
(vii) $\mathbf{y}_{X}^{\sharp}: X \rightarrow[X, \mathcal{V}]^{\text {op }}$ has a right adjoint \mathcal{V}-functor.

4.10 Completeness Theorem

Theorem

For every \mathcal{V}-category X, the following statements are equivalent:
(i) X is cocomplete;
(ii) for every presheaf ω on X, the colimit of 1_{X} weighted by ω exists in X;
(iii) $\mathbf{y}_{X}: X \rightarrow\left[X^{\mathrm{op}}, \mathcal{V}\right]$ has a left adjoint \mathcal{V}-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
(vi) for every copresheaf v on X, the limit of 1_{X} weighted by v exists in X;
(vii) $\mathbf{y}_{X}^{\sharp}: X \rightarrow[X, \mathcal{V}]^{\text {op }}$ has a right adjoint \mathcal{V}-functor.

$5.1 \mathcal{V}$ is injective in \mathcal{V}-Cat

$f: X \rightarrow Y$ fully faithful $\Longleftrightarrow f^{*} \cdot f_{*}=1_{x}^{*} \Longleftrightarrow X\left(x, x^{\prime}\right)=Y\left(f x, f x^{\prime}\right)$ for all $x, x^{\prime} \in X$

Given f fully faithful and φ, there is a least and a largest extension, ψ_{-}and

$5.1 \mathcal{V}$ is injective in \mathcal{V}-Cat

$f: X \rightarrow Y$ fully faithful $\Longleftrightarrow f^{*} \cdot f_{*}=1_{X}^{*} \Longleftrightarrow X\left(x, x^{\prime}\right)=Y\left(f x, f x^{\prime}\right)$ for all $x, x^{\prime} \in X$

Given f fully faithful and φ, there is a least and a largest extension, ψ_{-}and

$5.1 \mathcal{V}$ is injective in \mathcal{V}-Cat

$f: X \rightarrow Y$ fully faithful $\Longleftrightarrow f^{*} \cdot f_{*}=1_{X}^{*} \Longleftrightarrow X\left(x, x^{\prime}\right)=Y\left(f x, f x^{\prime}\right)$ for all $x, x^{\prime} \in X$

Given f fully faithful and φ, there is a least and a largest extension, ψ_{-}and ψ^{-}:

$$
\psi_{-}=f_{*} \cdot \varphi \quad \text { and } \quad \psi^{-}=\left[\left(f^{*}\right)^{\circ}, \varphi\right]=\left[\left(f^{\circ p}\right)_{*}, \varphi\right]
$$

$5.1 \mathcal{V}$ is injective in \mathcal{V}-Cat

$f: X \rightarrow Y$ fully faithful $\Longleftrightarrow f^{*} \cdot f_{*}=1_{X}^{*} \Longleftrightarrow X\left(x, x^{\prime}\right)=Y\left(f x, f x^{\prime}\right)$ for all $x, x^{\prime} \in X$

Given f fully faithful and φ, there is a least and a largest extension, ψ_{-}and ψ^{-}:

$$
\psi_{-}=f_{*} \cdot \varphi \quad \text { and } \quad \psi^{-}=\left[\left(f^{*}\right)^{\circ}, \varphi\right]=\left[\left(f^{\mathrm{OP}}\right)_{*}, \varphi\right]
$$

$$
\psi_{-} y=\bigvee_{x \in X} Y(f x, y) \otimes \varphi x \quad \text { and } \quad \psi^{-} y=\Lambda_{x \in X}[Y(y, f x), \varphi x]
$$

$5.2 \mathcal{V}$ is an injective regular cogenerator in \mathcal{V}-Cat ${ }_{\text {sep }}$

$$
f \neq g: X \rightarrow Y, Y \text { separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: h f \neq h g
$$

Theorem

ϑ is a regular cogenerator of the category ν-Cat sep, and it is injective with respect to fully faithful \mathcal{V}-functors. Every separated \mathcal{V}-category Y embeds fully into the Y-fold power \mathcal{V}^{\curlyvee} of \mathcal{V}, which is injective again.

$5.2 \mathcal{V}$ is an injective regular cogenerator in \mathcal{V}-Cat ${ }_{\text {sep }}$

$$
f \neq g: X \rightarrow Y, Y \text { separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: h f \neq h g
$$

$$
\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y, \mathcal{L}]}=\prod_{h \in[Y, \mathcal{V}]} \mathcal{V}, \quad y \longmapsto(h y)_{h \in[Y, \mathcal{V}]}
$$

Theorem

ϑ is a regular cogenerator of the category ν-Cat sep, and it is injective with respect to fully faithful \mathcal{V}-functors. Every separated \mathcal{V}-category Y embeds fully into the Y-fold power \mathcal{V}^{\curlyvee} of \mathcal{V}, which is injective again.

$5.2 \mathcal{V}$ is an injective regular cogenerator in \mathcal{V}-Cat ${ }_{\text {sep }}$

$$
f \neq g: X \rightarrow Y, Y \text { separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: h f \neq h g
$$

$$
\begin{gathered}
\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y, \mathcal{V}]}=\prod_{h \in[Y, \mathcal{V}]} \mathcal{V}, \quad y \longmapsto(h y)_{h \in[Y, \mathcal{V}]} \\
\pi_{Y}: \mathcal{V}^{[Y, \mathcal{V}]} \longrightarrow \mathcal{V}^{Y}, \quad\left(v_{h}\right)_{h \in[Y, \mathcal{V}]} \longmapsto\left(v_{\mathbf{y}_{Y}^{\sharp}}\right)_{z \in Y}
\end{gathered}
$$

Theorem

ϑ is a regular cogenerator of the category ν-Cat sep, and it is injective with respect to fully faithful \mathcal{V}-functors. Every separated \mathcal{V}-category Y embeds fully into the Y-fold power \mathcal{V}^{\curlyvee} of \mathcal{V}, which is injective again.

$5.2 \mathcal{V}$ is an injective regular cogenerator in \mathcal{V}-Cat ${ }_{\text {sep }}$

$$
f \neq g: X \rightarrow Y, Y \text { separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: h f \neq h g
$$

$$
\begin{gathered}
\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y, \mathcal{V}]}=\prod_{h \in[Y, \mathcal{V}]} \mathcal{V}, \quad y \longmapsto(h y)_{h \in[Y, \mathcal{V}]} \\
\pi_{Y}: \mathcal{V}^{[Y, \mathcal{V}]} \longrightarrow \mathcal{V}^{Y}, \quad\left(v_{h}\right)_{h \in[Y, \mathcal{V}]} \longmapsto\left(v_{\mathbf{y}_{Y}^{\sharp} z}\right)_{z \in Y}
\end{gathered}
$$

Theorem

\mathcal{V} is a regular cogenerator of the category \mathcal{V}-Cat ${ }_{\text {sep }}$, and it is injective with respect to fully faithful \mathcal{V}-functors. Every separated \mathcal{V}-category Y embeds fully into the Y-fold power \mathcal{V}^{Y} of \mathcal{V}, which is injective again.

5.3.1 Colimit and limit completion of a \mathcal{V}-category

Every \mathcal{V}-presheaf ω on $X \in \mathcal{V}$-Cat is a colimit of \mathbf{y}_{X} in $\mathcal{P}_{\mathcal{V}} X$ weighted by $\omega: \omega \simeq \operatorname{colim}^{\omega} \mathbf{y}_{X}$.

Dually, every \mathcal{V}-copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp} X$; that is: $v \simeq \lim ^{v} \mathbf{y}_{X}^{\sharp}$.

Wanted for $f: X \rightarrow Y, Y$ cocomplete/complete:

5.3.1 Colimit and limit completion of a \mathcal{V}-category

Every \mathcal{V}-presheaf ω on $X \in \mathcal{V}$-Cat is a colimit of \mathbf{y}_{X} in $\mathcal{P}_{\mathcal{V}} X$ weighted by $\omega: \omega \simeq \operatorname{colim}^{\omega} \mathbf{y}_{X}$.

Dually, every \mathcal{V}-copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp} X$; that is: $v \simeq \lim ^{v} \mathbf{y}_{X}^{\sharp}$. Wanted for $f: X \rightarrow Y, Y$ cocomplete/complete:

5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

$$
\tilde{f}(\omega) \simeq \tilde{f}\left(\operatorname{colim}^{\omega} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega}\left(\tilde{f} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega} f
$$

Existence

$\tilde{f} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{\mathcal{V}} f^{*}\right)$

5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

$$
\tilde{f}(\omega) \simeq \tilde{f}\left(\operatorname{colim}^{\omega} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega}\left(\tilde{f} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega} f
$$

Existence:

$$
\begin{aligned}
\tilde{f}(\omega) & =\operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^{*}} 1_{Y} \\
\tilde{f} & \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{\mathcal{V}} f^{*}\right)
\end{aligned}
$$

5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

$$
\tilde{f}(\omega) \simeq \tilde{f}\left(\operatorname{colim}^{\omega} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega}\left(\tilde{f} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega} f
$$

Existence:

$$
\begin{aligned}
& \tilde{f}(\omega)=\operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^{*}} 1_{Y} \\
& \tilde{f} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{\mathcal{V}} f^{*}\right) \\
& \tilde{f}_{\mathbf{y}_{X}} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{V} f^{*}\right) \mathbf{y}_{X} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right) \mathbf{y}_{Y} f \simeq f .
\end{aligned}
$$

\tilde{f} is cocontinuous, as the composite of two left adjoints!

5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

$$
\tilde{f}(\omega) \simeq \tilde{f}\left(\operatorname{colim}^{\omega} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega}\left(\tilde{f} \mathbf{y}_{X}\right) \simeq \operatorname{colim}^{\omega} f
$$

Existence:

$$
\begin{gathered}
\tilde{f}(\omega)=\operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^{*}} 1_{Y} \\
\tilde{f} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{V} f^{*}\right) \\
\tilde{f} \mathbf{y}_{X} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right)\left(\mathcal{P}_{\mathcal{V}} f^{*}\right) \mathbf{y}_{X} \simeq\left(\operatorname{colim}^{(-)} 1_{Y}\right) \mathbf{y}_{Y} f \simeq f . \\
X \xrightarrow[\mathbf{y}_{X}]{X} \mathcal{P}_{V} X \\
\downarrow \underset{\mathbf{y}_{Y}}{\tilde{\operatorname{colim}^{(-)} 1_{Y}} \mathcal{P}_{V}} \mathcal{P}_{V} \mathcal{P}_{V}
\end{gathered}
$$

\tilde{f} is cocontinuous, as the composite of two left adjoints!

5.4 Cocomplete \mathcal{V}-categories as pseudo-algebras and as injectives

Theorem

The following properties for a \mathcal{V}-category X are equivalent:
(i) X is (co)complete;
(ii) X carries the structure of a pseudo-algebra with respect to the presheaf monad on \mathcal{V}-Cat;
(iii) The Yoneda \mathcal{V}-functor \mathbf{y}_{X} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}_{\mathcal{V}} X \rightarrow X$ with $h \mathbf{y}_{X} \simeq 1_{X}$;
(iv) X is pseudo-injective in \mathcal{V}-Cat with respect to fully faithful functors.

5.5.1 Cocomplete \mathcal{V}-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying $\mathrm{k} \odot x \simeq x$
(2) $(u \otimes v) \odot x \simeq u \odot(v \odot x)$
(3) $\left(\bigvee_{i \in 1} u_{i}\right) \odot x \simeq \bigvee_{i \in I}\left(u_{i} \odot x\right)$
(4) $u \odot\left(\bigvee_{i \in I} x_{i}\right) \simeq \bigvee_{i \in I}\left(u \odot x_{i}\right)$

Condition (4) (= sup-preservation of every $u \odot-: X \longrightarrow X$) makes the (existing) sups in X conical colimits:

Combine this with two fundamental enriched colimit formulae we have already seen: $\left.\left(c^{\prime \prime} m^{\prime \prime} h\right)(w) \simeq V \omega^{\prime}(z, w) \odot h^{\prime} z\right) \quad\left(h: Z \rightarrow x, \omega: Z^{o n} \otimes w \rightarrow v\right)$ $X\left(\operatorname{colim}^{\omega} 1_{X}, x\right) \simeq\left[X^{\circ \mathrm{p}}, \mathcal{V}\right]\left(\omega, \mathbf{y}_{X} x\right) \quad\left(\omega: X^{\mathrm{op}} \cong X^{\mathrm{op}} \otimes E \rightarrow \mathcal{V}\right)$, saying colim ${ }^{(-)} \dashv \mathbf{y}_{X}$

5.5.1 Cocomplete \mathcal{V}-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying $\mathrm{k} \odot x \simeq x$
(2) $(u \otimes v) \odot x \simeq u \odot(v \odot x)$
(3) $\left(\bigvee_{i \in I} u_{i}\right) \odot x \simeq \bigvee_{i \in I}\left(u_{i} \odot x\right)$
(4) $u \odot\left(\bigvee_{i \in I} x_{i}\right) \simeq \bigvee_{i \in I}\left(u \odot x_{i}\right)$

Condition (4) (= sup-preservation of every $u \odot-: X \longrightarrow X$) makes the (existing) sups in X conical colimits:

$$
X\left(\bigvee_{i \in I} x_{i}, y\right)=\bigwedge_{i \in I} X\left(x_{i}, y\right)
$$

Combine this with two fundamental enriched colimit formulae we have already seen

5.5.1 Cocomplete \mathcal{V}-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

$$
\begin{equation*}
\mathrm{k} \odot x \simeq x \tag{1}
\end{equation*}
$$

(2) $(u \otimes v) \odot x \simeq u \odot(v \odot x)$
(3) $\left(\bigvee_{i \in I} u_{i}\right) \odot x \simeq \bigvee_{i \in I}\left(u_{i} \odot x\right)$
(4) $u \odot\left(\bigvee_{i \in I} x_{i}\right) \simeq \bigvee_{i \in I}\left(u \odot x_{i}\right)$

Condition (4) (= sup-preservation of every $u \odot-: X \longrightarrow X$) makes the (existing) sups in X conical colimits:

$$
x\left(\bigvee_{i \in I} x_{i}, y\right)=\bigwedge_{i \in I} x\left(x_{i}, y\right)
$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$
\left(\operatorname{colim}^{\omega} h\right)(w) \simeq \bigvee_{z} \omega(z, w) \odot h(z) \quad\left(h: Z \rightarrow X, \omega: Z^{\mathrm{op}} \otimes W \rightarrow \mathcal{V}\right)
$$

$$
X\left(\operatorname{colim}^{\omega} 1_{X}, x\right) \simeq\left[X^{\mathrm{op}}, \mathcal{V}\right]\left(\omega, \mathbf{y}_{X} X\right) \quad\left(\omega: X^{\mathrm{op}} \cong X^{\mathrm{op}} \otimes E \rightarrow \mathcal{V}\right), \text { saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_{X},
$$ to obtain:

5.5.2 Cocomplete \mathcal{V}-categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences

$$
\mathcal{V}-\mathbf{C a t}^{\mathcal{P}} \simeq \simeq \mathcal{V}-\mathbf{C a t}_{\mathrm{colim}} \simeq\left(\mathbf{O r d}_{\text {sup }}\right)^{\mathcal{V}}
$$

\mathcal{V}-Cat ${ }_{\text {colim }}$:
(co)complete \mathcal{V}-categories, with cocontinuous \mathcal{V}-functors
Ord ${ }_{\text {sup }}^{V}$:
(co)complete preordered sets on which \mathcal{V} acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corolary

```
There are 2-equivalences
```


5.5.2 Cocomplete \mathcal{V}-categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences
\mathcal{V}-Cat ${ }_{\text {colim }}$:
(co)complete \mathcal{V}-categories, with cocontinuous \mathcal{V}-functors
Ord ${ }_{\text {sup }}^{\mathcal{V}}$:
(co)complete preordered sets on which \mathcal{V} acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corollary
There are 2-equivalences

$$
\left(\mathcal{V}-\text { Cat }_{\text {sep }}\right)^{\mathcal{P}} \simeq \mathcal{V}-\text { Cat }_{\text {sep }, \text { colim }} \simeq \text { Sup }^{\mathcal{V}}
$$

5.6.1 Presenting conically cocomplete \mathcal{V}-categories algebraically?

Consider moving from the presheaf-monad \mathcal{P} on \mathcal{V}-Cat:

$$
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat }, \quad X \longmapsto\left[X^{\mathrm{op}, \mathcal{V}], \quad \mathcal{P} X(\sigma, \tau)=\bigwedge_{z \in X}[\sigma z, \tau z]}\right.
$$

to the Hausdorff submonad \mathcal{H} via

$$
j_{X}: \mathcal{H} X=\{A \mid A \subseteq X\} \longrightarrow \mathcal{P} X, \quad A \longmapsto\left(z \mapsto X(z, A)=\bigvee_{x \in A} X(z, x)\right)
$$

where $\mathcal{H X}$ carries the initial ($=$ cartesian) structure inherited from $\mathcal{P} X$ via j_{X} :

5.6.1 Presenting conically cocomplete \mathcal{V}-categories algebraically?

Consider moving from the presheaf-monad \mathcal{P} on \mathcal{V}-Cat:

$$
\mathcal{P}: \mathcal{V} \text {-Cat } \longrightarrow \mathcal{V} \text {-Cat }, \quad X \longmapsto\left[X^{\mathrm{op}}, \mathcal{V}\right], \quad \mathcal{P} X(\sigma, \tau)=\bigwedge_{z \in X}[\sigma z, \tau z]
$$

to the Hausdorff submonad \mathcal{H} via

$$
j_{X}: \mathcal{H} X=\{A \mid A \subseteq X\} \longrightarrow \mathcal{P} X, \quad A \longmapsto\left(z \mapsto X(z, A)=\bigvee_{x \in A} X(z, x)\right)
$$

where $\mathcal{H} X$ carries the initial (= cartesian) structure inherited from $\mathcal{P} X$ via j_{X} :

$$
\mathcal{H} X(A, B)=\bigwedge_{z \in X}\left[\bigvee_{x \in A} X(z, x), \bigvee_{y \in B} X(z, y)\right]=\ldots=\bigwedge_{x \in A} \bigvee_{y \in B} X(x, y)
$$

5.6.2 Algebraic presentation of conically cocomplete \mathcal{V}-categories

Theorem (Akhvlediani-Clementino-T 2009, Stubbe 2009)

Just like \mathcal{P}, also \mathcal{H} becomes a lax-idempotent monad of the 2-category \mathcal{V}-Cat, lifting the power-set monad of Set, and making j: $\mathcal{H} \longrightarrow \mathcal{P}$ a monad morphism, which induces the forgetful functor
\mathcal{V}-Cat ${ }_{\text {colim }}$:
(co)complete (= all weighted (co)limts exist) \mathcal{V}-categories, with cocontinous \mathcal{V}-functors;
\mathcal{V}-Cat ${ }_{\text {consup }}$:
conically cocomplete (= sups exist, Yoneda preserves) \mathcal{V}-cats, with sup-preserving \mathcal{V}-funs

5.7 \mathcal{V}-Cat ${ }_{\text {sep,colim }}$ as a quantification of Sup?

- Monadicity:
\mathcal{V}-Cat sep,colim $_{\text {monadic }}^{\longrightarrow} \mathcal{V}$-Cat mep $_{\text {sep }}^{\text {monadic }} \mathcal{}$-Cat $\xrightarrow{\text { topological }}$ Set
- Self-duality: \mathcal{V}-Cat sep,colim $^{\cong}(\mathcal{V} \text {-Cat } \text { sep,colim })^{\text {op }}$
- Symmetric monoidal-closed?

$5.7 \mathcal{V}$-Cat ${ }_{\text {sep,colim }}$ as a quantification of Sup?

- Monadicity:

- Self-duality: \mathcal{V}-Cat sep, colim $^{\Longrightarrow}\left(\mathcal{V} \text {-Cat }{ }_{\text {sep,colim }}\right)^{\text {op }}$
- Symmetric monoidal-closed?

$5.7 \mathcal{V}$-Cat ${ }_{\text {sep,colim }}$ as a quantification of Sup?

- Monadicity:

- Self-duality:

- Symmetric monoidal-closed?

$5.7 \mathcal{V}$-Cat ${ }_{\text {sep,colim }}$ as a quantification of Sup?

- Monadicity:

- Self-duality:

- Symmetric monoidal-closed?

$5.8 \mathcal{V}$-Cat ${ }_{\text {sep,colim }}$ is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V}-categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_{\mathrm{d}}(X \times Y)$ (with the \mathcal{V}-powerset monad of Set) and then put

$$
X \boxtimes Y=\mathcal{P}_{\mathrm{d}}(X \times Y) / \sim
$$

with the least congruence relation \sim making the Yoneda map
$\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_{\mathrm{d}}(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$5.8 \mathcal{V}$-Cat ${ }_{\text {sep, colim }}$ is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V}-categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_{\mathrm{d}}(X \times Y)$ (with the \mathcal{V}-powerset monad of Set) and then put

$$
X \boxtimes Y=\mathcal{P}_{\mathrm{d}}(X \times Y) / \sim
$$

with the least congruence relation \sim making the Yoneda map
$\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_{\mathrm{d}}(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$$
\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y)
$$

$5.8 \mathcal{V}$-Cat ${ }_{\text {sep, colim }}$ is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V}-categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_{\mathrm{d}}(X \times Y)$ (with the \mathcal{V}-powerset monad of Set) and then put

$$
X \boxtimes Y=\mathcal{P}_{\mathrm{d}}(X \times Y) / \sim
$$

with the least congruence relation \sim making the Yoneda map
$\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_{\mathrm{d}}(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$$
\begin{gathered}
\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y), \\
\mathbf{y}\left(\bigvee_{i \in I} x_{i}, y\right) \sim \bigvee_{i \in I} \mathbf{y}\left(x_{i}, y\right), \quad \mathbf{y}\left(x, \bigvee_{i \in I} y_{i}\right) \sim \bigvee_{i \in I} \mathbf{y}\left(x, y_{i}\right)
\end{gathered}
$$

6.1 Cauchy sequences

$s=\left(x_{n}\right)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$-Cat, $x \in X$

$$
\begin{gathered}
\operatorname{Cauchy}(s):=\bigvee_{N \in \mathrm{~N}} \wedge_{m, n \geq N} X\left(x_{m}, x_{n}\right) \\
s \text { is Cauchy }: \Longleftrightarrow \mathrm{k} \leq \operatorname{Cauchy}(s)
\end{gathered}
$$

Facts:

s Cauchy

Definitions:

$s \rightsquigarrow x: \longleftrightarrow k \leq V_{N \in N}\left(\Lambda_{m>N} X\left(x_{m}, x\right) \otimes \Lambda_{n>N} X\left(X, x_{n}\right)\right)$

6.1 Cauchy sequences

$s=\left(x_{n}\right)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$-Cat, $x \in X$

$$
\begin{gathered}
\operatorname{Cauchy}(s):=\bigvee_{N \in \mathrm{~N}} \bigwedge_{m, n \geq N} X\left(x_{m}, x_{n}\right) \\
s \text { is Cauchy }: \Longleftrightarrow \mathrm{k} \leq \operatorname{Cauchy}(s)
\end{gathered}
$$

$$
\lambda_{s}(x):=\bigvee_{N \in \mathrm{~N}} \bigwedge_{n \geq N} X\left(x_{n}, x\right) \text { ("left-convergence value of } s \rightsquigarrow x \text { ") }
$$

$$
\rho_{s}(x):=\bigvee_{N \in \mathrm{~N}} \bigwedge_{n \geq N} X\left(x, x_{n}\right) \text { ("right-convergence value of } s \rightsquigarrow x \text { ") }
$$

Facts:

s Cauchy

Definitions:

X Cauchy-complete every Cauchy sequence $\sin X$ converges to some point $\underset{\text { 霜 }}{ }$

6.1 Cauchy sequences

$s=\left(x_{n}\right)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$-Cat, $x \in X$

$$
\begin{gathered}
\text { Cauchy }(s):=\bigvee_{N \in N} \wedge_{m, n \geq N} X\left(x_{m}, x_{n}\right) \\
s \text { is Cauchy }: \Longleftrightarrow \mathrm{k} \leq \operatorname{Cauchy}(s)
\end{gathered}
$$

$$
\begin{aligned}
& \lambda_{s}(x):=V_{N \in N} \wedge_{n \geq N} X\left(x_{n}, x\right) \text { ("left-convergence value of } s \rightsquigarrow x \text { ") } \\
& \left.\rho_{s}(x):=V_{N \in \mathrm{~N}} \wedge_{n \geq N} X\left(x, x_{n}\right) \text { ("right-convergence value of } s \rightsquigarrow x^{\prime \prime}\right)
\end{aligned}
$$

Facts:

$$
\begin{aligned}
& E \xrightarrow{\lambda_{s}} X, X \xrightarrow{\rho_{s}} E E, \text { with } \lambda_{s} \cdot \rho_{s} \leq 1_{X}^{*} \\
& s \text { Cauchy } \Longleftrightarrow 1_{E}^{*} \leq \rho_{s} \cdot \lambda_{s} \Longleftrightarrow \lambda_{s} \dashv \rho_{s}
\end{aligned}
$$

Definitions:

X Cauchy-complete every Cauchy sequence $\sin X$ converges to some point $X_{\underline{1}}^{\underline{\underline{\underline{1}}}}$

6.1 Cauchy sequences

$s=\left(x_{n}\right)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$-Cat, $x \in X$

$$
\begin{gathered}
\operatorname{Cauchy}(s):=\bigvee_{N \in \mathrm{~N}} \wedge_{m, n \geq N} X\left(x_{m}, x_{n}\right) \\
s \text { is Cauchy }: \Longleftrightarrow \mathrm{k} \leq \operatorname{Cauchy}(s)
\end{gathered}
$$

$$
\begin{aligned}
& \lambda_{s}(x):=\bigvee_{N \in \mathrm{~N}} \bigwedge_{n \geq N} X\left(x_{n}, x\right) \quad \text { ("left-convergence value of } s \rightsquigarrow x \text { ") } \\
& \rho_{s}(x):=\bigvee_{N \in \mathrm{~N}} \bigwedge_{n \geq N} X\left(x, x_{n}\right) \text { ("right-convergence value of } s \rightsquigarrow x \text { ") }
\end{aligned}
$$

Facts:

$$
\begin{aligned}
& E \xrightarrow{\lambda_{s}} X, X \xrightarrow{\rho_{s} \rightarrow E}, \text { with } \lambda_{s} \cdot \rho_{s} \leq 1_{X}^{*} \\
& s \text { Cauchy } \Longleftrightarrow 1_{E}^{*} \leq \rho_{s} \cdot \lambda_{s} \Longleftrightarrow \lambda_{s} \dashv \rho_{s}
\end{aligned}
$$

Definitions:

$$
s \rightsquigarrow x: \Longleftrightarrow \mathrm{k} \leq \bigvee_{N \in \mathrm{~N}}\left(\bigwedge_{m \geq N} X\left(x_{m}, x\right) \otimes \bigwedge_{n \geq N} X\left(x, x_{n}\right)\right) \Longleftrightarrow \mathrm{k} \leq \lambda_{s}(x) \otimes \rho_{s}(x)
$$

X Cauchy-complete $: \Longleftrightarrow$ every Cauchy sequence s in X converges to some point $x \in X$

6.2 Lawvere completeness

$$
\begin{aligned}
X \text { Lawvere-complete : } & \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \bigcirc W \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*} \\
& \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \rightarrow E \exists x \in X: \varphi=x_{*}, \psi=x^{*}
\end{aligned}
$$

X Cauchy-complete

Conversely?

Auviliary conditions on \mathcal{V} :
\mathcal{V} integral $(\mathrm{k}=\top)$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}, 2 . \varepsilon_{n} \ll k, 3 . V_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$
Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\Longleftrightarrow X$ Cauchy-complete

6.2 Lawvere completeness

$$
\begin{aligned}
X \text { Lawvere-complete }: & \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \bigcirc W \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*} \\
& \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \odot \exists x \in X: \varphi=x_{*}, \psi=x^{*} \\
& \Longleftrightarrow X \text { Cauchy-complete }
\end{aligned}
$$

Conversely?

Auviliary conditions on V :
\mathcal{V} integral $(\mathrm{k}=T)$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}, 2 . \varepsilon_{n} \ll k, 3 . V_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$
Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\Longleftrightarrow X$ Cauchy-complete

6.2 Lawvere completeness

$$
\begin{aligned}
X \text { Lawvere-complete }: & \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \bigcirc W \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*} \\
& \Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \bigcirc \exists x \in X: \varphi=x_{*}, \psi=x^{*} \\
& \Longleftrightarrow X \text { Cauchy-complete }
\end{aligned}
$$

Conversely?

Auxiliary conditions on \mathcal{V} :

\mathcal{V} integral $(\mathrm{k}=\mathrm{T})$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}, 2 . \varepsilon_{n} \ll \mathrm{k}, 3 . \bigvee_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$

Then: $\forall \varphi+\psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\longleftrightarrow X$ Cauchy-complete

6.2 Lawvere completeness

X Lawvere-complete: $\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \mathcal{W} \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*}$
 $\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \rightarrow E \exists x \in X: \varphi=x_{*}, \psi=x^{*}$
 $\Longrightarrow X$ Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :
\mathcal{V} integral $(\mathrm{k}=\mathrm{T})$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}, 2 . \varepsilon_{n} \ll \mathrm{k}, 3 . \bigvee_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$
Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$
Theorem (Hofmann-Reis 2018)
If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\longleftrightarrow X$ Cauchy-complete

6.2 Lawvere completeness

X Lawvere-complete: $\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow W \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*}$
 $\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \rightarrow E \exists x \in X: \varphi=x_{*}, \psi=x^{*}$
 $\Longrightarrow X$ Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :
\mathcal{V} integral $(\mathrm{k}=\mathrm{T})$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}$, 2. $\varepsilon_{n} \ll \mathrm{k}, 3 . \bigvee_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$
Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\Longleftrightarrow X$ Cauchy-complete

6.2 Lawvere completeness

X Lawvere-complete: $\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow \rightarrow W \exists f: W \longrightarrow X: \varphi=f_{*}, \psi=f^{*}$
$\Longleftrightarrow \forall \varphi \dashv \psi: X \longrightarrow E \exists x \in X: \varphi=x_{*}, \psi=x^{*}$
$\Longrightarrow X$ Cauchy-complete
Conversely?
Auxiliary conditions on \mathcal{V} :
\mathcal{V} integral $(\mathrm{k}=\mathrm{T})$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}, 2 . \varepsilon_{n} \ll \mathrm{k}, 3 . \bigvee_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$
Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X: \varphi=\lambda_{s}, \psi=\rho_{s}$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete $\Longleftrightarrow X$ Cauchy-complete

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$provided that the composites are defined;
W3 if $Y \longrightarrow X$ satisfies X^{*} 中 for all $x \in X$, then $\psi \in \Phi$
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Ф cocompletion class : \Longleftrightarrow (W1-3) hold; Ф monadic cocompl. class : \Longleftrightarrow (W1-4) hold.
Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: \{f* | f V-functor\}; it may obviously fail to be monadic.
Lawvere cocompletion class: right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in V$-Cat is Φ-cocomplete \longleftrightarrow all colimits of diagrams in X with weights in Φ exist
$f: X \rightarrow Y$ is Φ-cocontinuous \longleftrightarrow f preserves Φ-weighted colimits of X.

6.3 Cocompletion wrt a given class Φ of weights: conditions on Φ

```
W1 f*}\in\Phi, for every \mathcal{V}\mathrm{ -functor f;
```



``` provided that the composites are defined;
```

```
W3 if }Y\longrightarrow~\longrightarrowX satisfies 秋 | \psi & for all X\inX, then \psi\in
W4 }\mp@subsup{f}{*}{}\in\Phi,\mathrm{ for every surjective }\mathcal{V}\mathrm{ -functor }f\mathrm{ .
```

Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class : \Longleftrightarrow (W1-4) hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete $: \Longleftrightarrow$ all colimits of diagrams in X with weights in Φ exist.
$f: X \rightarrow Y$ is Φ-cocontinuous : $\Longleftrightarrow f$ preserves Φ-weighted colimits of X

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;

W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $x^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Ф monadic cocompl. class : \Longleftrightarrow (W1-4) hold.
Largest cocompletion class: all 1)-distributors; trivially, it is monadic.
Least cocompletion class: \{f* | f V-functor\}; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete $: \Longleftrightarrow$ all colimits of diagrams in X with weights in Φ exist
$f: X \rightarrow Y$ is Φ-cocontinuous : $\Longleftrightarrow f$ preserves Φ-weighted colimits of X

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;

W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $X^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$; W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class : \Longleftrightarrow (W1-3) hold; Φ monadic cocompl. class : \Longleftrightarrow (W1-4) hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete
\Longleftrightarrow all colimits of diagrams in X with weights in Φ exist.
$\because X \rightarrow Y$ is Φ-cocontinuous
$\Longleftrightarrow f$ preserves Φ-weighted colimits of X.

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;

W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $X^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class $: \Longleftrightarrow$ (W1-4) hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class:
right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in V$ Cat is Φ-cocomplete all colimits of diagrams in X with weights in Φ exist
$f: X \rightarrow Y$ is Φ-cocontinuous

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;
W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $x^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class $: \Longleftrightarrow$ (W1-4) hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete all colimits of diagrams in X with weights in Φ exist.
$f: X \rightarrow Y$ is Φ-cocontinuous

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;
W3 if $Y \xrightarrow{\psi} X$ satisfies $x^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class $: \Longleftrightarrow(\mathrm{W} 1-4)$ hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete $: \Longleftrightarrow$ all colimits of diagrams in X with weights in Φ exist.
$f: X \rightarrow Y$ is Φ-cocontinuous
$\Leftrightarrow f$ preserves Φ-weighted colimits of X.

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;
W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $x^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class $: \Longleftrightarrow(\mathrm{W} 1-4)$ hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete $: \Longleftrightarrow$ all colimits of diagrams in X with weights in Φ exist.
$f: X \rightarrow Y$ is Φ-cocontinuous : $\Longleftrightarrow f$ preserves Φ-weighted colimits of X.

6.3 Cocompletion wrt a given class Φ of weights: conditions on ϕ

W1 $f^{*} \in \Phi$, for every \mathcal{V}-functor f;
W2 $f^{*} \cdot \psi, \psi \cdot g^{*}, \psi \cdot h_{*} \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V}-functors f, g, h with $h_{*} \in \Phi$, provided that the composites are defined;
W3 if $Y \xrightarrow{\psi} \rightarrow X$ satisfies $x^{*} \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
W4 $f_{*} \in \Phi$, for every surjective \mathcal{V}-functor f.
Φ cocompletion class $: \Longleftrightarrow$ (W1-3) hold; Φ monadic cocompl. class $: \Longleftrightarrow$ (W1-4) hold.
Largest cocompletion class: all \mathcal{V}-distributors; trivially, it is monadic.
Least cocompletion class: $\left\{f^{*} \mid f \mathcal{V}\right.$-functor $\}$; it may obviously fail to be monadic.
Lawvere cocompletion class: $\{\psi \mid \psi$ right adjoint $\}$; it fails to be monadic already for $\mathcal{V}=2$.
$X \in \mathcal{V}$-Cat is Φ-cocomplete $: \Longleftrightarrow$ all colimits of diagrams in X with weights in Φ exist.
$f: X \rightarrow Y$ is Φ-cocontinuous : $\Longleftrightarrow f$ preserves Φ-weighted colimits of X.

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y \Phi$-dense $\quad: \Longleftrightarrow f_{*} \in \Phi ;$
X pseudo-Ф-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors;

Check:

- f has a right adjoint $\Rightarrow f \phi$-dense
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g$ Ф-dense
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense
- \mathbf{y}_{X}^{ϕ} is Φ-dense;
- $(Y \underset{\sim}{\psi}>X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\phi}$:

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$-dense $\quad: \Longleftrightarrow f_{*} \in \Phi ;$
X pseudo-Ф-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\oplus}]{\longrightarrow \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\Phi}}{\longrightarrow} \mathcal{P} X, \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f \Phi$-dense
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense
- \mathbf{y}_{X}^{Φ} is Φ-dense;
- $(Y \xrightarrow{\psi} \rightarrow X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\phi}$.

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$-dense $\quad: \Longleftrightarrow f_{*} \in \Phi ;$
X pseudo-Ф-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\oplus}]{\longrightarrow \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\Phi}}{\longrightarrow} \mathcal{P} X, \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and g
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense
- \mathbf{y}_{X}^{Φ} is Φ-dense;
- $(Y \stackrel{\psi}{\bullet}>X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow P Y$ factors through inc ${ }_{X}^{\Phi}$.

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$ Ф-dense $\quad: \Longleftrightarrow f_{*} \in \Phi ;$
X pseudo-Ф-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\oplus}]{ } \frac{\mathbf{y}_{X}}{>} X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\Phi}}{>} \mathcal{P} X
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and
g Ф-dense
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense
- \mathbf{V}_{v}^{Φ} is Φ-dense;
- $(Y \underset{\sim}{\psi} \rightarrow X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\phi}$:

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$ Ф-dense $\quad: \Longleftrightarrow f_{*} \in \Phi$;
X pseudo- Φ-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors;
Put

$$
X \xlongequal[\mathbf{y}_{X}^{\mathbf{+}}]{\xrightarrow{\rightarrow} \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\phi}}{\longrightarrow} \mathcal{P} X, ~ \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense;
- $g \cdot f$ Ф-dense and g fully faithful $\Longrightarrow f$-dense
- \mathbf{y}_{X}^{Φ} is Φ-dense;
e $\left(V{ }^{\psi} \sim X\right) \in \infty \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\phi}$.

6.4 Cocompletion wrt a given class Φ of weights: pseudo- Φ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$ Ф-dense $\quad: \Longleftrightarrow f_{*} \in \Phi$;
X pseudo- Φ-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\mathbf{+}}]{\xrightarrow{\rightarrow} \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\phi}}{\longrightarrow} \mathcal{P} X, ~ \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense;
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense;
- \mathbf{y}_{X}^{ϕ} is Φ-dense;
- $(Y \stackrel{\psi}{\circ} \rightarrow X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\phi}$.

6.4 Cocompletion wrt a given class Φ of weights: pseudo- Φ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$ Ф-dense $\quad: \Longleftrightarrow f_{*} \in \Phi$;
X pseudo- Φ-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\mathbf{+}}]{\xrightarrow{\rightarrow} \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\phi}}{\longrightarrow} \mathcal{P} X, ~ \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense;
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense;
- \mathbf{y}_{X}^{ϕ} is Φ-dense;

6.4 Cocompletion wrt a given class Φ of weights: pseudo- ϕ-injectivity

For a cocompletion class Φ call
$f: X \rightarrow Y$ Ф-dense $\quad: \Longleftrightarrow f_{*} \in \Phi$;
X pseudo- Φ-injective $: \Longleftrightarrow X$ pseudo-injective wrt fully faithful Φ-dense \mathcal{V}-functors; Put

$$
X \xlongequal[\mathbf{y}_{X}^{\mathbf{+}}]{\xrightarrow{\rightarrow} \Phi X:=\{\psi \in \mathcal{P} X \mid \psi \in \Phi\} \underset{\mathrm{inc}_{X}^{\phi}}{\longrightarrow} \mathcal{P} X, ~ \mathbf{y}_{X}}
$$

Check:

- f has a right adjoint $\Longrightarrow f$-dense;
- f and $g: Y \rightarrow Z \Phi$-dense $\Longrightarrow g \cdot f \Phi$-dense;
- $g \cdot f \Phi$-dense and $f_{*} \cdot f^{*}=1_{Y}^{*} \Longrightarrow g \Phi$-dense;
- $g \cdot f \Phi$-dense and g fully faithful $\Longrightarrow f \Phi$-dense;
- \mathbf{y}_{X}^{ϕ} is ϕ-dense;
- $(Y \xrightarrow{\psi} \rightarrow X) \in \Phi \Longleftrightarrow$ the mate $\psi^{\sharp}: X \rightarrow \mathcal{P} Y$ factors through inc ${ }_{X}^{\Phi}$.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)
Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad $\left(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}\right)$ on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{x}^{∞} has a pseudo-retraction; that is: there is a \mathcal{V}-functor
(iv) X is pseudo- ϕ-injective in v-Cat
- $\Phi \dashv\left(\mathcal{V}\right.$-Cat ${ }_{\text {sep }, \phi \text {-colim }} \longrightarrow \mathcal{V}$-Cat $)$.
- If Φ is monadic, then \mathcal{V}-Cat ${ }_{\text {sep }, \Phi \text {-colim }}$ is monadic over Set.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)
Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad ($\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}$) on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{X}^{\oplus} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}^{\Phi} X \rightarrow X$ with $h y_{X}^{\Phi} \simeq 1 X$
(iv) X is pseudo- Φ-injective in \mathcal{V}-Cat
- $\Phi \dashv\left(\mathcal{V}\right.$-Cat sen Φ-colim $^{\longrightarrow \mathcal{V} \text {-Cat }) \text {. } ~}$
- If Φ is monadic, then \mathcal{V}-Cat ${ }_{\text {sep }, \Phi \text {-colim }}$ is monadic over Set.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad ($\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}$) on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{X}^{ϕ} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}^{\Phi} X \rightarrow X$ with $h \mathbf{y}_{X}^{\Phi} \simeq 1_{X}$;
(iv) X is pseudo- Φ-injective in \mathcal{V}-Cat
- $\Phi \dashv(\mathcal{V}$-Cat sep,Φ-colim V-Cat $)$.
- If Φ is monadic then V-Cat ont.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad ($\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}$) on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{X}^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}^{\Phi} X \rightarrow X$ with $h \mathbf{y}_{X}^{\Phi} \simeq 1_{X}$;
(iv) X is pseudo- Φ-injective in \mathcal{V}-Cat.
- $\phi \dashv\left(\mathcal{V}\right.$-Cat ${ }_{\text {sep. } \Phi \text {-colim }} \longrightarrow \mathcal{V}$-Cat $)$.
- If Φ is monadic, then \mathcal{V}-Cat ${ }_{\text {sep }, \Phi \text {-colim }}$ is monadic over Set.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad ($\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}$) on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{X}^{\oplus} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}^{\Phi} X \rightarrow X$ with $h \mathbf{y}_{X}^{\Phi} \simeq 1_{X}$;
(iv) X is pseudo- Φ-injective in \mathcal{V}-Cat.
- $\Phi \dashv\left(\mathcal{V}\right.$-Cat ${ }_{\text {sep }, \Phi \text {-colim }} \longrightarrow \mathcal{V}$-Cat $)$.
- If Φ is monadic, then \mathcal{V}-Cat ${ }_{\text {sep }, \Phi \text {-colim }}$ is monadic over Set.

6.5 Cocompletion wrt a given class ϕ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let Φ be a cocompletion class.

- The following properties for a \mathcal{V}-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad ($\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi}$) on \mathcal{V}-Cat;
(iii) the Yoneda \mathcal{V}-functor \mathbf{y}_{X}^{\oplus} has a pseudo-retraction; that is: there is a \mathcal{V}-functor $h: \mathcal{P}^{\Phi} X \rightarrow X$ with $h \mathbf{y}_{X}^{\Phi} \simeq 1_{X}$;
(iv) X is pseudo- Φ-injective in \mathcal{V}-Cat.
- $\Phi \dashv\left(\mathcal{V}\right.$-Cat ${ }_{\text {sep }, \Phi \text {-colim }} \longrightarrow \mathcal{V}$-Cat $)$.
- If Φ is monadic, then \mathcal{V}-Cat ${ }_{\text {sep }, \Phi \text {-colim }}$ is monadic over Set.

6.6 Cauchy completion of a \mathcal{V}-category à la Lawvere

Let \mathcal{V} satisfy $\mathrm{k}=\mathrm{T}$ and $\exists\left(\varepsilon_{n}\right)_{n \in \mathrm{~N}}$ in $\mathcal{V}: 1 . \varepsilon_{n} \leq \varepsilon_{n+1}$, 2. $\varepsilon_{n} \ll \mathrm{k}, 3 . \bigvee_{n \in \mathrm{~N}} \varepsilon_{n}=\mathrm{k}$; Consider $\Phi:=\{\psi \mid \psi$ right adjoint \mathcal{V}-distributor $\}$, and let $X \in \mathcal{V}$-Cat. Then
$\Phi X=\left\{\psi \in \mathcal{P}_{\mathcal{V}} X \mid \psi\right.$ right adjoint $\}=\left\{\rho_{s} \mid \boldsymbol{s}=\left(x_{n}\right)_{n}\right.$ Cauchy sequence in $\left.X\right\}$ with $\rho_{s}(x)=\bigvee_{N \in \mathrm{~N}} \wedge_{n \geq N} X\left(x, x_{n}\right)(x \in X)$, and
(1) (trivially) $\left(s \sim s^{\prime} \Longleftrightarrow \rho_{s}=\rho_{s^{\prime}}\right)$ is an equivalence relation on the set of all Cauchy sequences in X, with projection $s \mapsto \rho_{s}$;
(2) ϕX is Cauchy complete;
(3) the restricted Yoneda \mathcal{V}-functor $X \rightarrow \Phi X, y \mapsto \rho_{(y)_{n}}$, is a reflection of X into the full subcategory of Cauchy complete \mathcal{V}-categories.

7.1 The category Set $/ / \mathcal{V}=\mathcal{V}$-wSet of \mathcal{V}-weighted or -normed sets

- Defining Set $/ / \mathcal{V}$:

- Set $/ / \mathcal{V}$ is topological over Set:

- Set $/ / \mathcal{V}$ is symmetric monoidal-closed:
$A \otimes B=(A \times B,|(a, b)|=|a| \otimes|b|), \quad E=(1=\{*\},|*|=\mathrm{k})$
$[A, B]=\left(\operatorname{Set}(A, B),|\varphi|=\bigwedge_{a \in A}[|a|,|\varphi a|]\right)$

7.2 The category Cat $/ / \mathcal{V}=\mathcal{V}$-wCat of (small) \mathcal{V}-weighted categories

Objects of Cat $/ / \mathcal{V}$ are (small) categories \mathbb{X} enriched in Set $/ / \mathcal{V}$; this means (neglecting \forall): $\mathbb{X}(x, y) \otimes \mathbb{X}(y, z) \longrightarrow \mathbb{X}(x, z)$ and $E \longrightarrow \mathbb{X}(x, x) \quad$ live in Set $/ / \mathcal{V}$
$\Longleftrightarrow \quad|f| \otimes|g|=|(f, g)| \leq|g \cdot f| \quad$ and $\mathrm{k} \leq\left|1_{x}\right|$
$\Longleftrightarrow|-|: \mathbb{X} \longrightarrow(\mathcal{V}, \otimes, \mathrm{k})$ is a lax functor
For a functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in Set//V means (without universal quantifiers):

7.2 The category Cat $/ / \mathcal{V}=\mathcal{V}$-wCat of (small) \mathcal{V}-weighted categories

Objects of Cat $/ / \mathcal{V}$ are (small) categories \mathbb{X} enriched in Set $/ / \mathcal{V}$; this means (neglecting \forall): $\mathbb{X}(x, y) \otimes \mathbb{X}(y, z) \longrightarrow \mathbb{X}(x, z)$ and $E \longrightarrow \mathbb{X}(x, x) \quad$ live in Set $/ / \mathcal{V}$
$\Longleftrightarrow \quad|f| \otimes|g|=|(f, g)| \leq|g \cdot f| \quad$ and $\mathrm{k} \leq\left|1_{x}\right|$
$\Longleftrightarrow|-|: \mathbb{X} \longrightarrow(\mathcal{V}, \otimes, \mathrm{k})$ is a lax functor
For a functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in Set $/ / \mathcal{V}$ means (without universal quantifiers):

$$
\begin{array}{ll}
& \mathbb{X}(x, y) \longrightarrow \mathbb{Y}(F x, F y) \quad \text { lives in Set } / / \mathcal{V} \\
\Longleftrightarrow & |f| \leq|F f|
\end{array}
$$

7.3 The adjunction $\mathrm{s} \dashv \mathrm{i}$, monoidal-closed structure, preserved by i, s

$$
\begin{aligned}
& \mathcal{V} \text {-Cat } \\
& \begin{array}{l}
X, \quad X(x, y) \otimes X(y, z) \leq X(x, z) \\
\\
\mathrm{k} \leq X(x, x)
\end{array} \\
& \text { s } \mathbb{X}=\mathrm{ob} \mathbb{X}, \quad \text { s } \mathbb{X}(x, y)=\bigvee\{|f| \mid f: x \rightarrow y\} \\
& X \otimes Y=X \times Y(\text { as a set }) \\
& (X \otimes Y)\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=X\left(x, x^{\prime}\right) \otimes Y\left(y, y^{\prime}\right) \\
& {[X, Y]=\mathcal{V} \text {-Cat }(X, Y) \text { (as a set) }} \\
& {[X, Y](f, g)=\bigwedge_{x \in X} Y(f x, g x)}
\end{aligned}
$$

Cat $/ / \mathcal{V}$

$$
\stackrel{\mathrm{i}}{\longrightarrow}
$$

$$
\mathrm{i} X, \quad \text { ob }(\mathrm{i} X)=X
$$

$$
x \xrightarrow{(x, y)} y, \quad|(x, y)|=X(x, y)
$$

$$
\stackrel{{ }^{s}}{ } \quad \begin{aligned}
\mathbb{X}, \quad|f| \otimes|g| & \leq|g \cdot f| \\
\mathrm{k} & \leq\left|1_{x}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{X} \otimes \mathbb{Y}=\mathbb{X} \times \mathbb{Y}(\text { as a category }) \\
& |(f, g)|=|f| \otimes|g|
\end{aligned}
$$

$$
[\mathbb{X}, \mathbb{Y}]=(\text { Cat } / / \mathcal{V})(\mathbb{X}, \mathbb{Y}) \text { (as a cat) }
$$

$$
|F \xrightarrow{\alpha} G|=\bigwedge_{x \in \mathrm{obX}}\left|\alpha_{X}\right|
$$

7.4.1 Example: $(\mathcal{\nu}, \leq, \otimes, \mathrm{k})=(2, \perp<\mathrm{T}, \wedge, T)$

```
2-Cat \(=\) Ord
\[
x, \quad x \leq y \wedge y \leq z \Longrightarrow x \leq z
\]
\[
\top \Longrightarrow x \leq x
\]
\[
\mathrm{s} \mathbb{X}=\mathrm{ob} \mathbb{X}, \quad x \leq y \Longleftrightarrow \exists(f: x \rightarrow y) \in \mathcal{S} \quad \stackrel{\mathrm{s}}{\longleftrightarrow}
\]
\[
X \otimes Y=X \times Y
\]
\[
(x, y) \leq\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x \leq x^{\prime} \wedge y \leq y^{\prime}
\]
\[
[X, Y]=\operatorname{Ord}(X, Y)
\]
\[
f \leq g \Longleftrightarrow \forall x \in X: f x \leq g x
\]
```


Cat $/ / 2=\mathbf{s C a t}$

$\mathrm{i} X, \quad$ ob $(\mathrm{i} X)=X$
$(x \xrightarrow{(x, y)} y) \in \mathcal{S} \Longleftrightarrow x \leq y$
$\mathbb{X}, \mathcal{S}, \quad f, g \in \mathcal{S} \Longrightarrow g \cdot f \in \mathcal{S}$ $\top \Longrightarrow 1_{x} \in \mathcal{S}$
$\mathbb{X} \otimes \mathbb{Y}=\mathbb{X} \times \mathbb{Y}$ (as a category) $\mathcal{S}_{\mathbb{X} \otimes \mathbb{Y}}=\mathcal{S}_{\mathbb{X}} \times \mathcal{S}_{\mathbb{Y}}$
$[\mathbb{X}, \mathbb{Y}]=\mathbf{s C a t}(\mathbb{X}, \mathbb{Y})$ (as a cat)
$\alpha \in \mathcal{S}_{[\mathbb{X}, \mathbb{Y}]} \Longleftrightarrow \forall x \in \mathrm{ob} \mathbb{X}: \alpha_{X} \in \mathcal{S}_{\mathbb{Y}}$
7.4.2 Example: $(\mathcal{V}, \leq, \otimes, \mathrm{k})=([0, \infty], \geq,+, 0)$
$[0, \infty]$-Cat $=$ Met
$x, \quad d(x, y)+d(y, z) \geq d(x, z)$

$$
0 \geq d(x, x)
$$

$\mathrm{s} \mathbb{X}=\mathrm{ob} \mathbb{X}, \quad d(x, y)=\inf _{f: x \rightarrow y}|f|$

$$
\begin{aligned}
& X \otimes Y=X \times Y \\
& d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d(x, y)+d\left(y, y^{\prime}\right)
\end{aligned}
$$

$[X, Y]=\operatorname{Met}(X, Y)$
$d(f, g)=\sup _{x \in X} d(f x, g x)$
$\stackrel{s}{\longleftrightarrow} \quad \mathbb{X}, \quad|f|+|g| \geq|g \cdot f|$ $0 \geq\left|1_{x}\right|$
Cat $/ /[0, \infty]=\mathbf{w C a t}$
$\stackrel{\mathrm{i}}{\longmapsto} \quad \mathrm{i} X, \quad \mathrm{ob}(\mathrm{i} X)=X$

$$
x \xrightarrow{(x, y)} y, \quad|(x, y)|=d(x, y)
$$

$$
0 \geq\left|1_{x}\right|
$$

$\mathbb{X} \otimes \mathbb{Y}=\mathbb{X} \times \mathbb{Y}$ (as a category)
$|(f, g)|=|f|+|g|$
$[\mathbb{X}, \mathbb{Y}]=\mathbf{w C a t}(\mathbb{X}, \mathbb{Y})$ (as a cat)
$|F \xrightarrow{\alpha} G|=\sup _{x \in \mathrm{ob} \mathbb{X}}\left|\alpha_{x}\right|$

7.5.1 Some elementary examples of weighted categories, I

We saw:

\mathcal{V}-categories (and their functors) are \mathcal{V}-weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May Set be "naturally" $[0, \infty]$-weighted?
Goal 1: Let $|f|$ measure the degree to which a map $f: X \rightarrow Y$ fails to be surjective.

7.5.1 Some elementary examples of weighted categories, I

We saw:

\mathcal{V}-categories (and their functors) are \mathcal{V}-weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May Set be "naturally" $[0, \infty]$-weighted?
Goal 1: Let $|f|$ measure the degree to which a map $f: X \rightarrow Y$ fails to be surjective.
Simply put $\quad|f|:=\#(Y \backslash f(X)) \in \mathbb{N} \cup\{\infty\} \subseteq[0, \infty]$.
Then: $0 \geq\left|\mathrm{id}_{X}\right|$, and with $g: Y \rightarrow Z$ we have $|f|+|g| \geq|g \cdot f|$
since (assuming Choice and $Y \cap Z=\emptyset$) there is an injective map

$$
Z \backslash(g(f(X))) \longrightarrow(Y \backslash f(X))+(Z \backslash g(Y))
$$

7.5.1 Some elementary examples of weighted categories, I

We saw:

\mathcal{V}-categories (and their functors) are \mathcal{V}-weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May Set be "naturally" $[0, \infty]$-weighted?
Goal 1: Let $|f|$ measure the degree to which a map $f: X \rightarrow Y$ fails to be surjective.
Simply put $\quad|f|:=\#(Y \backslash f(X)) \in \mathbb{N} \cup\{\infty\} \subseteq[0, \infty]$.
Then: $0 \geq\left|\mathrm{id}_{X}\right|$, and with $g: Y \rightarrow Z$ we have $|f|+|g| \geq|g \cdot f|$
since (assuming Choice and $Y \cap Z=\emptyset$) there is an injective map

$$
Z \backslash(g(f(X))) \longrightarrow(Y \backslash f(X))+(Z \backslash g(Y))
$$

Note: $\quad f$ surjective $\Longleftrightarrow|f|=0$.

7.5.2 Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:
Goal 2: Let $|f|$ measure the degree to which a map $f: X \rightarrow Y$ fails to be injective.
First consider $\# f:=\sup _{y \in Y} \# f^{-1} y$; then, with $g: Y \rightarrow Z$, we have:

$$
\# g \cdot \# f=\left(\sup _{z \in Z} \# g^{-1} z\right) \cdot\left(\sup _{y \in Y} \# f^{-1} y\right) \geq \sup _{z \in Z} \#\left(\bigcup_{y \in g^{-1} z} f^{-1} y\right)=\#(g \cdot f), \quad 1 \geq \# \operatorname{id}_{x}
$$

Not what we wanted! But $([1, \infty], \geq, \cdot, 1) \xrightarrow{\text { log }}([0, \infty], \geq,+, 0)$ comes to the rescue:
Put $|f|:=\max \{0, \log \# f\}$; then: $|g|+|f| \geq|g \cdot| f|.0 \geq|$ id $_{x} \mid$
Note: f injective $\Longleftrightarrow|f|=0$

7.5.2 Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:
Goal 2: Let $|f|$ measure the degree to which a map $f: X \rightarrow Y$ fails to be injective.
First consider $\# f:=\sup _{y \in Y} \# f^{-1} y$; then, with $g: Y \rightarrow Z$, we have:

$$
\# g \cdot \# f=\left(\sup _{z \in Z} \# g^{-1} z\right) \cdot\left(\sup _{y \in Y} \# f^{-1} y\right) \geq \sup _{z \in Z} \#\left(\bigcup_{y \in g^{-1} z} f^{-1} y\right)=\#(g \cdot f), \quad 1 \geq \# \operatorname{id}_{X}
$$

Not what we wanted! But $([1, \infty], \geq, \cdot, 1) \xrightarrow{\text { log }}([0, \infty], \geq,+, 0)$ comes to the rescue:
Put $|f|:=\max \{0, \log \# f\}$; then: $|g|+|f| \geq|g \cdot| f|.0 \geq|$ id $_{x} \mid$.
Note: f injective $\Longleftrightarrow|f|=0$.

7.5.3 A more interesting example of a (large) weighted category: Lip

 ob Lip $=$ ob Met, $\quad \operatorname{Lip}(X, Y)=\operatorname{Set}(X, Y) ; \quad$ why call this category Lip ?? Recall: $\quad f: X \rightarrow Y$ is $K(\geq 0)$-LipschitzIn particular: $f: X \rightarrow Y$ is a morphism in Met $\Longleftrightarrow f$ is 1-Lipschitz Question: How far is an arbitrary map f away from being 1-Linschitz? Answer: \quad Find the least Lipschitz constant $K \geq 1$ for f (admitting $K=\infty$) That is:

Then
$\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \geq \operatorname{Lip}(g \cdot f), \quad 1 \geq \operatorname{Lip}\left(\mathrm{id}_{X}\right)$
No problem

Then:

7.5.3 A more interesting example of a (large) weighted category: Lip

 ob Lip $=$ ob Met, $\quad \operatorname{Lip}(X, Y)=\operatorname{Set}(X, Y) ; \quad$ why call this category Lip ?? Recall: $\quad f: X \rightarrow Y$ is $K(\geq 0)$-Lipschitz $\Longleftrightarrow \forall x \neq x^{\prime}: d\left(f x, f x^{\prime}\right) \leq K d\left(x, x^{\prime}\right)$ In particular: $f: X \rightarrow Y$ is a morphism in Met $\Longleftrightarrow f$ is 1-Lipschitz Question: How far is an arbitrary map f away from being 1-Lipschitz?```
Answer
That is:
Then:
Lip}(g)\cdot\operatorname{Lip}(f)\geq\operatorname{Lip}(g\cdotf),\quad1\geq\operatorname{Lip}(\mp@subsup{\textrm{id}}{X}{}
No problem
([1,\infty),\geq,\cdot,1)\xrightarrow{log}{\cong}([0,\infty],\geq,+,0),\quad|f|=max{0, \operatorname{sup}}(\operatorname{log}d(fx,f\mp@subsup{x}{}{\prime})-\operatorname{log}d(x,\mp@subsup{x}{}{\prime}))
```

Then

### 7.5.3 A more interesting example of a (large) weighted category: Lip

ob Lip $=$ ob Met, $\quad \operatorname{Lip}(X, Y)=\operatorname{Set}(X, Y) ; \quad$ why call this category Lip ??
Recall: $\quad f: X \rightarrow Y$ is $K(\geq 0)$-Lipschitz $\Longleftrightarrow \forall x \neq x^{\prime}: d\left(f x, f x^{\prime}\right) \leq K d\left(x, x^{\prime}\right)$
In particular: $f: X \rightarrow Y$ is a morphism in Met $\Longleftrightarrow f$ is 1-Lipschitz
Question: How far is an arbitrary map $f$ away from being 1-Lipschitz?
Answer: $\quad$ Find the least Lipschitz constant $K \geq 1$ for $f$ (admitting $K=\infty$ )
That is: $\quad \operatorname{Lip}(f)=\max \left\{1, \sup _{x \neq x^{\prime}} \frac{d\left(f x, f x^{\prime}\right)}{d\left(x, x^{\prime}\right)}\right\}$ (assuming temporarily that $X$ be separated)
Then:
$\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \geq \operatorname{Lip}(g \cdot f), \quad 1 \geq \operatorname{Lip}\left(\mathrm{id}_{X}\right)$

## No problem:

$([1, \infty], \geq, \cdot, 1) \xrightarrow[\log ]{\cong}([0, \infty], \geq,+, 0), \quad|f|=\max \left\{0, \sup \left(\log d\left(f x, f x^{\prime}\right)-\log d\left(x, x^{\prime}\right)\right)\right\}$

### 7.5.3 A more interesting example of a (large) weighted category: Lip

ob Lip $=$ ob Met, $\quad \operatorname{Lip}(X, Y)=\operatorname{Set}(X, Y) ; \quad$ why call this category Lip ??
Recall: $\quad f: X \rightarrow Y$ is $K(\geq 0)$-Lipschitz $\Longleftrightarrow \forall x \neq x^{\prime}: d\left(f x, f x^{\prime}\right) \leq K d\left(x, x^{\prime}\right)$
In particular: $f: X \rightarrow Y$ is a morphism in Met $\Longleftrightarrow f$ is 1-Lipschitz
Question: How far is an arbitrary map $f$ away from being 1-Lipschitz?
Answer: $\quad$ Find the least Lipschitz constant $K \geq 1$ for $f$ (admitting $K=\infty$ )
That is: $\quad \operatorname{Lip}(f)=\max \left\{1, \sup _{x \neq x^{\prime}} \frac{d\left(f x, f x^{\prime}\right)}{d\left(x, x^{\prime}\right)}\right\}$ (assuming temporarily that $X$ be separated)
Then: $\quad \operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \geq \operatorname{Lip}(g \cdot f), \quad 1 \geq \operatorname{Lip}\left(\mathrm{id}_{X}\right)$
No problem:

$$
([1, \infty], \geq, \cdot, 1) \xrightarrow[\log ]{\cong}([0, \infty], \geq,+, 0), \quad|f|=\max \left\{0, \sup _{x, x^{\prime}}\left(\log d\left(f x, f x^{\prime}\right)-\log d\left(x, x^{\prime}\right)\right)\right\}
$$

Then: $\quad|g|+|f| \geq|g \cdot f|, \quad 0 \geq \mid$ id $_{x} \mid, \quad(f$ 1-Lipschitz $\Longleftrightarrow|f|=0)$

### 7.6 On the axiomatics for weighted/normed categories

The category $\mathbb{X}$ is $\mathcal{V}$-weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if
$\mathrm{k} \leq\left|1_{x}\right|$
$|g| \otimes|f| \leq|g \cdot f| \quad \Longleftrightarrow|f| \leq \bigwedge[|g|,|g \cdot f|]$
$\Longleftrightarrow|f|=\bigwedge_{g}[|g|,|g \cdot f|]$
$\Longleftrightarrow|g|=\bigwedge_{f}[|f|,|g \cdot f|]$
The $\mathcal{V}$-weighted category $\mathbb{X}$ is right/left cancellable if


## (right cancellable)

(left cancellable; Kubiś: "norm")

### 7.6 On the axiomatics for weighted/normed categories

The category $\mathbb{X}$ is $\mathcal{V}$-weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if
$\mathrm{k} \leq\left|1_{\mathrm{x}}\right|$
$|g| \otimes|f| \leq|g \cdot f| \quad \Longleftrightarrow|f| \leq \bigwedge_{g}[|g|,|g \cdot f|] \quad \Longleftrightarrow|f|=\bigwedge_{g}[|g|,|g \cdot f|]$
$\Longleftrightarrow|g| \leq \bigwedge_{f}^{g}[|f|,|g \cdot f|] \quad \Longleftrightarrow|g|=\bigwedge_{f}^{g}[|f|,|g \cdot f|]$
The $\mathcal{V}$-weighted category $\mathbb{X}$ is right/left cancellable if
$|f| \otimes|g \cdot f| \leq|g|$
$\Longleftrightarrow|f| \leq \bigwedge[|g \cdot f|,|g|]=:|f|^{R}$

$|g| \otimes|g \cdot f| \leq|f| \quad \Longleftrightarrow|g| \leq \bigwedge[|g \cdot f|,|f|]=:|g|^{\mathrm{L}} \quad$ (left cancellable; Kubiś: "norm")
Facts (Insall-Luckhardt for $\mathcal{V}=[0, \infty]$ ): $\mathbb{X}$ weighted by $|-| \Longrightarrow \mathbb{X}$ weighted by $|-|^{\mathbb{R}}$ and $|-|^{\mathrm{L}}$,
(right cancellable)

### 7.6 On the axiomatics for weighted/normed categories

The category $\mathbb{X}$ is $\mathcal{V}$-weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if
$\mathrm{k} \leq\left|1_{x}\right|$
$\begin{aligned}|g| \otimes|f| \leq|g \cdot f| & \Longleftrightarrow|f| \leq \bigwedge_{g}[|g|,|g \cdot f|] \\ & \Longleftrightarrow|g| \leq \bigwedge_{f}[|f|,|g \cdot f|]\end{aligned} \quad \Longleftrightarrow|f|=\bigwedge_{g}[|g|,|g \cdot f|]$
The $\mathcal{V}$-weighted category $\mathbb{X}$ is right/left cancellable if
$|f| \otimes|g \cdot f| \leq|g| \quad \Longleftrightarrow|f| \leq \bigwedge[|g \cdot f|,|g|]=:|f|^{R} \quad$ (right cancellable)
$|g| \otimes|g \cdot f| \leq|f| \quad \Longleftrightarrow|g| \leq \bigwedge[|g \cdot f|,|f|]=:|g|^{\mathrm{L}} \quad$ (left cancellable; Kubiś: "norm")
Facts (Insall-Luckhardt for $\mathcal{V}=[0, \infty]$ ): $\mathbb{X}$ weighted by $|-| \Longrightarrow \mathbb{X}$ weighted by $|-|^{\mathbb{R}}$ and $|-|^{L}$, and $|f| \leq|f|^{\mathrm{RR}},|f| \leq|f|^{\mathrm{LL}}$.

### 7.7 The underlying ordinary category $\mathbb{X}_{0}$ of a $\mathcal{V}$-weighted category

## Note:

An isomorphism $f$ in $\mathbb{X}$ may not satisfy $\mathrm{k} \leq|f|$, and even when it does, we may not have $\mathrm{k} \leq\left|f^{-1}\right|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal{V}=[0, \infty]$ considered in the literature, morphisms $f$, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt. Question:

What is the "enriched significance" of considering morphisms $f$ with $\mathrm{k} \leq|f|$ ?

```
Answer:
These are precisely the morphisms of the underlying ordinary category }\mp@subsup{\mathbb{X}}{0}{}\mathrm{ of the
(Set//V)-enriched category \mathbb{X}.
```


### 7.7 The underlying ordinary category $\mathbb{X}_{0}$ of a $\mathcal{V}$-weighted category $\mathbb{X}$

Note:
An isomorphism $f$ in $\mathbb{X}$ may not satisfy $\mathrm{k} \leq|f|$, and even when it does, we may not have $\mathrm{k} \leq\left|f^{-1}\right|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal{V}=[0, \infty]$ considered in the literature, morphisms $f$, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:
What is the "enriched significance" of considering morphisms $f$ with $\mathrm{k} \leq|f|$ ?
Answer:
These are precisely the morphisms of the underlying ordinary category $\mathbb{X}_{0}$ of the $($ Set $/ / \mathcal{V})$-enriched category $\mathbb{X}$.

### 7.8.1 $\mathcal{V}$-weighted cats vs. $\mathcal{V}$-metrically enriched cats: syntax prep

Recall: groups $(X,-, 0)$ in subtractive notation:

$$
x-0=x, x-x=0,(x-y)-(z-y)=x-z
$$

Write $\mathcal{V}$-Met for $\mathcal{V}$-Cat sym : " $\mathcal{V}$-metric spaces" $=\mathcal{V}$-categories $X$ with $X(x, y)=X(y, x)$ Form the category $\mathcal{V}$-MetGrp of " $\mathcal{V}$-metric groups"
objects are $\mathcal{V}$-metric spaces $X$ with a group structure that makes distances invariant under translations:

morphisms are $\mathcal{V}$-contractive homomorphisms.
V-He:Grp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp

### 7.8.1 $\mathcal{V}$-weighted cats vs. $\mathcal{V}$-metrically enriched cats: syntax prep

Recall: groups $(X,-, 0)$ in subtractive notation:

$$
x-0=x, x-x=0,(x-y)-(z-y)=x-z
$$

Write $\mathcal{V}$-Met for $\mathcal{V}$-Cat sym : " $\mathcal{V}$-metric spaces" $=\mathcal{V}$-categories $X$ with $X(x, y)=X(y, x)$
Form the category $\mathcal{V}$-MetGrp of " $\mathcal{V}$-metric groups":
objects are $\mathcal{V}$-metric spaces $X$ with a group structure that makes distances invariant under translations:

$$
X(x, y)=X(x-z, y-z) ;
$$

morphisms are $\mathcal{V}$-contractive homomorphisms.
$\mathcal{V}$-MetGrp inherits its symmetric monoidal structure from $\mathcal{V}$-Cat and the cartesian cat Grp.

### 7.8.2 $\mathcal{V}$-metric groups as $\mathcal{V}$-weighted groups

The category $\operatorname{Grp} / / \mathcal{V}$ has as
objects: $\mathcal{V}$-weighted sets $(X,|-|)$ with a group structure such that

$$
\mathrm{k} \leq|0|, \quad|x| \otimes|y| \leq|x-y| ;
$$

morphisms live in both, Set $/ / \mathcal{V}$ and Grp.

## Obtain:

## $\operatorname{Grp} / / \mathcal{V} \longleftrightarrow \cong$ V-MetGrp

### 7.8.2 $\mathcal{V}$-metric groups as $\mathcal{V}$-weighted groups

The category $\operatorname{Grp} / / \mathcal{V}$ has as
objects: $\mathcal{V}$-weighted sets $(X,|-|)$ with a group structure such that

$$
\mathrm{k} \leq|0|, \quad|x| \otimes|y| \leq|x-y| ;
$$

morphisms live in both, Set $/ / \mathcal{V}$ and Grp.
Obtain:

$$
\begin{gathered}
\operatorname{Grp} / / \mathcal{V} \longleftrightarrow \mathcal{V} \text {-MetGrp } \\
X \longmapsto X(x, y)=|x-y| \\
|x|=X(x, 0) \longleftrightarrow X
\end{gathered}
$$

7.9 $\mathcal{V}$-weighted cats vs $\mathcal{V}$-metrically enriched cats vs $\mathcal{V}$-metagories


## $(\operatorname{Grp} / / \mathcal{V})-$ Cat $\longleftarrow \cong(\mathcal{V}$-MetGrp)-Cat

$\nu$-Cat $\stackrel{i}{\longrightarrow}($ Set $/ / \nu)$-Cat $=$ Cat $/ / \nu \quad(\nu$-Met $)$-Cat $>\nu$-Metag


### 7.10.1 Principal references, I

F. W. Lawvere: Metric spaces, generalized logic, and closed categories

Rendiconti del Seminario Matematico e Fisico di Milano 43:135-166, 1973.
Republished in Reprints in Theory and Applications of Categories 1, 2002.
(This paper not only introduces metric spaces as small categories enriched in the extended real half-line, considered as a symmetric monoidal-closed category under addition, but it is also the birthplace of normed categories, introduced as categories enriched in a certain symmetric monoidal category of normed sets.)
D. Hofmann, G.J. Seal, W.T. (eds.): Monoidal Topology-A Categorical Approach to Order, Metric and Topology, Cambridge University Press, 2014.
(This book studies the category $(\mathbb{T}, \mathcal{V})$-Cat, for a Set-monad $\mathbb{T}$ which is assumed to interact with the $\mathcal{V}$-presheaf monad $\mathcal{P}_{\mathcal{V}}$ via a lax distributive law; for $\mathbb{T}$ the identity monad on Set, one obtains the category $\mathcal{V}$-Cat as considered in these lectures.)

### 7.10.2 Principal references, II

- A. Akhvlediani, M.M. Clementino, W. Tholen: On the categorical meaning of Hausdorff and Gromov distances I, Topology and its Applications, 2010
- M.M. Clementino, D. Hofmann, W. Tholen: One setting for all: metric, topology, uniformity, approach structure, Applied Categorical Structures, 2004
- M.M. Clementino, W. Tholen: Metric, topology and multicategory-a common approach, Journal of Pure and Applied Algebra, 2003
- D. Hofmann: Topological theories and closed objects, Advances in Math., 2007
- D. Hofmann, C. Reis: Convergence and quantale-enriched categories, CAGSA, 2018
- A. Joyal, M. Tierney: An extension of the Galois theory of Grothendieck, AMS, 1984
- E. Martinelli: Actions, injectives and injective hulls in quantale-enriched categories, PhD thesis, Universidade de Aveiro, 2021
- I. Stubbe: "Hausdorff distance" via conical cocompletion, Cahiers de Topologie et Géom. Diff. Catégoriques, 2010


### 7.10.3 Selected other references (related to weighted/normed cats)

- A. Aliouche and C. Simpson: Fixed points and lines in 2-metric spaces, Advances in Mathematics, 2012
- P. Bubenik, V. de Silva, J. Scott: Interleaving and Gromov-Hausdorff distance, arXiv, 2017
- M. Grandis: Directed Algebraic Topology, Cambridge University Press, 2009
- M. Insall, D. Luckhardt: Norms on categories and analogs of the Schröder-Bernstein Theorem, arXiv, 2021
- W. Kubiś: Categories with norms, arXiv, 2018
- A. Neeman: Metrics on triangulated categories, arXiv, 2019.
- P. Perrone: Lifting couples in Wasserstein spaces, arXiv, 2021
- W. Tholen: Remarks on weighted categories and the non-symmetric Pompeiu-Hausdorff-Gromov metric, Talk at CT 2018 (Ponta Delgada)
- W. Tholen, J. Wang: Metagories, Topology and its Applications, 2020


[^0]:    $\mathcal{V}$-Dist is symmetric monoidal:

