From Metric Spaces to Quantale-Enriched Categories

Walter Tholen

York University, Toronto, Canada

Topology, Algebra, and Categories in Logic

Summer School at Praia de Mira, Portugal

13-18 June 2022

Embrace (enriched) category theory as a guide for analytic inquiry

- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (*Monoidal Topology*),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (*Monoidal Topology*),
 normed/weighted categories, metrically enriched categories, metagories, etc.

3

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (*Monoidal Topology*),
 normed/weighted categories, metrically enriched categories, metagories, *etc*.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (*Monoidal Topology*),

normed/weighted categories, metrically enriched categories, metagories, etc.

3

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

3

• • = •

- 1 Metrics: from Frechét via Hausdorff to Lawvere
- 2 Quantales and the (small) categories enriched in them
- 3 Distributors and the presheaf monad
- 4 Weighted colimits, tensors, conical infima
- 5 Pseudo-algebras of the presheaf monad, injectivity
- 6 Cauchy- and Lawvere-completeness
- 7 A glance at normed/weighted categories

1.1 Fréchet 1906

A Frechét metric $d : X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

0-Self 0 = d(x, x)

Sep
$$d(x, y) = 0 = d(y, x) \Longrightarrow x = y$$

Sym d(x, y) = d(y, x)

- abla-Inq $d(x,y) + d(y,z) \ge d(x,z)$
- Necessarily then:
- Pos $d(x, y) \ge 0$

Possible strengthenings:

Bdd $1 \ge d(x, y)$ (bounded metric)

Ult $\max\{(d(x, y), d(y, z)\} \ge d(x, z) \text{ (ultrametric)}$

Met_{Frechét} : morph's $f : X \to Y$ satisfy $d_X(x, x') \ge d_Y(fx, fx')$; write $X(x, x') \ge Y(fx, fx')$.

1.1 Fréchet 1906

A Frechét metric $d : X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

0-Self 0 = d(x, x)

Sep
$$d(x, y) = 0 = d(y, x) \Longrightarrow x = y$$

- Sym d(x, y) = d(y, x)
- abla-Inq $d(x,y) + d(y,z) \ge d(x,z)$
 - Necessarily then:
 - Pos $d(x, y) \ge 0$
 - Possible strengthenings:
 - Bdd $1 \ge d(x, y)$ (bounded metric)
 - Ult $\max\{(d(x, y), d(y, z)\} \ge d(x, z) \text{ (ultrametric)}$

Met_{Frechét} : morph's $f : X \to Y$ satisfy $d_X(x, x') \ge d_Y(fx, fx')$; write $X(x, x') \ge Y(fx, fx')$.

1.1 Fréchet 1906

A Frechét metric $d : X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

0-Self 0 = d(x, x)

Sep
$$d(x, y) = 0 = d(y, x) \Longrightarrow x = y$$

Sym d(x, y) = d(y, x)

$$abla$$
-Inq $d(x,y) + d(y,z) \ge d(x,z)$

Necessarily then:

Pos
$$d(x, y) \ge 0$$

Possible strengthenings:

Bdd $1 \ge d(x, y)$ (bounded metric)

Ult $\max\{(d(x, y), d(y, z)\} \ge d(x, z) \text{ (ultrametric)}$

Met_{Frechét} : morph's $f : X \to Y$ satisfy $d_X(x, x') \ge d_Y(fx, fx')$; write $X(x, x') \ge Y(fx, fx')$.

1.2 Some shortcomings of Met_{Fréchet}, Hausdorff's 1914 observations

• Finitely complete, but countable products (even of 2-point spaces) may not exist.

- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

... but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, *etc*.

1.2 Some shortcomings of Met_{Fréchet}, Hausdorff's 1914 observations

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.

The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

... but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, *etc*.

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.

• The (non-symmetrized) Hausdorff distance

 $d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

... but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, *etc*.

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

 $d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

... but this remains true even when the given distance function on X satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, *etc*.

3

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

... but this remains true even when the given distance function on *X* satisfies just these two conditions! Likewise for bounded metrics, ultrametrics, *etc*.

3

• • = •

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

0-Self-distances: ∇-Inequality: Symmetry: Separation: Finiteness: $\begin{array}{ll} 0 \ge d(x,x) & 1 \rightarrow X(x,x) \\ d(x,y) + d(y,z) \ge d(y,z) & X(x,y) \times X(y,z) \rightarrow X(x,z) \\ d(x,y) = d(y,x) & X(x,y) \cong X(y,x) \\ d(x,y) = 0 = d(y,x) \Longrightarrow x = y & X(x,y) \cong 1 \cong X(y,x) \Longrightarrow x = y \\ \infty > d(x,y) & \emptyset \neq X(x,y) \end{array}$

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction: $d_X(x,x') \ge d_Y(fx,fx')$ $X(x,x') \to Y(fx,fx')$

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction: $d_X(x, x') \ge d_Y(fx, fx')$ $X(x, x') \rightarrow Y(fx, fx')$

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction: $d_X(x,x') \ge d_Y(fx,fx')$ $X(x,x') \to Y(fx,fx')$

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction: $d_X(x,x') \ge d_Y(fx,fx')$ $X(x,x') \to Y(fx,fx')$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x=x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x=x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x=x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max{X(x, x'), X(x', x)}$

• Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max{X(x, x'), X(x', x)}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max{X(x, x'), X(x', x)}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let $X/\simeq ([x], [y]) = X(x, y)$

- $(f_i : X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- X ⊗ Y((x, y), (x', y')) = X(x, x') + Y(y, y') makes Met symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max{X(x, x'), X(x', x)}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x, y) = 0 = X(y, x))$, let

$$X/\simeq ([x],[y])=X(x,y)$$

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (**Sup**, \boxtimes , 2); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- (\mathcal{V},\otimes,k) is a commutative monoid;
- $-\otimes v: \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 \mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs [v, w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

Some useful rules:

 $u \leq [u, u], \ [u, v] \otimes u \leq v, \ [k, v] = v, \ [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$

$$\left[\bigvee_{i\in I} u_i, v\right] = \bigwedge_{i\in I} [u_i, v], \quad [u, \bigwedge_{i\in I} v_i] = \bigwedge_{i\in I} [u, v_i].$$

化白豆 化间面 化医原油 医原门 医

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (**Sup**, \boxtimes , 2); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, k)$ is a commutative monoid;
- $\otimes v : \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 $\mathcal V$ is a "thin" symmetric monoidal-closed category, with internal homs [v, w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

Some useful rules:

 $x \leq [u, u], \ [u, v] \otimes u \leq v, \ [k, v] = v, \ [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$

$$[\bigvee_{i\in I} u_i, v] = \bigwedge_{i\in I} [u_i, v], \quad [u, \bigwedge_{i\in I} v_i] = \bigwedge_{i\in I} [u, v_i].$$

化白豆 化硼医化 医医胆管医胆管

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (**Sup**, \boxtimes , 2); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, k)$ is a commutative monoid;
- $\otimes v : \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 \mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs [v, w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

Some useful rules:

 $x \leq [u, u], \ [u, v] \otimes u \leq v, \ [k, v] = v, \ [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$

$$\left[\bigvee_{i\in I} u_i, v\right] = \bigwedge_{i\in I} [u_i, v], \quad \left[u, \bigwedge_{i\in I} v_i\right] = \bigwedge_{i\in I} [u, v_i].$$

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in (**Sup**, \boxtimes , 2); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, k)$ is a commutative monoid;
- $\otimes v : \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 \mathcal{V} is a "thin" symmetric monoidal-closed category, with internal homs [v, w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

Some useful rules:

$$x \leq [u, u], [u, v] \otimes u \leq v, [k, v] = v, [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$$

$$[\bigvee_{i\in I} u_i, v] = \bigwedge_{i\in I} [u_i, v], \quad [u, \bigwedge_{i\in I} v_i] = \bigwedge_{i\in I} [u, v_i].$$

イロト 不得下 イラト イラト・ラー

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad k_{\mathcal{W}} \leq \varphi(k_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

• 1 is the terminal quantale $(k = \bot)$

• 2 = ({ \perp , \top }, \leq , \land , \top) is the initial quantale; more generally: (\mathcal{PS} , \subseteq , \cap , S) (S any set)

- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq , \wedge , op)
- the Lawvere quantale $[0,\infty]_+ \cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0) \cong ([0,1],\leq,\times,1)$
- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty],\geq,max,0) \cong ([0,1],\leq,min,1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

化白豆 化硼医化 医医胆管医胆管

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

• 1 is the terminal quantale $(k = \bot)$

2 = ({⊥, ⊤}, ≤, ∧, ⊤) is the initial quantale; more generally: (PS, ⊆, ∩, S) (S any set)
even more generally: any locale (frame) L is a "cartesian" quantale (L, ≤, ∧, ⊤)

• the Lawvere quantale $[0,\infty]_+ \cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0) \cong ([0,1],\leq,\times,1)$

- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty],\geq,max,0) \cong ([0,1],\leq,min,1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

• 1 is the terminal quantale $(k = \bot)$

• 2 = ({ \perp, \top }, \leq , \land , \top) is the initial quantale; more generally: (\mathcal{PS} , \subseteq , \cap , S) (S any set)

• even more generally: any locale (frame) *L* is a "cartesian" quantale (L, \leq, \land, \top)

• the Lawvere quantale $[0,\infty]_+ \cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0) \cong ([0,1],\leq,\times,1)$

- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty],\geq,max,0) \cong ([0,1],\leq,min,1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

化白色 化塑色 化医医化医医二 医二

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale ($k = \bot$)
- 2 = ({ \perp, \top }, \leq , \land , \top) is the initial quantale; more generally: (\mathcal{PS} , \subseteq , \cap , S) (S any set)
- even more generally: any locale (frame) *L* is a "cartesian" quantale (L, \leq, \land, \top)
- the Lawvere quantale $[0,\infty]_+ \cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0) \cong ([0,1],\leq,\times,1)$
- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty], \ge, max, 0) \cong ([0,1], \le, min, 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

・ロト (周) (王) (王) (王)

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale ($k = \bot$)
- 2 = ({ \perp, \top }, \leq , \land, \top) is the initial quantale; more generally: ($\mathcal{PS}, \subseteq, \cap, S$) (S any set)
- even more generally: any locale (frame) *L* is a "cartesian" quantale (L, \leq, \land, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty], \ge, max, 0) \cong ([0,1], \le, min, 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

・ロト (周) (王) (王) (王)

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale ($k = \bot$)
- 2 = ({ \perp, \top }, \leq , \land , \top) is the initial quantale; more generally: (\mathcal{PS} , \subseteq , \cap , S) (S any set)
- even more generally: any locale (frame) *L* is a "cartesian" quantale (L, \leq, \land, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty], \ge, max, 0) \cong ([0,1], \le, min, 1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I} \varphi u_i \leq \varphi(\bigvee_{i\in I} u_i), \quad \varphi u \otimes_{\mathcal{W}} \varphi v \leq \varphi(u \otimes_{\mathcal{V}} v), \quad \mathbf{k}_{\mathcal{W}} \leq \varphi(\mathbf{k}_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale ($k = \bot$)
- 2 = ({ \perp, \top }, \leq , \land , \top) is the initial quantale; more generally: (\mathcal{PS} , \subseteq , \cap , S) (S any set)
- even more generally: any locale (frame) *L* is a "cartesian" quantale (L, \leq, \land, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_{\times}$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- and its "ultra" version $[0,\infty]_{max} \cong [0,1]_{min}$: $([0,\infty],\geq,max,0) \cong ([0,1],\leq,min,1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1], \ge, \oplus, 0) \cong ([0,1], \le, \odot, 1)$ with $u \oplus v = \min\{u + v, 1\}$ and $u \odot v = \max\{u + v - 1, 0\}$

・ロト (周) (王) (王) (王)

• the free quantale ($\mathcal{P}M, \subseteq, *, \{\eta\}$) over a commutative monoid ($M, *, \eta$)

the quantale (DV, ⊆, ⊗↓,↓k) of down(-closed) sets of a quantale (V, ⊗, k)
the quantale Δ_& = (Δ, ≤, &, κ) of distance distribution functions, with

$$\Delta = \{ \varphi \colon [0,\infty] \to [0,1] \mid \forall \alpha \in [0,\infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0, 1], *i.e.* any operation that makes $([0, 1], \leq, \&, 1)$ a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \xrightarrow{\sigma_+} \Delta_{\&} \xleftarrow{\tau_{\&}} [0,1]_{\&}$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

• the free quantale ($\mathcal{P}M$, \subseteq , *, { η }) over a commutative monoid (M, *, η)

• the quantale $(\mathcal{DV},\subseteq,\otimes_{\downarrow},\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)

• the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [0,\infty] \to [0,1] \mid \forall \alpha \in [0,\infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0, 1], *i.e.* any operation that makes $([0, 1], \leq, \&, 1)$ a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \xrightarrow{\sigma_+} \Delta_{\&} \xleftarrow{\tau_{\&}} [0,1]_{\&}$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale ($\mathcal{P}M, \subseteq, *, \{\eta\}$) over a commutative monoid ($M, *, \eta$)
- the quantale $(\mathcal{DV},\subseteq,\otimes_{\downarrow},\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [\mathbf{0}, \infty] \to [\mathbf{0}, \mathbf{1}] \mid \forall \alpha \in [\mathbf{0}, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0, 1], *i.e.* any operation that makes ([0, 1], \leq , &, 1) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \xrightarrow{\sigma_+} \Delta_{\&} \xleftarrow{\tau_{\&}} [0,1]_{\&}$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale ($\mathcal{P}M, \subseteq, *, \{\eta\}$) over a commutative monoid ($M, *, \eta$)
- the quantale $(\mathcal{DV},\subseteq,\otimes_{\downarrow},\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [\mathbf{0}, \infty] \to [\mathbf{0}, \mathbf{1}] \mid \forall \alpha \in [\mathbf{0}, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0, 1], *i.e.* any operation that makes ([0, 1], \leq , &, 1) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{lpha+eta<\gamma} \varphi(lpha) \& \psi(eta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \xrightarrow{\sigma_+} \Delta_\& \xleftarrow{\tau_\&} [0,1]_\&$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale ($\mathcal{P}M, \subseteq, *, \{\eta\}$) over a commutative monoid ($M, *, \eta$)
- the quantale $(\mathcal{DV},\subseteq,\otimes_{\downarrow},\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [\mathbf{0}, \infty] \to [\mathbf{0}, \mathbf{1}] \mid \forall \alpha \in [\mathbf{0}, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},\$$

for any "t-norm" & on [0, 1], *i.e.* any operation that makes ([0, 1], \leq , &, 1) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[\mathbf{0},\infty]_+ \xrightarrow{\sigma_+} \Delta_{\&} \xleftarrow{\tau_{\&}} [\mathbf{0},\mathbf{1}]_{\&}$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_+(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

$$X \xrightarrow{r} Y \qquad \Longleftrightarrow \qquad X \times Y \xrightarrow{r} \mathcal{V} \qquad \Longleftrightarrow \qquad r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set $\longrightarrow \mathcal{V}$ -**Rel**, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_o} Y)$ $f_o(x, y) = k$ if fx = y, $= \bot$ else \mathcal{V} -**Rel** is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations. \mathcal{V} -**Rel** has the involution $r^o(y, x) = r(x, y)$; put $f^o = (f_o)^o$; then $f_o \dashv f^o$ ("maps are maps" \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z \qquad (h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gW, hZ), \quad z \to z \to z$

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

 $\textbf{Set} \longrightarrow \mathcal{V}\textbf{-}\textbf{Rel}, \qquad (X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y) \qquad f_{\circ}(x,y) = k \text{ if } fx = y, \ = \bot \text{ else}$

V-**Rel** is a 2-category with 2-cells given by the pointwise order of V-relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z \qquad (h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gW, hZ)$.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

 $\mathsf{Set} \longrightarrow \mathcal{V}\text{-}\mathsf{Rel}, \qquad (X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_\circ} Y) \qquad f_\circ(x, y) = k \text{ if } fx = y, \ = \bot \text{ else}$

\mathcal{V} -Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$ $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz)$.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set $\longrightarrow \mathcal{V}$ -Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y)$ $f_{\circ}(x, y) = k$ if $fx = y, = \bot$ else

 \mathcal{V} -Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")

V-**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z \qquad (h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz)$.

$$X \xrightarrow{r} Y \qquad \Longleftrightarrow \qquad X \times Y \xrightarrow{r} \mathcal{V} \qquad \Longleftrightarrow \qquad r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

 $\mathsf{Set} \longrightarrow \mathcal{V}\text{-}\mathsf{Rel}, \qquad (X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_\circ} Y) \qquad f_\circ(x, y) = k \text{ if } fx = y, \ = \bot \text{ else}$

 \mathcal{V} -Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

Walter Tholen (York University)

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$ $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz)$

$$X \xrightarrow{r} Y \qquad \Longleftrightarrow \qquad X \times Y \xrightarrow{r} \mathcal{V} \qquad \Longleftrightarrow \qquad r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

 $\mathsf{Set} \longrightarrow \mathcal{V}\text{-}\mathsf{Rel}, \qquad (X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_\circ} Y) \qquad f_\circ(x, y) = k \text{ if } fx = y, \ = \bot \text{ else}$

 \mathcal{V} -Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $\nu \longmapsto (1 \xrightarrow{\nu} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$ $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gW, hZ)$

$$X \xrightarrow{r} Y \qquad \Longleftrightarrow \qquad X \times Y \xrightarrow{r} \mathcal{V} \qquad \Longleftrightarrow \qquad r = (r(x, y))_{x \in X, y \in Y}$$
$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set $\longrightarrow \mathcal{V}$ -Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y)$ $f_{\circ}(x, y) = k$ if $fx = y, = \bot$ else

 \mathcal{V} -Rel is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $\mathcal{V} \longrightarrow \mathcal{V}$ -**Rel**, $\nu \longmapsto (1 \xrightarrow{\nu} 1)$ is a homomorphism of quantaloids.

Useful rule: $W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$ $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz).$

2.4 Extensions and liftings of \mathcal{V} -relations

Consider $X \xrightarrow{r} Y$. $Y \xrightarrow{s} Z$. $X \xrightarrow{t} Z$. Obtain:

$$s \leq [r, t] \iff s \cdot r \leq t \iff r \leq]s, t[$$

Walter Tholen (York University)

2.4 Extensions and liftings of V-relations

Consider $X \xrightarrow{r} Y$, $Y \xrightarrow{s} Z$, $X \xrightarrow{t} Z$. Obtain:

$$\mathcal{V}\text{-}\mathsf{Rel}(Y,Z) \underbrace{\perp}_{[r,-]} \mathcal{V}\text{-}\mathsf{Rel}(X,Z) \qquad \mathcal{V}\text{-}\mathsf{Rel}(X,Y) \underbrace{\perp}_{]s,-[} \mathcal{V}\text{-}\mathsf{Rel}(X,Z)$$

$$s \leq [r,t] \iff s \cdot r \leq t \iff r \leq]s,t[$$
"extension of t along r"
$$Z \qquad Y \stackrel{s}{\longrightarrow} Z \qquad \text{"lifting of t along s"}$$

$$[r,t](y,z) = \bigwedge_{x \in X} [r(x,y), t(x,z)] \qquad]s,t[(x,y) = \bigwedge_{z \in Z} [s(y,z), t(x,z)]$$

Walter Tholen (York University)

 $\begin{array}{ll} (X,a) \in \mathcal{V}\text{-}\mathsf{Cat} & \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-}\mathsf{Rel}(X,X),\leq,\cdot,1_X^\circ) \\ & \iff 1_X^\circ\leq a, \qquad a\cdot a\leq a \\ & \iff k\leq a(x,x), \quad a(x,y)\otimes a(y,z)\leq a(x,z) \\ & X\in\mathcal{V}\text{-}\mathsf{Cat} & \iff k\leq X(x,x), \quad X(x,y)\otimes X(y,z)\leq X(x,z) \end{array}$

 $\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\mathbf{Cat} & \iff X(x, x') \leq Y(fx, fx') \\ f: (X, a) \to (Y, b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$

Some prominent objects in *V*-**Cat**:

$$\emptyset$$
, 1 = ({*}, \top), E = ({*}, k), $\mathcal{V} = (\mathcal{V}, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

 $\begin{array}{ll} \varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} & \Longrightarrow B_{\varphi}: \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}, & (X, a) \mapsto (X, \varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p: \mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Ord} \text{ with } (x \leq y \iff k \leq X(x, y)) \end{array}$

- $\begin{array}{ll} (X,a) \in \mathcal{V}\text{-}\mathsf{Cat} & \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-}\mathsf{Rel}(X,X),\leq,\cdot,1_X^\circ) \\ & \iff 1_X^\circ\leq a, \qquad a\cdot a\leq a \\ & \iff k\leq a(x,x), \quad a(x,y)\otimes a(y,z)\leq a(x,z) \\ & X\in\mathcal{V}\text{-}\mathsf{Cat} & \iff k\leq X(x,x), \quad X(x,y)\otimes X(y,z)\leq X(x,z) \end{array}$
- $\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\mathbf{Cat} & \iff X(x, x') \leq Y(fx, fx') \\ f: (X, a) \to (Y, b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$

Some prominent objects in V-Cat:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $\mathcal{V} = (\mathcal{V}, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

 $\begin{array}{ll} \varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} & \Longrightarrow B_{\varphi}: \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}, & (X, a) \mapsto (X, \varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p: \mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Ord} \text{ with } (x \leq y \iff k \leq X(x, y)) \end{array}$

- $\begin{array}{ll} (X,a) \in \mathcal{V}\text{-}\mathsf{Cat} & \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-}\mathsf{Rel}(X,X),\leq,\cdot,1_X^\circ) \\ & \iff 1_X^\circ\leq a, \qquad a\cdot a\leq a \\ & \iff k\leq a(x,x), \quad a(x,y)\otimes a(y,z)\leq a(x,z) \\ & X\in\mathcal{V}\text{-}\mathsf{Cat} & \iff k\leq X(x,x), \quad X(x,y)\otimes X(y,z)\leq X(x,z) \end{array}$
- $\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\mathbf{Cat} & \iff X(x, x') \leq Y(fx, fx') \\ f: (X, a) \to (Y, b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$

Some prominent objects in V-Cat:

$$\emptyset$$
, 1 = ({*}, \top), E = ({*}, k), $\mathcal{V} = (\mathcal{V}, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

 $\begin{array}{ll} \varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} & \Longrightarrow B_{\varphi}: \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}, & (X, a) \mapsto (X, \varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p: \mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Ord} \text{ with } (x \leq y \iff k \leq X(x, y)) \end{array}$

- $\begin{array}{ll} (X,a) \in \mathcal{V}\text{-}\mathsf{Cat} & \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-}\mathsf{Rel}(X,X),\leq,\cdot,1_X^\circ) \\ & \iff 1_X^\circ\leq a, \qquad a\cdot a\leq a \\ & \iff k\leq a(x,x), \quad a(x,y)\otimes a(y,z)\leq a(x,z) \\ & X\in\mathcal{V}\text{-}\mathsf{Cat} & \iff k\leq X(x,x), \quad X(x,y)\otimes X(y,z)\leq X(x,z) \end{array}$
- $\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\mathbf{Cat} & \iff X(x, x') \leq Y(fx, fx') \\ f: (X, a) \to (Y, b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$

Some prominent objects in \mathcal{V} -**Cat**:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $\mathcal{V} = (\mathcal{V}, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

 $\begin{array}{ll} \varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} & \Longrightarrow B_{\varphi}: \mathcal{V}\text{-}\mathsf{Cat} \to \mathcal{W}\text{-}\mathsf{Cat}, & (X, a) \mapsto (X, \varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p: \mathcal{V}\text{-}\mathsf{Cat} \to \mathsf{Ord} \text{ with } (x \leq y \iff k \leq X(x, y)) \end{array}$

- $\begin{array}{ll} (X,a) \in \mathcal{V}\text{-}\mathsf{Cat} & \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-}\mathsf{Rel}(X,X),\leq,\cdot,1_X^\circ) \\ & \iff 1_X^\circ\leq a, \qquad a\cdot a\leq a \\ & \iff k\leq a(x,x), \quad a(x,y)\otimes a(y,z)\leq a(x,z) \\ & X\in\mathcal{V}\text{-}\mathsf{Cat} & \iff k\leq X(x,x), \quad X(x,y)\otimes X(y,z)\leq X(x,z) \end{array}$
- $\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\mathbf{Cat} & \iff X(x, x') \leq Y(fx, fx') \\ f: (X, a) \to (Y, b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$

Some prominent objects in \mathcal{V} -**Cat**:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $\mathcal{V} = (\mathcal{V}, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

 $\begin{array}{ll} \varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} & \Longrightarrow B_{\varphi} \colon \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}, & (X,a) \mapsto (X,\varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p : \mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Ord} \text{ with } (x \leq y \iff k \leq X(x,y)) \end{array}$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \xrightarrow{} [0, \infty]_+ \xrightarrow{} \Delta_{\times}) \implies \qquad (\mathsf{Ord} \xrightarrow{} \mathsf{Met} \xrightarrow{} \mathsf{ProbMet})$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-Cat = Ord: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \xrightarrow{} [0, \infty]_+ \xrightarrow{} \Delta_{\times}) \qquad \Longrightarrow \qquad (\mathbf{Ord} \xrightarrow{} \mathbf{Met} \xrightarrow{} \mathbf{ProbMet})$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-Cat = Ord: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \xrightarrow{} [0, \infty]_+ \xrightarrow{} \Delta_{\times}) \implies \qquad (\mathsf{Ord} \xrightarrow{} \mathsf{Met} \xrightarrow{} \mathsf{ProbMet})$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_\oplus$ -Cat = BMet \cong $[0,1]_\odot$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \rightarrowtail [0,\infty]_+ \rightarrowtail \Delta_{\times}) \implies \qquad (\mathsf{Ord} \rightarrowtail \mathsf{Met} \rightarrowtail \mathsf{ProbMet})$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \rightarrowtail [0,\infty]_+ \rightarrowtail \Delta_{\times}) \implies \qquad (\mathsf{Ord} \rightarrowtail \mathsf{Met} \rightarrowtail \mathsf{ProbMet})$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

 $(2 \longrightarrow [0, \infty]_{+} \longrightarrow \Delta_{\times}) \implies (Ord \longrightarrow Met \longrightarrow ProbMet)$ $\mathcal{P}(M, *, \eta)\text{-Cat} \ni (X, (\leq_{\alpha})_{\alpha \in M}) \text{ with } x \leq_{\eta} x, \quad (x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 \hspace{-1.5cm} \longrightarrow \hspace{-1.5cm} [0,\infty]_+ \hspace{-1.5cm} \longrightarrow \hspace{-1.5cm} \Delta_{\times}) \hspace{1.5cm} \Longrightarrow \hspace{1.5cm} (\text{Ord} \hspace{-1.5cm} \longrightarrow \hspace{-1.5cm} \text{Met} \hspace{-1.5cm} \longrightarrow \hspace{-1.5cm} \text{ProbMet})$$

 $\mathcal{P}(M, *, \eta)$ -Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

2-**Cat** = **Ord**: preordered sets and monotone maps

 $[0,\infty]_+$ -Cat = Met $\cong [0,1]_{\times}$ -Cat = ProbOrd: probabilistic (pre)ordered sets

 $[0,\infty]_{max}$ -Cat = UMet $\cong [0,1]_{min}$ -Cat: (Lawvere) ultrametric spaces

 $[0,1]_{\oplus}$ -Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -**Cat** = **ProbMet** probabilistic (Lawvere) metric spaces $(X, p : X \times X \rightarrow \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 \longrightarrow [0,\infty]_+ \longrightarrow \Delta_{\times}) \implies (Ord \longrightarrow Met \longrightarrow ProbMet)$$

 $\mathcal{P}(M,*,\eta)\text{-}\mathsf{Cat} \ \ni (X,(\leq_{\alpha})_{\alpha\in M}) \quad \text{with} \quad x\leq_{\eta} x, \quad (x\leq_{\alpha} y \And y\leq_{\beta} z \Longrightarrow x\leq_{\alpha*\beta} z)$

 \mathcal{V} -**Cat**_X = (O: \mathcal{V} -**Cat** \rightarrow **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_{X}$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \geq r$: $\overline{r} = \bigvee_{n \geq 0} r^{n}$. O: \mathcal{V} -**Cat** \rightarrow **Set** is a bifibration with complete fibres and, hence, a topological functor. $(f_{i} : (X, a) \rightarrow (Y_{i}, b_{i}))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_{i}^{\circ} \cdot b_{i} \cdot (f_{i})_{\circ}$ $(f_{i} : (X_{i}, a_{i}) \rightarrow (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_{i})_{\circ} \cdot a_{i} \cdot f_{i}^{\circ}}$ Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

 \mathcal{V} -**Cat**_X = (O: \mathcal{V} -**Cat** \rightarrow **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_X$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \ge r$: $\overline{r} = \bigvee_{n \ge 0} r^n$.

O: \mathcal{V} -**Cat** → **Set** is a bifibration with complete fibres and, hence, a topological functor $(f_i : (X, a) \to (Y_i, b_i))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^\circ \cdot b_i \cdot (f_i)_\circ$ $(f_i : (X_i, a_i) \to (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_\circ \cdot a_i \cdot f_i^\circ}$ Consequently:

 $\mathcal{V}\text{-}\textbf{Cat}$ is complete and cocomplete and O has both adjoints.

 \mathcal{V} -**Cat**_X = (O: \mathcal{V} -**Cat** \rightarrow **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_X$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \ge r$: $\overline{r} = \bigvee_{n \ge 0} r^n$.

O: \mathcal{V} -**Cat** → **Set** is a bifibration with complete fibres and, hence, a topological functor. $(f_i : (X, a) \to (Y_i, b_i))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^\circ \cdot b_i \cdot (f_i)_\circ$ $(f_i : (X_i, a_i) \to (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_\circ \cdot a_i \cdot f_i^\circ}$ Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

 \mathcal{V} -**Cat**_X = (O: \mathcal{V} -**Cat** \rightarrow **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_X$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \ge r$: $\overline{r} = \bigvee_{n \ge 0} r^n$.

 $\mathbf{O} \colon \mathcal{V}\text{-}\textbf{Cat} \to \textbf{Set}$ is a bifibration with complete fibres and, hence, a topological functor.

 $(f_i : (X, a) \to (Y_i, b_i))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^{\circ} \cdot b_i \cdot (f_i)_{\circ}$

 $(f_i : (X_i, a_i) \to (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$ Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

 \mathcal{V} -**Cat**_X = $(O: \mathcal{V}$ -**Cat** \to **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_X$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \ge r$: $\overline{r} = \bigvee_{n \ge 0} r^n$. $O: \mathcal{V}$ -**Cat** \to **Set** is a bifibration with complete fibres and, hence, a topological functor. $(f_i: (X, a) \to (Y_i, b_i))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^{\circ} \cdot b_i \cdot (f_i)_{\circ}$ $(f_i: (X_i, a_i) \to (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$ Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2.7 V-Cat as a concrete category over Set

 \mathcal{V} -**Cat**_X = $(O: \mathcal{V}$ -**Cat** \rightarrow **Set**)⁻¹X is a complete lattice, with \bigwedge as in \mathcal{V} -**Rel**(X, X), $\bot = 1^{\circ}_X$ Every $r \in \mathcal{V}$ -**Rel**(X, X) has a \mathcal{V} -**Cat**_X-hull $\overline{r} \ge r$: $\overline{r} = \bigvee_{n \ge 0} r^n$. $O: \mathcal{V}$ -**Cat** \rightarrow **Set** is a bifibration with complete fibres and, hence, a topological functor. $(f_i: (X, a) \rightarrow (Y_i, b_i))_{i \in I}$ initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^{\circ} \cdot b_i \cdot (f_i)_{\circ}$ $(f_i: (X_i, a_i) \rightarrow (Y, b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$ Consequently:

 $\mathcal{V}\text{-}\textbf{Cat}$ is complete and cocomplete and O has both adjoints.

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_x : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{x \in X}$ and put the initial structure on $[X, Y] := \mathcal{V}$ -Cat(X, Y): $[X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$ $= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$

The induced (pre)order on [X, Y] is

 $f \leq g \iff \forall x \in X : \mathbf{k} \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$

With its 2-cells given by \leq , \mathcal{V} -**Cat** is thus a 2-category.

Adjunction in V-Cat:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \quad \iff \quad X(x, gy) = Y(fx, y) \quad \iff \quad g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

▶ ▲ 王 ▶ 王 • 의 Q (?)

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_x : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{x \in X}$ and put the initial structure on $[X, Y] := \mathcal{V}$ -Cat(X, Y): $[X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$ $= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , \mathcal{V} -**Cat** is thus a 2-category.

Adjunction in V-Cat:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \quad \iff \quad X(x, gy) = Y(fx, y) \quad \iff \quad g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

▶ ▲ 王 ▶ 王 • 의 Q (?)

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_x : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{x \in X}$ and put the initial structure on $[X, Y] := \mathcal{V}$ -Cat(X, Y): $[X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$ $= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , V-**Cat** is thus a 2-category.

Adjunction in \mathcal{V} -**Cat**:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

▶ ▲ 王 ▶ 王 • 의 Q (?)

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_x : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{x \in X}$ and put the initial structure on $[X, Y] := \mathcal{V}$ -Cat(X, Y): $[X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$ $= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , \mathcal{V} -**Cat** is thus a 2-category.

Adjunction in V-**Cat**:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

A E A E AQA

2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

$$X \otimes Y((x, y), (x', y')) = X(x, x') \otimes Y(y, y'), \quad E(*, *) = k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

Yoneda \mathcal{V} -functor:

$$\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}], \mathbf{y} \longmapsto X(-, \mathbf{y}), \quad \mathbf{y}_X^{\sharp}: X \longrightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}, \mathbf{x} \longmapsto X(\mathbf{x}, -)$$

Yoneda Lemma:

$$\mathcal{P}_{\mathcal{V}}X(\mathbf{y}_{X}y,\sigma) = \sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}X(\tau,\mathbf{y}_{X}^{\sharp}x) = \tau x$$

イロト イポト イヨト イヨト

2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

$$X \otimes Y((x, y), (x', y')) = X(x, x') \otimes Y(y, y'), \quad E(*, *) = k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

Yoneda \mathcal{V} -functor:

$$\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}], \mathbf{y} \longmapsto X(-, \mathbf{y}), \quad \mathbf{y}_X^{\sharp}: X \longrightarrow \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}, \mathbf{x} \longmapsto X(\mathbf{x}, -)$$

Yoneda Lemma:

$$\mathcal{P}_{\mathcal{V}}X(\mathbf{y}_Xy,\sigma) = \sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}X(\tau,\mathbf{y}_X^{\sharp}x) = \tau x$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

$$X \otimes Y((x, y), (x', y')) = X(x, x') \otimes Y(y, y'), \quad E(*, *) = k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

Yoneda \mathcal{V} -functor:

$$\mathbf{y}_X: X \longrightarrow \mathcal{P}_\mathcal{V} X = [X^{\mathrm{op}}, \mathcal{V}], \mathbf{y} \longmapsto X(-, \mathbf{y}), \quad \mathbf{y}_X^\sharp: X \longrightarrow \mathcal{P}_\mathcal{V}^\sharp X = [X, \mathcal{V}]^{\mathrm{op}}, \mathbf{x} \longmapsto X(\mathbf{x}, -)$$

Yoneda Lemma:

$$\mathcal{P}_{\mathcal{V}} X(\mathbf{y}_X y, \sigma) = \sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp} X(\tau, \mathbf{y}_X^{\sharp} x) = \tau x$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces. Generally:

$$(X, a) \xrightarrow{\rho} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\operatorname{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\operatorname{op}} \otimes Y \to \mathcal{V} \quad \text{is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge, \bigvee formed in \mathcal{V} -**Rel**.

 \mathcal{V} -Dist: objects are \mathcal{V} -categories X = (X, a); identity distributor on X: $1_X^* = (X \longrightarrow X)$

V-**Dist** is **Sup**-enriched (a quantaloid) AND also (V-**Cat**)-enriched:

 \mathcal{V} -Dist $(X, Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}$ -Dist $(X, Y) \otimes \mathcal{V}$ -Dist $(Y, Z) \longrightarrow \mathcal{V}$ -Dist(X, Z)

Walter Tholen (York University)

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces. Generally:

$$(X, a) \xrightarrow{\rho} (Y, b) \iff b \cdot \rho \cdot a \le \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \le \rho(x', y')$$

$$\iff X^{\operatorname{op}}(x, x') \otimes Y(y, y') \le [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\operatorname{op}} \otimes Y \to \mathcal{V} \quad \text{is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge, \bigvee formed in \mathcal{V} -**Rel**.

 \mathcal{V} -**Dist**: objects are \mathcal{V} -categories X = (X, a); identity distributor on X: $1_X^* = (X \longrightarrow X)$

 \mathcal{V} -**Dist** is **Sup**-enriched (a quantaloid) AND also (\mathcal{V} -**Cat**)-enriched:

 \mathcal{V} -Dist $(X, Y) = [X^{\text{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}$ -Dist $(X, Y) \otimes \mathcal{V}$ -Dist $(Y, Z) \longrightarrow \mathcal{V}$ -Dist(X, Z)

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces. Generally:

$$(X, a) \xrightarrow{\rho} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge, \bigvee formed in \mathcal{V} -**Rel**.

 \mathcal{V} -**Dist**: objects are \mathcal{V} -categories X = (X, a); identity distributor on X: $\mathbf{1}_X^* = (X \xrightarrow{a} X)$

V-**Dist** is **Sup**-enriched (a quantaloid) AND also (V-**Cat**)-enriched:

 \mathcal{V} -Dist $(X, Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}$ -Dist $(X, Y) \otimes \mathcal{V}$ -Dist $(Y, Z) \longrightarrow \mathcal{V}$ -Dist(X, Z)

Walter Tholen (York University)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces. Generally:

$$(X, a) \xrightarrow{\rho} (Y, b) \iff b \cdot \rho \cdot a \le \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \le \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \le [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge, \bigvee formed in \mathcal{V} -**Rel**.

 \mathcal{V} -Dist: objects are \mathcal{V} -categories X = (X, a); identity distributor on X: $1_X^* = (X \xrightarrow{a} X)$

V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched:

 \mathcal{V} -Dist $(X, Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}$ -Dist $(X, Y) \otimes \mathcal{V}$ -Dist $(Y, Z) \longrightarrow \mathcal{V}$ -Dist(X, Z)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

3.2
$$\mathcal{V}$$
-functors vs. \mathcal{V} -distributors; extensions, liftings, tensor products
 $(X, a) \xrightarrow{f} (Y, b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^\circ \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$
 $(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$
 $f \dashv g \iff f_* = g^* \iff g^* \dashv f^* \iff g_* \dashv f_*$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -ReI:

 $Z \qquad Y \xrightarrow{\sigma} Z \qquad \text{``lifting of } \tau \text{ along } \sigma\text{''}$ $X \xrightarrow{\sigma} Y \qquad Y \xrightarrow{\sigma} Z \qquad \text{``lifting of } \tau \text{ along } \sigma\text{''}$

 \mathcal{V} -Dist $(Y, Z)(\sigma, [\rho, \tau]) = \mathcal{V}$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = \mathcal{V}$ -Dist $(X, Y)(\rho,]\sigma, \tau[$

 \mathcal{V} -Dist is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$ $\rho \otimes \varphi ((x, s), (y, t)) = \rho(x, y) \otimes \varphi(s, t), \quad (P \to A = 0$

3.2
$$\mathcal{V}$$
-functors *vs.* \mathcal{V} -distributors; extensions, liftings, tensor products
 $(X, a) \xrightarrow{f} (Y, b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^\circ \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$
 $(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$
 $f \dashv g \iff f_* = g^* \iff g^* \dashv f^* \iff g_* \dashv f_*$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -ReI:

 $Z \qquad Y \xrightarrow{\sigma} Z \qquad \text{``lifting of } \tau \text{ along } \sigma\text{''}$ $X \xrightarrow{\sigma} Y \qquad Y \xrightarrow{\sigma} Z \qquad \text{``lifting of } \tau \text{ along } \sigma\text{''}$

 $\mathcal{V} extsf{-Dist}(Y,Z)(\sigma,[
ho, au]) = \mathcal{V} extsf{-Dist}(X,Z)(\sigma\cdot
ho, au) = \mathcal{V} extsf{-Dist}(X,Y)(
ho,]\sigma, au[$

 \mathcal{V} -Dist is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$ $\rho \otimes \varphi ((x, s), (y, t)) = \rho(x, y) \otimes \varphi(s, t), \quad (P \to A = 0$

3.2
$$\mathcal{V}$$
-functors *vs.* \mathcal{V} -distributors; extensions, liftings, tensor products
 $(X, a) \xrightarrow{f} (Y, b) \implies X \xrightarrow{f_* = b \cdot f_\circ} Y, \quad Y \xrightarrow{f^* = f^\circ \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$
 $(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \quad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$

$$f\dashv g \iff f_*=g^* \iff g^*\dashv f^* \iff g_*\dashv f_*$$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -Rel:

 \mathcal{V} -Dist $(Y, Z)(\sigma, [\rho, \tau]) = \mathcal{V}$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = \mathcal{V}$ -Dist $(X, Y)(\rho,]\sigma, \tau[)$

 \mathcal{V} -Dist is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$ $\rho \otimes \varphi ((x, s), (y, t)) = \rho(x, y) \otimes \varphi(s, t), \quad (z, t) \in \mathbb{R}$

3.2
$$\mathcal{V}$$
-functors *vs.* \mathcal{V} -distributors; extensions, liftings, tensor products
 $(X, a) \xrightarrow{f} (Y, b) \implies X \xrightarrow{f_* = b \cdot f_\circ} Y, \quad Y \xrightarrow{f^* = f^\circ \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$
 $(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \quad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$

$$f\dashv g \iff f_*=g^* \iff g^*\dashv f^* \iff g_*\dashv f_*$$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -Rel:

"extension of τ along ρ " Z $Y \xrightarrow[\sigma]{\sigma} Z$ "lifting of τ along σ " $X \xrightarrow[\rho]{\sigma} Y$ X X

 $\mathcal{V}\text{-}\mathsf{Dist}(Y,Z)(\sigma,[\rho,\tau]) = \mathcal{V}\text{-}\mathsf{Dist}(X,Z)(\sigma \cdot \rho,\tau) = \mathcal{V}\text{-}\mathsf{Dist}(X,Y)(\rho,]\sigma,\tau[)$

 \mathcal{V} -Dist is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$ $\rho \otimes \varphi ((x, s), (y, t)) = \rho(x, y) \otimes \varphi(s, t), \quad (z, t) \in \mathcal{V}$

3.2
$$\mathcal{V}$$
-functors *vs.* \mathcal{V} -distributors; extensions, liftings, tensor products
 $(X, a) \xrightarrow{f} (Y, b) \implies X \xrightarrow{f_* = b \cdot f_\circ} Y, \quad Y \xrightarrow{f^* = f^\circ \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$
 $(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$

$$f\dashv g \iff f_*=g^* \iff g^*\dashv f^* \iff g_*\dashv f_*$$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -Rel:

 $\mathcal{V}\text{-}\mathsf{Dist}(Y,Z)(\sigma,[\rho,\tau]) = \mathcal{V}\text{-}\mathsf{Dist}(X,Z)(\sigma \cdot \rho,\tau) = \mathcal{V}\text{-}\mathsf{Dist}(X,Y)(\rho,]\sigma,\tau[)$

 \mathcal{V} -Dist is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$ $\rho \otimes \varphi ((x, s), (y, t)) = \rho(x, y) \otimes \varphi(s, t)$

$$\mathcal{V} ext{-}\mathsf{Dist}(X,Y) = [X^{\mathrm{op}}\otimes Y,\mathcal{V}] \cong [Y,\mathcal{P}_\mathcal{V}X] \cong [X^{\mathrm{op}},[Y,\mathcal{V}]] \cong [X,\mathcal{P}_\mathcal{V}^\sharp Y]^{\mathrm{op}}$$

$$\mathcal{P}_{\mathcal{V}}X\cong\mathcal{V} ext{-Dist}(X,E)$$
 $\mathcal{P}_{\mathcal{V}}^{\sharp}Y\cong(\mathcal{V} ext{-Dist}(E,Y))^{\mathrm{op}}$

The Fundamental Presheaf Adjunction: \mathcal{V} -**Dist**^{op} $\xrightarrow{(-)^*} \mathcal{V}$ -**Cat** $\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}$ -**Dist**(-,E)

For $X \xrightarrow{\rho} Y$: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \xrightarrow{\sigma} E) \longmapsto (X \xrightarrow{\sigma \cdot \rho} E)$ $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y}\rho(x, y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X : X \longrightarrow \mathcal{P}_V X$, adjunction counits: $(\mathbf{y}_X)_* : X \longrightarrow \mathcal{P}_V X$

$$\mathcal{V}\text{-}\mathsf{Dist}(X,Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}] \cong [Y, \mathcal{P}_{\mathcal{V}}X] \cong [X^{\mathrm{op}}, [Y, \mathcal{V}]] \cong [X, \mathcal{P}_{\mathcal{V}}^{\sharp}Y]^{\mathrm{op}}$$

$$\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} ext{-Dist}(X, E) \qquad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong (\mathcal{V} ext{-Dist}(E, Y))^{\mathrm{op}}$$

The Fundamental Presheaf Adjunction: \mathcal{V} -**Dist**^{op} $\xrightarrow{(-)^*} \mathcal{V}$ -**Cat** $\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}$ -**Dist**(-,E)For $X \xrightarrow{\rho} Y$: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \xrightarrow{\sigma} E) \longmapsto (X \xrightarrow{\sigma \cdot \rho} E)$ $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_* : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\mathcal{V} ext{-}\mathsf{Dist}(X,Y) = [X^{\mathrm{op}}\otimes Y,\mathcal{V}] \cong [Y,\mathcal{P}_\mathcal{V}X] \cong [X^{\mathrm{op}},[Y,\mathcal{V}]] \cong [X,\mathcal{P}_\mathcal{V}^{\sharp}Y]^{\mathrm{op}}$$

$$\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} ext{-Dist}(X, E) \qquad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong (\mathcal{V} ext{-Dist}(E, Y))^{\mathrm{op}}$$

The Fundamental Presheaf Adjunction: \mathcal{V} -**Dist**^{op} $\underbrace{(-)^*}_{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}$ -**Dist** $(-,E)} \mathcal{V}$ -**Cat** For $X \xrightarrow{\rho} Y$: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \xrightarrow{\sigma} E) \longmapsto (X \xrightarrow{\sigma \cdot \rho} E)$ $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_* : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\mathcal{V} ext{-}\mathsf{Dist}(X,Y) = [X^{\mathrm{op}}\otimes Y,\mathcal{V}] \cong [Y,\mathcal{P}_\mathcal{V}X] \cong [X^{\mathrm{op}},[Y,\mathcal{V}]] \cong [X,\mathcal{P}_\mathcal{V}^{\sharp}Y]^{\mathrm{op}}$$

$$\mathcal{P}_{\mathcal{V}} X \cong \mathcal{V} ext{-Dist}(X, E) \qquad \mathcal{P}_{\mathcal{V}}^{\sharp} Y \cong (\mathcal{V} ext{-Dist}(E, Y))^{\mathrm{op}}$$

The Fundamental Presheaf Adjunction:
$$\mathcal{V}$$
-**Dist**^{op} $\xrightarrow{(-)^*} \mathcal{V}$ -**Cat**
 $\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}$ -**Dist** $(-,E)$
For $X \xrightarrow{\rho} Y$: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \xrightarrow{\sigma} E) \longmapsto (X \xrightarrow{\sigma \cdot \rho} E)$
 $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_* : X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

 $\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$ $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x)$ ($\mathcal{P}, \mathbf{s}, \mathbf{y}$) is a 2-monad, with \mathcal{P} locally fully faithful: ($f \leq g \iff \mathcal{P}f \leq \mathcal{P}g$) ($\mathcal{P}, \mathbf{s}, \mathbf{y}$) is lax idempotent (Kock–Zöberlein): $\mathcal{P}\mathbf{y}_X \leq \mathbf{y}_{\mathcal{P}X}$

$$\mathcal{V}\text{-Dist}^{\operatorname{op}} \underbrace{\xrightarrow{(-)^{*}}}_{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E)} \mathcal{V}\text{-Cat} \underbrace{\xrightarrow{d(\text{iscrete})}}_{O} \text{Set}$$

$$\mathcal{P}_{d}: \text{Set} \longrightarrow \text{Set} \qquad (f: X \to Y) \longmapsto (\mathcal{P}_{d}f: \mathcal{V}^{X} \to \mathcal{V}^{Y}, \sigma \mapsto \sigma \cdot f^{\circ}) \\ (\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x) \\ (\mathbf{y}_{d})_{X}: X \longrightarrow \mathcal{P}_{d}X \qquad (\mathbf{y}_{d})_{X}(y) = \mathbf{y}_{X_{d}}(y) = \mathbf{1}^{\circ}_{X}(-, y) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{d}})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{d}})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{d}})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{d}})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{s}_{d})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{s}_{d})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{s}_{d})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{s}_{d})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigcup_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathbf{s}_{d})_{X}: \mathcal{P}_{d} \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}: \mathcal{P}_{d} \to \mathcal{P$$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

 $\begin{aligned} \mathbf{s}_X : \mathcal{PPX} &\longrightarrow \mathcal{PX} \qquad \mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathcal{P}, \mathbf{s}, \mathbf{y}) \text{ is a 2-monad, with } \mathcal{P} \text{ locally fully faithful: } (f \leq g \iff \mathcal{P}f \leq \mathcal{P}g) \\ (\mathcal{P}, \mathbf{s}, \mathbf{y}) \text{ is lax idempotent (Kock–Zöberlein): } \mathcal{P}\mathbf{y}_X \leq \mathbf{y}_{\mathcal{P}X} \end{aligned}$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

 $\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$ $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x)$ ($\mathcal{P}, \mathbf{s}, \mathbf{y}$) is a 2-monad, with \mathcal{P} locally fully faithful: ($f \leq g \iff \mathcal{P}f \leq \mathcal{P}g$) ($\mathcal{P}, \mathbf{s}, \mathbf{y}$) is lax idempotent (Kock–Zöberlein): $\mathcal{P}\mathbf{y}_X \leq \mathbf{y}_{\mathcal{P}X}$

$$\mathcal{V}\text{-Dist}^{op} \underbrace{(-)^{*}}_{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E)} \mathcal{V}\text{-Cat} \underbrace{(\text{discrete})}_{O} \text{Set}$$

$$\mathcal{P}_{d} : \text{Set} \longrightarrow \text{Set} \qquad (f : X \to Y) \longmapsto (\mathcal{P}_{d}f : \mathcal{V}^{X} \to \mathcal{V}^{Y}, \sigma \mapsto \sigma \cdot f^{\circ})$$

$$(\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x)$$

$$(\mathbf{y}_{d})_{X} : X \longrightarrow \mathcal{P}_{d}X \qquad (\mathbf{y}_{d})_{X}(y) = \mathbf{y}_{X_{d}}(y) = \mathbf{1}^{\circ}_{X}(-, y)$$

$$(\mathbf{s}_{d})_{X} : \mathcal{P}_{d}\mathcal{P}_{d}X \to \mathcal{P}_{d}X \qquad (\mathbf{s}_{d})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{d}})_{*}, \quad (\mathbf{s}_{d})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x)$$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

 $\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$ $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x)$ $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$ $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is lax idempotent (Kock–Zöberlein): $\mathcal{P}\mathbf{y}_X \leq \mathbf{y}_{\mathcal{P}X}$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

 $\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$ $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x)$ $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$ $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is lax idempotent (Kock–Zöberlein): $\mathcal{P}\mathbf{y}_X \leq \mathbf{y}_{\mathcal{P}X}$

$$\begin{array}{ll} \mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*) \\ & (\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x \end{array}$$

$$\begin{split} \mathbf{s}_{X} : \mathcal{PPX} &\longrightarrow \mathcal{PX} \qquad \mathbf{s}_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X})_{*}, \quad \mathbf{s}_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}X}} \Sigma(\sigma) \otimes \sigma(x) \\ (\mathcal{P}, \mathbf{s}, \mathbf{y}) \text{ is a 2-monad, with } \mathcal{P} \text{ locally fully faithful: } (f \leq g \iff \mathcal{P}f \leq \mathcal{P}g) \\ (\mathcal{P}, \mathbf{s}, \mathbf{y}) \text{ is lax idempotent (Kock–Zöberlein): } \mathcal{P}\mathbf{y}_{X} \leq \mathbf{y}_{\mathcal{P}X} \end{split}$$

 $X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{D} X$ $X \xrightarrow{1_X^*} X \iff X \xrightarrow{y_X} \mathcal{D} Y$

$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}PX \xrightarrow{\mathbf{s}_{X}} \mathcal{P}X)$

 $(\mathcal{V}\text{-}\mathsf{Dist})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P})$ $(\mathcal{V}\text{-}\mathsf{Rel})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}_{\mathrm{d}})$

Q: What "is" $EM(\mathcal{P})$?

Walter Tholen (York University)

 $X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{D} X$ $X \xrightarrow{1_X^*} X \iff X \xrightarrow{y_X} \mathcal{D} Y$

 $(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}Z \xrightarrow{\mathbf{s}_{\chi}} \mathcal{P}X)$

 $(\mathcal{V}\text{-}\mathsf{Dist})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P})$ $(\mathcal{V}\text{-}\mathsf{Rel})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}_{\mathrm{d}})$

Walter Tholen (York University)

 $X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{D} X$ $X \xrightarrow{1^*_X} X \iff X \xrightarrow{\mathbf{y}_X} \mathcal{P} X$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}\mathcal{P}X \xrightarrow{\mathbf{s}_{X}} \mathcal{P}X)$$

 $(\mathcal{V}\text{-}\mathsf{Dist})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P})$ $(\mathcal{V}\text{-}\mathsf{Rel})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}_{\mathrm{d}})$

Q: What "is" $EM(\mathcal{P})$?

Walter Tholen (York University)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{D} X$ $X \xrightarrow{1^*_X} X \iff X \xrightarrow{\mathbf{y}_X} \mathcal{D} X$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}\mathcal{P}X \xrightarrow{\mathbf{s}_{X}} \mathcal{P}X)$$

 $(\mathcal{V}\text{-}\mathsf{Dist})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P})$ $(\mathcal{V}\text{-}\mathsf{Rel})^{\mathrm{op}} \cong \mathrm{Kl}(\mathcal{P}_{\mathrm{d}})$

Q: What "is" $EM(\mathcal{P})$?

Walter Tholen (York University)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider $X \in \mathcal{V}$ -Cat with its induced order ($x \le y \iff k \le X(x, y)$). Then:

 $y \simeq \bigwedge_{i \in I} x_i$

X conically complete

 $y \simeq \bigvee_{i \in I} x_i$

X conically cocompl.

 $\begin{array}{l} \Longleftrightarrow \forall z \ (k \leq X(y, z) \Longleftrightarrow \forall i \in I : k \leq X(x_i, z)) \\ \Leftrightarrow \forall z \ (X(y, z) = \bigwedge_{i \in I} X(x_i, z)) \\ \Leftrightarrow \mathbf{y}_X^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_X^{\sharp} x_i \quad \text{in } \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\text{op}} \\ \Leftrightarrow X \text{ has all conical suprema} \\ \Leftrightarrow X \text{ has all sups and } \mathbf{y}_X^{\sharp} \text{ preserves them} \\ \Leftrightarrow X \text{ is order-complete, } \mathbf{y}_X^{\sharp} \text{ is an sup-map} \end{array}$

Consider $X \in \mathcal{V}$ -**Cat** with its induced order ($x < y \iff k < X(x, y)$). Then:

 $y \simeq \bigwedge_{i \in I} x_i$

 \iff X has all infima and **v**_X preserves them $\iff X$ is order-complete, \mathbf{v}_X is an inf-map

 $Y \simeq \bigvee_{i \in I} X_i$

 $\iff \mathbf{y}_{\mathbf{Y}}^{\sharp} \mathbf{y} = \bigvee_{i \in I} \mathbf{y}_{\mathbf{Y}}^{\sharp} \mathbf{x}_{i}$ in $\mathcal{P}_{\mathcal{Y}}^{\sharp} \mathbf{X} = [\mathbf{X}, \mathcal{V}]^{\mathrm{op}}$ X conically cocompl. $\iff X$ has all conical suprema $\iff X$ has all sups and $\mathbf{y}_{\mathbf{x}}^{\sharp}$ preserves them $\iff X$ is order-complete, \mathbf{y}_{Y}^{\sharp} is an sup-map A D > 4 B

Consider $X \in \mathcal{V}$ -Cat with its induced order ($x \le y \iff k \le X(x, y)$). Then:

 $y \simeq \bigwedge_{i \in I} x_i$

X conically complete

 $\iff X$ has all infima and \mathbf{v}_X preserves them $\iff X$ is order-complete, \mathbf{v}_X is an inf-map

 $Y \simeq \bigvee_{i \in I} X_i$

 $\iff \forall z (X(y, z) = \bigwedge_{i \in I} X(x_i, z))$ $\iff \mathbf{v}_{\mathcal{V}}^{\sharp} \mathbf{v} = \bigvee_{i \in I} \mathbf{y}_{\mathcal{V}}^{\sharp} \mathbf{x}_{i}$ in $\mathcal{P}_{\mathcal{V}}^{\sharp} \mathbf{X} = [\mathbf{X}, \mathcal{V}]^{\mathrm{op}}$ X conically cocompl. $\iff X$ has all conical suprema $\iff X$ has all sups and $\mathbf{y}_{\mathbf{x}}^{\sharp}$ preserves them $\iff X$ is order-complete, \mathbf{y}_{Y}^{\sharp} is an sup-map A D > 4 D

Consider $X \in \mathcal{V}$ -Cat with its induced order ($x \leq y \iff k \leq X(x, y)$). Then:

 $y \simeq \bigwedge_{i \in I} x_i$

X conically complete

- \iff X has all infima and **y**_X preserves them
- $\iff X$ is order-complete, \mathbf{y}_X is an inf-map

 $y \simeq \bigvee_{i \in I} x_i$

X conically cocompl.

$$\begin{array}{l} \Longleftrightarrow \forall z \ (k \leq X(y,z) \Longleftrightarrow \forall i \in I : k \leq X(x_i,z)) \\ \longleftrightarrow \ \forall z \ (X(y,z) = \bigwedge_{i \in I} X(x_i,z)) \\ \Leftrightarrow \ \mathbf{y}_X^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_X^{\sharp} x_i \quad \text{in } \mathcal{P}_V^{\sharp} X = [X, \mathcal{V}]^{\text{op}} \\ \Leftrightarrow \ X \text{ has all conical suprema} \\ \Leftrightarrow \ X \text{ has all sups and } \mathbf{y}_X^{\sharp} \text{ preserves them} \\ \Leftrightarrow \ X \text{ is order-complete, } \mathbf{y}_X^{\sharp} \text{ is an sup-map} \end{array}$$

Consider $X \in \mathcal{V}$ -Cat with its induced order ($x \leq y \iff k \leq X(x, y)$). Then:

 $y \simeq \bigwedge_{i \in I} x_i$

 $\begin{array}{ll} \Longleftrightarrow & \forall z \; (\mathbf{k} \leq X(z, y) \Longleftrightarrow \forall i \in I : \mathbf{k} \leq X(z, x_i)) \\ \Leftrightarrow & \forall z \; (X(z, y) = \bigwedge_{i \in I} X(z, x_i)) \\ \Leftrightarrow & \mathbf{y}_X y = \bigwedge_{i \in I} \mathbf{y}_X x_i \quad \text{in } \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}] \\ e & \Leftrightarrow X \text{ has all conical infima} \end{array}$

X conically complete

- $\iff X$ has all infima and \mathbf{y}_X preserves them
- $\iff X$ is order-complete, \mathbf{y}_X is an inf-map

 $y \simeq \bigvee_{i \in I} x_i$

X conically cocompl.

$$\begin{array}{l} \Longleftrightarrow \ \forall z \ (k \leq X(y,z) \Longleftrightarrow \forall i \in I : k \leq X(x_i,z)) \\ \Longleftrightarrow \ \forall z \ (X(y,z) = \bigwedge_{i \in I} X(x_i,z)) \\ \Leftrightarrow \ \forall x \ (X(y,z) = \bigwedge_{i \in I} \mathbf{y}_X^{\sharp} X(x_i,z)) \\ \Leftrightarrow \ \mathbf{y}_X^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_X^{\sharp} X_i \quad \text{in } \mathcal{P}_V^{\sharp} X = [X, \mathcal{V}]^{\text{op}} \\ \Leftrightarrow \ X \text{ has all conical suprema} \\ \Leftrightarrow \ X \text{ has all sups and } \mathbf{y}_X^{\sharp} \text{ preserves them} \\ \Leftrightarrow \ X \text{ is order-complete, } \mathbf{y}_X^{\sharp} \text{ is an sup-map} \end{array}$$

In $X \in [0, \infty]$ -**Cat** = **Met**, not even binary infs/sups have to be conical. The order of $X \in$ **Met**_{sym,sep} is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V}\in\mathcal{V} ext{-}\mathsf{Cat}$ is always conically (co)complete, and so is $\mathcal{P}_\mathcal{V}X$, for all $X\in\mathcal{V} ext{-}\mathsf{Cat}.$

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a $\mathcal V$ -category securing the implication (order-complete \Rightarrow conically compl.)!

化白豆 化硼医化合医医化合医医二乙基

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical. The order of $X \in Met_{sym,sep}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -**Cat**.

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0, \infty] \in [0, \infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a $\mathcal V$ -category securing the implication (order-complete \Rightarrow conically compl.)!

・ロト (周) (王) (王) (王)

In $X \in [0, \infty]$ -**Cat** = **Met**, not even binary infs/sups have to be conical. The order of $X \in \mathbf{Met}_{sym,sep}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a $\mathcal V$ -category securing the implication (order-complete \Rightarrow conically compl.)!

In $X \in [0, \infty]$ -**Cat** = **Met**, not even binary infs/sups have to be conical. The order of $X \in \mathbf{Met}_{sym,sep}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0, \infty] \in [0, \infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a $\mathcal V$ -category securing the implication (order-complete \Rightarrow conically compl.)!

In $X \in [0, \infty]$ -**Cat** = **Met**, not even binary infs/sups have to be conical. The order of $X \in \mathbf{Met}_{sym,sep}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0, \infty] \in [0, \infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a $\mathcal V$ -category securing the implication (order-complete \Rightarrow conically compl.)!

In $X \in [0, \infty]$ -**Cat** = **Met**, not even binary infs/sups have to be conical. The order of $X \in \mathbf{Met}_{sym,sep}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For \mathcal{V} non-integral (k < \top), one finds $X \in \mathcal{V}$ -**Cat** order-compl., but not conically (co)compl.

There is a subspace of $[0, \infty] \in [0, \infty]_+$ -**Cat** is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a \mathcal{V} -category securing the implication (order-complete \Rightarrow conically compl.)!

4.3 Tensored and cotensored \mathcal{V} -categories

Recall:

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x \in X : X(x, -) : X \to \mathcal{V}$ has a left adjoint $- \odot x : \mathcal{V} \to X$

 $X(u \odot x, y) = [u, X(x, y)] \qquad (*)$

 $X \text{ cotensored} : \iff \forall y \in X : X(-, y) : X^{\text{op}} \to \mathcal{V} \text{ has a left adjoint } - \pitchfork y : \mathcal{V} \to X$

 $X(x, u \pitchfork y) = [u, X(x, y)]$

Note:

Necessarily $u \odot x = \bigwedge \{y \in X \mid u \le X(x, y)\}$, but the the existence of these infima does not guarantee (*

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

 $X \text{ tensored} \quad :\iff \forall x \in X : X(x, -) : X \to \mathcal{V} \text{ has a left adjoint} - \odot x : \mathcal{V} \to X$

 $X(u \odot x, y) = [u, X(x, y)] \qquad (*)$

 $X \text{ cotensored} : \iff \forall y \in X : X(-, y) : X^{\text{op}} \to \mathcal{V} \text{ has a left adjoint } - \pitchfork y : \mathcal{V} \to X$

 $X(x, u \pitchfork y) = [u, X(x, y)]$

Note:

Necessarily $u \odot x = \bigwedge \{y \in X \mid u \le X(x, y)\}$, but the the existence of these infima does not guarantee

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x \in X : X(x, -) : X \to \mathcal{V}$ has a left adjoint $- \odot x : \mathcal{V} \to X$

 $X(u \odot x, y) = [u, X(x, y)] \qquad (*)$

 $X \text{ cotensored} : \iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V} \text{ has a left adjoint } - \pitchfork y : \mathcal{V} \to X$

 $X(x, u \pitchfork y) = [u, X(x, y)]$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \le X(x, y) \},\$

but the the existence of these infima does not guarantee (*)

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

 $X \text{ tensored} \quad :\iff \forall x \in X : X(x, -) : X \to \mathcal{V} \text{ has a left adjoint} - \odot x : \mathcal{V} \to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

 $X \text{ cotensored} : \iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V} \text{ has a left adjoint } - \pitchfork y : \mathcal{V} \to X$

$$X(x, u \pitchfork y) = [u, X(x, y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{y \in X \mid u \le X(x, y)\}$, but the the existence of these infima does not guarantee (*)!

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x \in X : X(x, -) : X \to \mathcal{V}$ has a left adjoint $- \odot x : \mathcal{V} \to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

 $X ext{ cotensored} : \iff \forall y \in X : X(-,y) : X^{\operatorname{op}} o \mathcal{V} ext{ has a left adjoint } - \pitchfork y : \mathcal{V} o X$

$$X(x, u \pitchfork y) = [u, X(x, y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{y \in X \mid u \le X(x, y)\}$, but the the existence of these infima does not guarantee (*)!

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}} X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -**Cat** may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**. Products of (co)tensored \mathcal{V} -categories are (co)tensored.

-

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -**Cat** may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**. Products of (co)tensored \mathcal{V} -categories are (co)tensored.

化白豆 化硼医化合医医化合医医二乙基

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full $\mathcal V\text{-subcategory of }\mathcal V\in\mathcal V\text{-}\textbf{Cat}$ may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**. Products of (co)tensored \mathcal{V} -categories are (co)tensored.

化白豆 化硼医化合医医化合医医二乙基

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**.

Products of (co)tensored \mathcal{V} -categories are (co)tensored.

 $\mathcal{V} \in \mathcal{V}$ -**Cat** is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**. Products of (co)tensored \mathcal{V} -categories are (co)tensored.

4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of \mathcal{V} on a tensored \mathcal{V} -category X:

(1)
$$\mathbf{k} \odot \mathbf{X} \simeq \mathbf{X}$$

- (2) $(u \otimes v) \odot x \simeq u \odot (v \odot x)$
- (3) $(\bigvee_{i \in I} u_i) \odot x \simeq \bigvee_{i \in I} (u_i \odot x)$ (with the RHS \lor existing in *X*, as part of the condition)
- $(4^{-}) \quad x \leq y \Longrightarrow u \odot x \leq u \odot y$

Conversely:

Let X be just a preordered set equipped with a map $\odot : \mathcal{V} \times X \longrightarrow X$ satisfying (1) – (4⁻). Then, for every $x \in X$, the map $- \odot x : \mathcal{V} \longrightarrow X$ has a right adjoint X(x, -), defined by

$$X(x,y) = \bigvee \{ u \mid u \odot x \le y \},\$$

making X a V-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$X(u \odot x, y) = [u, X(x, y)],$$

making X a tensored \mathcal{V} -category.

化白豆 化硼医化合医医化合医医二乙基

4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of \mathcal{V} on a tensored \mathcal{V} -category X:

(1)
$$\mathbf{k} \odot \mathbf{X} \simeq \mathbf{X}$$

- (2) $(u \otimes v) \odot x \simeq u \odot (v \odot x)$
- (3) $(\bigvee_{i \in I} u_i) \odot x \simeq \bigvee_{i \in I} (u_i \odot x)$ (with the RHS \bigvee existing in *X*, as part of the condition) (4⁻) $x \leq y \Longrightarrow u \odot x \leq u \odot y$

Conversely:

Let X be just a preordered set equipped with a map $\odot : \mathcal{V} \times X \longrightarrow X$ satisfying $(1) - (4^{-})$. Then, for every $x \in X$, the map $- \odot x : \mathcal{V} \longrightarrow X$ has a right adjoint X(x, -), defined by

$$X(x,y) = \bigvee \{u \mid u \odot x \leq y\},\$$

making X a V-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$X(u \odot x, y) = [u, X(x, y)],$$

making X a tensored \mathcal{V} -category.

Walter Tholen (York University)

Theorem (Martinelli 2021)

There is a 2-equivalence

$$\mathcal{V}\text{-}\mathsf{Cat}_{ ext{tensor}}\simeq\mathsf{Ord}^{\mathcal{V}}_{rac{1}{2}\mathrm{cocts}}$$

 $\begin{array}{l} \mathcal{V}\text{-}\mathbf{Cat}_{tensor}:\\ small \ tensored \ \mathcal{V}\text{-}categories, \ with \ tensor-preserving \ \mathcal{V}\text{-}functors\\ \mathbf{Ord}_{\frac{1}{2}cocts}^{\mathcal{V}}:\\ preordered \ sets \ on \ which \ \mathcal{V} \ acts, \ satisfying \ conditions \ (1), (2), (3), (4^{-}), \ with \ monotone \ and \ pseudo-equivariant \ maps. \end{array}$

A 3 b

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then:

$$(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h : \iff q_* = [\omega, h_*], \qquad (W \xrightarrow{p} X) \simeq \lim^{\upsilon} h : \iff p^* =]\upsilon, h^*[$$

$$X(qt, x) = \bigwedge_{z \in Z} [\omega(z, t), X(hz, x)]$$

 $X(x, pt) = \bigwedge [v(t, z), X(x, hz)]$

-

イロト イポト イヨト イヨト

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then:

$$(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h : \iff q_* = [\omega, h_*], \qquad (W \xrightarrow{p} X) \simeq \lim^{\upsilon} h : \iff p^* =]\upsilon, h^*[$$

 $X(x,pt) = \bigwedge_{z \in Z} [v(t,z), X(x,hz)]$

$$X(qt, x) = \bigwedge_{z \in Z} [\omega(z, t), X(hz, x)]$$

for all $x \in X$, $t \in W$.

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \pitchfork x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \xrightarrow{h} X$ be a diagram in the tensored \mathcal{V} -category X with weight $Z \xrightarrow{\omega} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z}^{\nabla} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

Walter Tholen (York University)

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \pitchfork x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \xrightarrow{h} X$ be a diagram in the tensored \mathcal{V} -category X with weight $Z \xrightarrow{\omega} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z}^{\nabla} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

Walter Tholen (York University)

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \pitchfork x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \xrightarrow{h} X$ be a diagram in the tensored \mathcal{V} -category X with weight $Z \xrightarrow{\omega} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z}^{\triangledown} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

Walter Tholen (York University)

Corollary

- X cocomplete \iff X is tensored and conically cocomplete;
- 2 X complete $\iff X$ is cotensored and conically complete.
- **③** X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram $Z \xrightarrow{h} X$ in X and weights $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^{v} h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

$$u \odot x \cong \operatorname{colim}^{u \cdot x^*} 1_X = \operatorname{colim}^{u \cdot y_X x} 1_X$$
 and $\bigvee_{i \in I}^{\nabla} x_i \simeq \operatorname{colim}^{\omega} 1_X$, with $\omega = \bigvee_{i \in I} y_X x_i$.

Hence: It suffices to let Z = X, $h = 1_X$ and W = E; presheaves on X, suffice as weights $\int_{2\infty} e^{-\frac{1}{2}} e^{-$

Corollary

- X cocomplete \iff X is tensored and conically cocomplete;
- 2 X complete $\iff X$ is cotensored and conically complete.
- **③** X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram $Z \xrightarrow{h} X$ in X and weights $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^{v} h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

 $u \odot x \cong \operatorname{colim}^{u \times x^*} 1_X = \operatorname{colim}^{u \cdot y_X \times} 1_X$ and $\bigvee_{i \in I}^{\nabla} x_i \simeq \operatorname{colim}^{\omega} 1_X$, with $\omega = \bigvee_{i \in I} y_X x_i$.

Hence: It suffices to let Z = X, $h = 1_X$ and W = E; presheaves on X, suffice as weights $\int_{\Omega < C} |A| = 1_X$

Corollary

- X cocomplete \iff X is tensored and conically cocomplete;
- **2** X complete \iff X is cotensored and conically complete.
- **③** X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram $Z \xrightarrow{h} X$ in X and weights $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^{v} h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

$$u \odot x \cong \operatorname{colim}^{u \times x^*} \mathbf{1}_X = \operatorname{colim}^{u \cdot \mathbf{y}_X \mathbf{x}} \mathbf{1}_X \text{ and } \bigvee_{i \in I}^{\nabla} x_i \simeq \operatorname{colim}^{\omega} \mathbf{1}_X, \text{ with } \omega = \bigvee_{i \in I} \mathbf{y}_X x_i.$$

Hence: It suffices to let Z = X, $h = 1_X$ and W = E; presheaves on X suffice as weights!

Definition

Let $h: Z \to X$, $f: X \to Y$ be \mathcal{V} -functors and $Z \xrightarrow{\omega} W \xrightarrow{v} Z$ be \mathcal{V} -distributors.

• If $q \simeq \operatorname{colim}^{\omega} h$ exists in X, one says that $f : X \to Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$q_* = [\omega, h_*] \implies (f \cdot q)_* = [\omega, (f \cdot h)_*].$$

2 Dually, if $p \simeq \lim^{v} h$ exists in X, one says that $f : X \to Y$ preserves the limit if the limit $\lim^{v} (f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

$$p^* =]v, h^*[\implies (f \cdot p)^* =]v, (f \cdot h)^*[.$$

If the \mathcal{V} -functor *f* is (co)continuous if it preserves all existing (co)limits in *X*.

Definition

Let $h: Z \to X$, $f: X \to Y$ be \mathcal{V} -functors and $Z \xrightarrow{\omega} W \xrightarrow{v} Z$ be \mathcal{V} -distributors.

• If $q \simeq \operatorname{colim}^{\omega} h$ exists in X, one says that $f : X \to Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$oldsymbol{q}_* = [\omega, h_*] \quad \Longrightarrow \quad (f \cdot oldsymbol{q})_* = [\omega, (f \cdot h)_*].$$

2 Dually, if $p \simeq \lim^{v} h$ exists in X, one says that $f : X \to Y$ preserves the limit if the limit $\lim^{v} (f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

$$p^* =]v, h^*[\implies (f \cdot p)^* =]v, (f \cdot h)^*[.$$

The \mathcal{V} -functor *f* is (co)continuous if it preserves all existing (co)limits in *X*.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \xrightarrow{\omega} W$.

- **()** If *X* is tensored: *f* is cocontinuous \iff *f* preserves tensors and conical suprema.
- **2** If *X* is cotensored: *f* is continuous \iff *f* preserves cotensors and conical infima.
- ③ X(x,-) : $X \to V$ is continuous, X(-,x) : $X \to V^{op}$ is cocontinuous.
- [●] colim^{ω}(*h* : *Z* → [*X*, *Y*]) exists if colim^{ω} ev_{*x*}*h* exists in *Y* for all *x*, and it is then preserved by every ev_{*x*} : [*X*, *Y*] → *Y*.
- $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

• Y complete: $g: Y \to X$ has a left adjoint \mathcal{V} -functor $\iff g$ is continuous. • X cocomplete: $f: X \to Y$ has a right adjoint \mathcal{V} -functor $\iff f$ is cocontinuous.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \stackrel{\omega}{\longrightarrow} W$.

- **1** If X is tensored: f is cocontinuous \iff f preserves tensors and conical suprema.
- **2** If *X* is cotensored: *f* is continuous \iff *f* preserves cotensors and conical infima.
- ◎ $X(x, -) : X \to V$ is continuous, $X(-, x) : X \to V^{op}$ is cocontinuous.
- [●] colim^{ω}(*h* : *Z* → [*X*, *Y*]) exists if colim^{ω} ev_{*x*}*h* exists in *Y* for all *x*, and it is then preserved by every ev_{*x*} : [*X*, *Y*] → *Y*.
- $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- **●** If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

• Y complete: $g: Y \to X$ has a left adjoint \mathcal{V} -functor $\iff g$ is continuous. • X cocomplete: $f: X \to Y$ has a right adjoint \mathcal{V} -functor $\iff f$ is cocontinuous.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \stackrel{\omega}{\longrightarrow} W$.

- **1** If X is tensored: f is cocontinuous \iff f preserves tensors and conical suprema.
- **2** If *X* is cotensored: *f* is continuous \iff *f* preserves cotensors and conical infima.
- $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{\text{op}}$ is cocontinuous.
- [●] colim^{ω}(*h* : *Z* → [*X*, *Y*]) exists if colim^{ω} ev_{*x*}*h* exists in *Y* for all *x*, and it is then preserved by every ev_{*x*} : [*X*, *Y*] → *Y*.

• $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}] \text{ is continuous, } \mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\text{op}} \text{ is cocontinuous.}$

[●] If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

• Y complete: $g: Y \to X$ has a left adjoint \mathcal{V} -functor $\iff g$ is continuous.

3 X cocomplete: $f : X \to Y$ has a right adjoint V-functor $\iff f$ is cocontinuous.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \stackrel{\omega}{\longrightarrow} W$.

- **1** If X is tensored: f is cocontinuous \iff f preserves tensors and conical suprema.
- **2** If *X* is cotensored: *f* is continuous \iff *f* preserves cotensors and conical infima.
- $X(x,-): X \to V$ is continuous, $X(-,x): X \to V^{\text{op}}$ is cocontinuous.
- [●] colim^{ω}(*h* : *Z* → [*X*, *Y*]) exists if colim^{ω} ev_{*x*}*h* exists in *Y* for all *x*, and it is then preserved by every ev_{*x*} : [*X*, *Y*] → *Y*.

• $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.

If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

1 Y complete: $g: Y \to X$ has a left adjoint \mathcal{V} -functor $\iff g$ is continuous.

2 X cocomplete: $f : X \to Y$ has a right adjoint V-functor $\iff f$ is cocontinuous.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \stackrel{\omega}{\longrightarrow} W$.

- **1** If X is tensored: f is cocontinuous \iff f preserves tensors and conical suprema.
- 2 If X is cotensored: f is continuous \iff f preserves cotensors and conical infima.
- $X(x,-): X \to V$ is continuous, $X(-,x): X \to V^{op}$ is cocontinuous.
- [●] colim^{ω}(*h* : *Z* → [*X*, *Y*]) exists if colim^{ω} ev_{*x*}*h* exists in *Y* for all *x*, and it is then preserved by every ev_{*x*} : [*X*, *Y*] → *Y*.
- $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}} X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- **(**) If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

- **1** Y complete: $g: Y \to X$ has a left adjoint \mathcal{V} -functor $\iff g$ is continuous.
- **2** *X* cocomplete: $f : X \to Y$ has a right adjoint \mathcal{V} -functor $\iff f$ is cocontinuous.

化白豆 化硼医化 医医胆管医胆管

Theorem

For every V-category X, the following statements are equivalent:

(i) X is cocomplete;

(ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;

(iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;

(iv) X is tensored, cotensored and order-complete;

(v) X is complete;

(vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;

(vii) $\mathbf{y}_X^{\sharp} : X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

3

イロト イボト イヨト イヨト

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;

(iv) X is tensored, cotensored and order-complete;

(v) X is complete;

(vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;

(vii) $\mathbf{y}_X^{\sharp} : X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

-

イロト イボト イヨト イヨト

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;

(v) X is complete;

- (vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;
- (vii) $\mathbf{y}_{X}^{\sharp} : X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

-

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;

(v) X is complete;

(vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;

(vii) $\mathbf{y}_X^{\sharp} : X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

イロト 不得下 イラト イラト・ラー

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1^*_X \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

Given *f* fully faithful and φ , there is a least and a largest extension, ψ_{-} and ψ^{-} :

 $\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$ and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

Walter Tholen (York University)

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1^*_X \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

Given f fully faithful and φ , there is a least and a largest extension, ψ_{-} and ψ^{-} :

 $\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$ and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1^*_X \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

Given *f* fully faithful and φ , there is a least and a largest extension, ψ_{-} and ψ^{-} :

 $\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$ and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1^*_X \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

Given *f* fully faithful and φ , there is a least and a largest extension, ψ_{-} and ψ^{-} :

 $\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$ and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

$$f \neq g : X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h : Y \rightarrow \mathcal{V} : hf \neq hg$$

$$\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y,\mathcal{V}]} = \prod_{h \in [Y,\mathcal{V}]} \mathcal{V}, \quad y \longmapsto (hy)_{h \in [Y,\mathcal{V}]}$$

$$\pi_{Y}: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^{Y}, \quad (V_{h})_{h \in [Y,\mathcal{V}]} \longmapsto (V_{\mathbf{y}_{YZ}^{\sharp}})_{z \in Y}$$

Theorem

 \mathcal{V} is a regular cogenerator of the category \mathcal{V} -**Cat**_{sep}, and it is injective with respect to fully faithful \mathcal{V} -functors. Every separated \mathcal{V} -category Y embeds fully into the Y-fold power \mathcal{V}^{Y} of \mathcal{V} , which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{\mathbf{Y}}: \mathbf{Y} \longrightarrow \mathcal{V}^{[\mathbf{Y}, \mathcal{V}]} = \prod_{h \in [\mathbf{Y}, \mathcal{V}]} \mathcal{V}, \quad \mathbf{y} \longmapsto (h\mathbf{y})_{h \in [\mathbf{Y}, \mathcal{V}]}$$

$$\pi_{Y}: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^{Y}, \quad (V_{h})_{h \in [Y,\mathcal{V}]} \longmapsto (V_{\mathbf{y}_{YZ}^{\sharp}})_{z \in Y}$$

Theorem

 \mathcal{V} is a regular cogenerator of the category \mathcal{V} -**Cat**_{sep}, and it is injective with respect to fully faithful \mathcal{V} -functors. Every separated \mathcal{V} -category Y embeds fully into the Y-fold power \mathcal{V}^{Y} of \mathcal{V} , which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{\mathbf{Y}}: \mathbf{Y} \longrightarrow \mathcal{V}^{[\mathbf{Y}, \mathcal{V}]} = \prod_{h \in [\mathbf{Y}, \mathcal{V}]} \mathcal{V}, \quad \mathbf{y} \longmapsto (h\mathbf{y})_{h \in [\mathbf{Y}, \mathcal{V}]}$$

$$\pi_{\boldsymbol{Y}}: \mathcal{V}^{[\boldsymbol{Y},\mathcal{V}]} \longrightarrow \mathcal{V}^{\boldsymbol{Y}}, \quad (\boldsymbol{v}_h)_{h \in [\boldsymbol{Y},\mathcal{V}]} \longmapsto (\boldsymbol{v}_{\boldsymbol{y}_{\boldsymbol{Y}}^{\sharp}\boldsymbol{z}})_{\boldsymbol{z} \in \boldsymbol{Y}}$$

Theorem

 \mathcal{V} is a regular cogenerator of the category \mathcal{V} -**Cat**_{sep}, and it is injective with respect to fully faithful \mathcal{V} -functors. Every separated \mathcal{V} -category Y embeds fully into the Y-fold power \mathcal{V}^{Y} of \mathcal{V} , which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{\mathbf{Y}}: \mathbf{Y} \longrightarrow \mathcal{V}^{[\mathbf{Y}, \mathcal{V}]} = \prod_{h \in [\mathbf{Y}, \mathcal{V}]} \mathcal{V}, \quad \mathbf{y} \longmapsto (h\mathbf{y})_{h \in [\mathbf{Y}, \mathcal{V}]}$$

$$\pi_{\boldsymbol{Y}}: \mathcal{V}^{[\boldsymbol{Y},\mathcal{V}]} \longrightarrow \mathcal{V}^{\boldsymbol{Y}}, \quad (\boldsymbol{v}_h)_{h \in [\boldsymbol{Y},\mathcal{V}]} \longmapsto (\boldsymbol{v}_{\boldsymbol{y}_{\boldsymbol{Y}\boldsymbol{Z}}^{\sharp}})_{\boldsymbol{Z} \in \boldsymbol{Y}}$$

Theorem

 \mathcal{V} is a regular cogenerator of the category \mathcal{V} -**Cat**_{sep}, and it is injective with respect to fully faithful \mathcal{V} -functors. Every separated \mathcal{V} -category Y embeds fully into the Y-fold power \mathcal{V}^{Y} of \mathcal{V} , which is injective again.

5.3.1 Colimit and limit completion of a V-category

Every \mathcal{V} -presheaf ω on $X \in \mathcal{V}$ -**Cat** is a colimit of \mathbf{y}_X in $\mathcal{P}_{\mathcal{V}}X$ weighted by ω : $\omega \simeq \operatorname{colim}^{\omega}\mathbf{y}_X$.

Dually, every \mathcal{V} -copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp}X$; that is: $v \simeq \lim^{v} \mathbf{y}_{X}^{\sharp}$. Wanted for $f : X \to Y$, Y cocomplete/complete:

5.3.1 Colimit and limit completion of a V-category

Every \mathcal{V} -presheaf ω on $X \in \mathcal{V}$ -**Cat** is a colimit of \mathbf{y}_X in $\mathcal{P}_{\mathcal{V}}X$ weighted by ω : $\omega \simeq \operatorname{colim}^{\omega}\mathbf{y}_X$.

Dually, every \mathcal{V} -copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp}X$; that is: $v \simeq \lim^{v} \mathbf{y}_{X}^{\sharp}$. Wanted for $f : X \to Y$, Y cocomplete/complete:

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_X) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_X) \simeq \operatorname{colim}^{\omega} f$$

Existence:

$$\widetilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} 1_Y$$
$$\widetilde{f} \simeq (\operatorname{colim}^{(-)} 1_Y)(\mathcal{P}_V f^*)$$

 $\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_{\mathcal{V}}f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Yf \simeq f.$

f is cocontinuous, as the composite of two left adjoints!

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_X) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_X) \simeq \operatorname{colim}^{\omega}f$$

Existence:

$$\begin{split} \tilde{f}(\omega) &= \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} \mathbf{1}_Y \\ \tilde{f} \simeq &(\operatorname{colim}^{(-)} \mathbf{1}_Y) (\mathcal{P}_V f^*) \end{split}$$

 $\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_{\mathcal{V}}f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Yf \simeq f.$

f is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University)

Quantale-enriched categories

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_X) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_X) \simeq \operatorname{colim}^{\omega}f$$

Existence:

$$\widetilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} \mathbf{1}_Y$$
$$\widetilde{f} \simeq (\operatorname{colim}^{(-)} \mathbf{1}_Y)(\mathcal{P}_V f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_{\mathcal{V}}f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Yf \simeq f.$$

f is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University)

Quantale-enriched categories

A D > A B

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_X) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_X) \simeq \operatorname{colim}^{\omega}f$$

Existence:

$$\widetilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} \mathbf{1}_Y$$
$$\widetilde{f} \simeq (\operatorname{colim}^{(-)} \mathbf{1}_Y)(\mathcal{P}_V f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_{\mathcal{V}}f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Yf \simeq f.$$

f is cocontinuous, as the composite of two left adjoints!

Theorem

The following properties for a V-category X are equivalent:

- (i) X is (co)complete;
- (ii) X carries the structure of a pseudo-algebra with respect to the presheaf monad on \mathcal{V} -Cat;
- (iii) The Yoneda \mathcal{V} -functor \mathbf{y}_X has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h : \mathcal{P}_{\mathcal{V}}X \to X$ with $h\mathbf{y}_X \simeq \mathbf{1}_X$;
- (iv) X is pseudo-injective in \mathcal{V} -Cat with respect to fully faithful functors.

イロト イポト イラト イラト 一戸

5.5.1 Cocomplete \mathcal{V} -categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

(1)
$$\mathbf{k} \odot \mathbf{x} \simeq \mathbf{x}$$

(2) $(\mathbf{u} \otimes \mathbf{v}) \odot \mathbf{x} \simeq \mathbf{u} \odot (\mathbf{v} \odot \mathbf{x})$
(3) $(\bigvee_{i \in I} u_i) \odot \mathbf{x} \simeq \bigvee_{i \in I} (u_i \odot \mathbf{x})$

 $\begin{array}{ll} (3) & (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x) \\ (4) & u \odot (\bigvee_{i\in I} x_i) \simeq \bigvee_{i\in I} (u \odot x_i) \end{array}$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in *X* conical colimits:

$$X(\bigvee_{i\in I} x_i, y) = \bigwedge_{i\in I} X(x_i, y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(W) \simeq \bigvee_{z} \omega(z, W) \odot h(z) \qquad (h : Z \to X, \ \omega : Z^{\operatorname{op}} \otimes W \to \mathcal{V})$$

 $X(\operatorname{colim}^{\omega} 1_X, x) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X x) \qquad (\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_X,$

to obtain:

Walter Tholen (York University)

5.5.1 Cocomplete \mathcal{V} -categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

(1)
$$\mathbf{k} \odot \mathbf{x} \simeq \mathbf{x}$$

- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- $(3) \quad (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x)$
- (4) $u \odot (\bigvee_{i \in I} x_i) \simeq \bigvee_{i \in I} (u \odot x_i)$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in *X* conical colimits:

$$X(\bigvee_{i\in I} x_i, y) = \bigwedge_{i\in I} X(x_i, y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(W) \simeq \bigvee_{z} \omega(z, W) \odot h(z) \qquad (h : Z \to X, \ \omega : Z^{\operatorname{op}} \otimes W \to \mathcal{V})$$

 $X(\operatorname{colim}^{\omega} 1_X, x) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X x) \qquad (\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_X,$

to obtain:

Walter Tholen (York University)

5.5.1 Cocomplete \mathcal{V} -categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

(1)
$$\mathbf{k} \odot \mathbf{X} \simeq \mathbf{X}$$

- (2) $(u \otimes v) \odot x \simeq u \odot (v \odot x)$
- $(3) \quad (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x)$
- (4) $u \odot (\bigvee_{i \in I} x_i) \simeq \bigvee_{i \in I} (u \odot x_i)$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in *X* conical colimits:

$$X(\bigvee_{i\in I} x_i, y) = \bigwedge_{i\in I} X(x_i, y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(w) \simeq \bigvee_{z} \omega(z, w) \odot h(z) \qquad (h : Z \to X, \ \omega : Z^{\operatorname{op}} \otimes W \to \mathcal{V})$$

 $X(\operatorname{colim}^{\omega} \mathbf{1}_X, x) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X x) \qquad (\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(\cdot)} \dashv \mathbf{y}_X,$

to obtain:

Walter Tholen (York University)

5.5.2 Cocomplete \mathcal{V} -categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences

$$\mathcal V ext{-}\mathsf{Cat}^{\mathcal P_{\simeq}}\simeq \mathcal V ext{-}\mathsf{Cat}_{\operatorname{colim}}\simeq (\mathsf{Ord}_{\operatorname{sup}})^{\mathcal V}$$

 $\label{eq:complete} \begin{array}{l} \mathcal{V}\text{-}\textbf{Cat}_{colim} \text{:} \\ (co) \text{complete } \mathcal{V}\text{-} \text{categories, with cocontinuous } \mathcal{V}\text{-} \text{functors} \end{array}$

Ord^{V_{sup}}: (co)complete preordered sets on which V acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corollary

There are 2-equivalences

$$(\mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{sep}})^\mathcal{P}\simeq \mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{sep,\,colim}}\simeq \mathsf{Sup}^\mathcal{V}$$

5.5.2 Cocomplete \mathcal{V} -categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences

$$\mathcal V ext{-}\mathsf{Cat}^{\mathcal P_{\simeq}}\simeq \mathcal V ext{-}\mathsf{Cat}_{\operatorname{colim}}\simeq (\mathsf{Ord}_{\operatorname{sup}})^{\mathcal V}$$

 $\label{eq:colim} \begin{array}{l} \mathcal{V}\text{-}\textbf{Cat}_{colim} \text{:} \\ (co) \text{complete } \mathcal{V}\text{-} \text{categories, with cocontinuous } \mathcal{V}\text{-} \text{functors} \end{array}$

 $Ord_{sup}^{\mathcal{V}}$: (co)complete preordered sets on which \mathcal{V} acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corollary

There are 2-equivalences

$$(\mathcal{V}\text{-}\mathsf{Cat}_{\text{sep}})^{\mathcal{P}}\simeq \mathcal{V}\text{-}\mathsf{Cat}_{\text{sep, colim}}\simeq \mathsf{Sup}^{\mathcal{V}}$$

Walter Tholen (York University)

Quantale-enriched categories

5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad \mathcal{P} on \mathcal{V} -**Cat**:

$$\mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, \quad X \longmapsto [X^{\mathrm{op}}, \mathcal{V}], \quad \mathcal{P}X(\sigma, \tau) = \bigwedge_{z \in X} [\sigma z, \tau z]$$

to the Hausdorff submonad ${\mathcal H}$ via

$$j_X: \mathcal{H}X = \{A \mid A \subseteq X\} \longrightarrow \mathcal{P}X, A \longmapsto (z \mapsto X(z, A) = \bigvee_{x \in A} X(z, x)).$$

where $\mathcal{H}X$ carries the initial (= cartesian) structure inherited from $\mathcal{P}X$ via j_X :

$$\mathcal{H}X(A,B) = \bigwedge_{z \in X} \left[\bigvee_{x \in A} X(z,x), \bigvee_{y \in B} X(z,y) \right] = \dots = \bigwedge_{x \in A} \bigvee_{y \in B} X(x,y).$$

5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad \mathcal{P} on \mathcal{V} -**Cat**:

$$\mathcal{P}: \mathcal{V}\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}, \quad X \longmapsto [X^{\mathrm{op}}, \mathcal{V}], \quad \mathcal{P}X(\sigma, \tau) = \bigwedge_{z \in X} [\sigma z, \tau z]$$

to the Hausdorff submonad ${\mathcal H}$ via

$$j_X: \mathcal{H}X = \{A \mid A \subseteq X\} \longrightarrow \mathcal{P}X, \quad A \longmapsto (z \mapsto X(z, A) = \bigvee_{x \in A} X(z, x)).$$

where $\mathcal{H}X$ carries the initial (= cartesian) structure inherited from $\mathcal{P}X$ via j_X :

$$\mathcal{H}X(A,B) = \bigwedge_{z \in X} \left[\bigvee_{x \in A} X(z,x), \bigvee_{y \in B} X(z,y) \right] = \ldots = \bigwedge_{x \in A} \bigvee_{y \in B} X(x,y).$$

Theorem (Akhvlediani-Clementino-T 2009, Stubbe 2009)

Just like \mathcal{P} , also \mathcal{H} becomes a lax-idempotent monad of the 2-category \mathcal{V} -**Cat**, lifting the power-set monad of **Set**, and making $j : \mathcal{H} \longrightarrow \mathcal{P}$ a monad morphism, which induces the forgetful functor

$$(\mathcal{V} ext{-}\mathsf{Cat})^{\mathcal{P}_{\simeq}}\simeq\mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{colim}}\longrightarrow\mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{consup}}\simeq(\mathcal{V} ext{-}\mathsf{Cat})^{\mathcal{H}_{\simeq}},$$

V-Cat_{colim}:
(co)complete (= all weighted (co)limts exist) V-categories, with cocontinous V-functors;
V-Cat_{consup}:

conically cocomplete (= sups exist, Yoneda preserves) V-cats, with sup-preserving V-funs

5.7 V-Cat_{sep,colim} as a quantification of Sup?

• Symmetric monoidal-closed?

Walter Tholen (York University)

Quantale-enriched categories

TACL School 2022 44/67

5.7 \mathcal{V} -Cat_{sep,colim} as a quantification of Sup?

• Monadicity:

• Symmetric monoidal-closed?

Walter Tholen (York University)

TACL School 2022 44/67

5.7 \mathcal{V} -Cat_{sep,colim} as a quantification of Sup?

• Monadicity:

• Symmetric monoidal-closed?

< B.

• • • • • • • •

5.7 \mathcal{V} -Cat_{sep,colim} as a quantification of Sup?

• Monadicity:

• Symmetric monoidal-closed?

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V} -categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects *X*, *Y*, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{\mathrm{d}}(X \times Y) / \! \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$
$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V} -categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects *X*, *Y*, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{\mathrm{d}}(X \times Y) / \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$
$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V} -categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects *X*, *Y*, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{\mathrm{d}}(X \times Y) / \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y) / \sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$
$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

 $s = (x_n)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

 $\begin{aligned} \text{Cauchy}(s) &:= \bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \ge N} X(x_m, x_n) \\ s \text{ is Cauchy} &: \iff k \le \text{Cauchy}(s) \end{aligned}$

 $\begin{array}{l} \lambda_{s}(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_{n}, x) \quad (\text{``left-convergence value of } s \rightsquigarrow x") \\ \rho_{s}(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_{n}) \quad (\text{``right-convergence value of } s \rightsquigarrow x") \end{array}$

Facts:

$$E \xrightarrow{\lambda_s} X, \quad X \xrightarrow{\rho_s} E, \text{ with } \lambda_s \cdot \rho_s \leq 1_X^*$$

s Cauchy $\iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$

Definitions:

 $\boldsymbol{s} \rightsquigarrow \boldsymbol{x} : \iff \mathbf{k} \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(\boldsymbol{x}_m, \boldsymbol{x}) \otimes \bigwedge_{n \geq N} X(\boldsymbol{x}, \boldsymbol{x}_n)) \iff \mathbf{k} \leq \lambda_{\boldsymbol{s}}(\boldsymbol{x}) \otimes \rho_{\boldsymbol{s}}(\boldsymbol{x})$

X Cauchy-complete : \iff every Cauchy sequence *s* in X converges to some point $x \in X$

 $s = (x_n)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

 $\begin{array}{l} \operatorname{Cauchy}(\boldsymbol{s}) := \bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m,x_n) \\ \boldsymbol{s} \text{ is Cauchy} : \iff k \leq \operatorname{Cauchy}(\boldsymbol{s}) \\ \lambda_{\boldsymbol{s}}(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n,x) \quad (\text{``left-convergence value of } \boldsymbol{s} \rightsquigarrow \boldsymbol{x}\text{''}) \\ \rho_{\boldsymbol{s}}(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x,x_n) \quad (\text{``right-convergence value of } \boldsymbol{s} \rightsquigarrow \boldsymbol{x}\text{''}) \end{array}$

Facts:

$$E \xrightarrow{\lambda_s} X, \quad X \xrightarrow{\rho_s} E, \text{ with } \lambda_s \cdot \rho_s \leq 1_X^*$$
$$s \text{ Cauchy} \iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$$

Definitions:

 $s \rightsquigarrow x : \iff k \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(x_m, x) \otimes \bigwedge_{n \geq N} X(x, x_n)) \iff k \leq \lambda_s(x) \otimes \rho_s(x)$

X Cauchy-complete : \iff every Cauchy sequence *s* in X converges to some point $x \in X$

 $s = (x_n)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

$$\begin{array}{l} \operatorname{Cauchy}(s) := \bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m,x_n) \\ s \text{ is Cauchy} : \iff k \leq \operatorname{Cauchy}(s) \\ \lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n,x) \quad \text{("left-convergence value of } s \rightsquigarrow x") \\ \rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x,x_n) \quad \text{("right-convergence value of } s \rightsquigarrow x") \end{array}$$

Facts:

$$E \xrightarrow{\lambda_s} X, \quad X \xrightarrow{\rho_s} E, \text{ with } \lambda_s \cdot \rho_s \leq 1_X^*$$
$$s \text{ Cauchy} \iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$$

Definitions:

 $s \rightsquigarrow x : \iff k \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(x_m, x) \otimes \bigwedge_{n \geq N} X(x, x_n)) \iff k \leq \lambda_s(x) \otimes \rho_s(x)$

X Cauchy-complete : \iff every Cauchy sequence *s* in *X* converges to some point $x \in X$

 $s = (x_n)_{n \in \mathbb{N}}$ sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

 $\begin{array}{l} \operatorname{Cauchy}(s) := \bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m,x_n) \\ s \text{ is Cauchy} : \iff k \leq \operatorname{Cauchy}(s) \\ \lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n,x) \quad \text{("left-convergence value of } s \rightsquigarrow x") \\ \rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x,x_n) \quad \text{("right-convergence value of } s \rightsquigarrow x") \end{array}$

Facts:

$$E \xrightarrow{\lambda_s} X, \quad X \xrightarrow{\rho_s} E, \text{ with } \lambda_s \cdot \rho_s \leq 1_X^*$$
$$s \text{ Cauchy} \iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$$

Definitions:

$$\boldsymbol{s} \rightsquigarrow \boldsymbol{x} : \iff \mathbf{k} \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(\boldsymbol{x}_m, \boldsymbol{x}) \otimes \bigwedge_{n \geq N} X(\boldsymbol{x}, \boldsymbol{x}_n)) \iff \mathbf{k} \leq \lambda_{\boldsymbol{s}}(\boldsymbol{x}) \otimes \rho_{\boldsymbol{s}}(\boldsymbol{x})$$

X Cauchy-complete : \iff every Cauchy sequence *s* in *X* converges to some point $x \in X$

$\implies X$ Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral $(\mathbf{k} = \top)$ and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in \mathcal{V} : 1. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll \mathbf{k}$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = \mathbf{k}$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If $\mathcal V$ satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

化白色 化塑色 化医医化医医二 医二

\implies X Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral $(\mathbf{k} = \top)$ and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in $\mathcal{V} : 1$. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll \mathbf{k}$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = \mathbf{k}$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If $\mathcal V$ satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

・ロト (周) (王) (王) (王)

\implies X Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral $(\mathbf{k} = \top)$ and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in $\mathcal{V} : 1$. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll \mathbf{k}$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = \mathbf{k}$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If $\mathcal V$ satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

・ロト (周) (王) (王) (王)

 \implies X Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral (k = \top) and \exists (ε_n)_{$n \in \mathbb{N}$} in \mathcal{V} : 1. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll k$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

 \implies X Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral (k = \top) and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in \mathcal{V} : 1. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll k$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = k$ Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s$, $\psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If \mathcal{V} satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

 \implies X Cauchy-complete

Conversely?

Auxiliary conditions on \mathcal{V} :

 \mathcal{V} integral (k = \top) and \exists (ε_n)_{$n \in \mathbb{N}$} in \mathcal{V} : 1. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll k$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

If V satisfies the auxiliary conditions: X Lawvere-complete \iff X Cauchy-complete

W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : \iff f preserves Φ -weighted colimits of X.

W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;

- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$; W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.
- Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : \iff f preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.
- Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

- $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.
- $f: X \to Y$ is Φ -cocontinuous : $\iff f$ preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$; W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : \iff f preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : \iff f preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$. $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist. $f: X \to Y$ is Φ -cocontinuous : $\iff f$ preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : \iff f preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : $\iff f$ preserves Φ -weighted colimits of X.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic. Least cocompletion class: { $f^* \mid f \mathcal{V}$ -functor}; it may obviously fail to be monadic. Lawvere cocompletion class: { $\psi \mid \psi$ right adjoint}; it fails to be monadic already for $\mathcal{V} = 2$.

 $X \in \mathcal{V}$ -**Cat** is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

 $f: X \to Y$ is Φ -cocontinuous : $\iff f$ preserves Φ -weighted colimits of X.

For a cocompletion class Φ call

 $f: X \to Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\mathrm{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- *f* and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• \mathbf{y}_X^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- f has a right adjoint \implies f Φ -dense;
- *f* and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• \mathbf{y}_X^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- *f* and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• \mathbf{y}_X^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• \mathbf{y}_X^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = \mathbf{1}_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• \mathbf{y}_{X}^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = \mathbf{1}_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;

• **y**^Φ_X is Φ-dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = \mathbf{1}_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;
- \mathbf{y}_X^{Φ} is Φ -dense;

For a cocompletion class Φ call

 $f: X o Y \Phi$ -dense $: \iff f_* \in \Phi;$

X pseudo- Φ -injective : \iff *X* pseudo-injective wrt fully faithful Φ -dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_X} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_X^{\Phi}} \mathcal{P}X$$

Check:

- *f* has a right adjoint \implies *f* Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = \mathbf{1}_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f \Phi$ -dense and g fully faithful $\Longrightarrow f \Phi$ -dense;
- \mathbf{y}_X^{Φ} is Φ -dense;

•
$$(Y \xrightarrow{\psi} X) \in \Phi \iff$$
 the mate $\psi^{\sharp} : X \to \mathcal{P}Y$ factors through $\operatorname{inc}_X^{\Phi}$.

Image: 1

Let Φ be a cocompletion class.

- The following properties for a *V*-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda *V*-functor y^Φ_X has a pseudo-retraction; that is: there is a *V*-functor h : *P*^ΦX → X with hy^Φ_X ≃ 1_X;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-}\mathbf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}).$

• If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Let Φ be a cocompletion class.

- The following properties for a *V*-category *X* are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_X^{\Phi} \simeq \mathbf{1}_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat
- $\Phi \dashv (\mathcal{V}\text{-}\mathbf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}).$

• If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

化口水 化塑料 化医水化医水

Let Φ be a cocompletion class.

- The following properties for a *V*-category *X* are equivalent:
 - (i) X is ϕ -cocomplete, i.e. X has all colimits with weights in ϕ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_{X}^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_{X}^{\Phi} \simeq \mathbf{1}_{X}$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-}\mathbf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}).$

• If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

3

Let Φ be a cocompletion class.

- The following properties for a V-category X are equivalent:
 - (i) X is ϕ -cocomplete, i.e. X has all colimits with weights in ϕ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_{X}^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_{X}^{\Phi} \simeq \mathbf{1}_{X}$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-}\mathsf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}).$

If Φ is monadic, then V-Cat_{sep,Φ-colim} is monadic over Set.

3

Let Φ be a cocompletion class.

- The following properties for a *V*-category *X* are equivalent:
 - (i) X is ϕ -cocomplete, i.e. X has all colimits with weights in ϕ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_{X}^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_{X}^{\Phi} \simeq \mathbf{1}_{X}$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-}\mathsf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}).$

• If Φ is monadic, then V-Cat_{sep,Φ-colim} is monadic over Set.

3

Let Φ be a cocompletion class.

- The following properties for a *V*-category *X* are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad (Φ, s^Φ, y^Φ) on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_{X}^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_{X}^{\Phi} \simeq \mathbf{1}_{X}$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-}\mathsf{Cat}_{\operatorname{sep},\Phi\text{-}\operatorname{colim}} \longrightarrow \mathcal{V}\text{-}\mathsf{Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

3

6.6 Cauchy completion of a \mathcal{V} -category à la Lawvere

Let \mathcal{V} satisfy $\mathbf{k} = \top$ and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in \mathcal{V} : 1. $\varepsilon_n \leq \varepsilon_{n+1}$, 2. $\varepsilon_n \ll \mathbf{k}$, 3. $\bigvee_{n \in \mathbb{N}} \varepsilon_n = \mathbf{k}$; Consider $\Phi := \{\psi \mid \psi \text{ right adjoint } \mathcal{V}\text{-distributor}\}$, and let $X \in \mathcal{V}\text{-}\mathbf{Cat}$. Then

 $\Phi X = \{ \psi \in \mathcal{P}_{\mathcal{V}} X \mid \psi \text{ right adjoint} \} = \{ \rho_s \mid s = (x_n)_n \text{ Cauchy sequence in } X \}$ with $\rho_s(x) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \ge N} X(x, x_n) \ (x \in X)$, and

- (trivially) ($s \sim s' \iff \rho_s = \rho_{s'}$) is an equivalence relation on the set of all Cauchy sequences in *X*, with projection $s \mapsto \rho_s$;
- **2** ΦX is Cauchy complete;
- the restricted Yoneda \mathcal{V} -functor $X \to \Phi X$, $y \mapsto \rho_{(y)_n}$, is a reflection of X into the full subcategory of Cauchy complete \mathcal{V} -categories.

7.1 The category $\text{Set} / / \mathcal{V} = \mathcal{V}$ -wSet of \mathcal{V} -weighted or -normed sets

• Defining $Set //\mathcal{V}$:

• Set//V is topological over Set:

• Set// \mathcal{V} is symmetric monoidal-closed:

$$A \otimes B = (A \times B, |(a, b)| = |a| \otimes |b|), \quad E = (1 = \{*\}, |*| = k)$$
$$[A, B] = (\operatorname{Set}(A, B), |\varphi| = \bigwedge_{a \in A} [|a|, |\varphi a|])$$

• • = •

7.2 The category $Cat / \mathcal{V} = \mathcal{V}$ -wCat of (small) \mathcal{V} -weighted categories

Objects of $\operatorname{Cat}//\mathcal{V}$ are (small) categories \mathbb{X} enriched in $\operatorname{Set}//\mathcal{V}$; this means (neglecting \forall): $\mathbb{X}(x, y) \otimes \mathbb{X}(y, z) \longrightarrow \mathbb{X}(x, z)$ and $E \longrightarrow \mathbb{X}(x, x)$ live in $\operatorname{Set}//\mathcal{V}$

 \iff $|f| \otimes |g| = |(f,g)| \le |g \cdot f|$ and $k \le |1_x|$

$\iff \ |\text{-}|:\mathbb{X}\longrightarrow (\mathcal{V},\otimes,k) \text{ is a lax functor}$

For a functor $F : \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in **Set**// \mathcal{V} means (without universal quantifiers):

$$\mathbb{X}(x,y) \longrightarrow \mathbb{Y}(Fx,Fy)$$
 lives in **Set**// \mathcal{V}
 $\iff |f| \leq |Ff|$

7.2 The category $Cat / \mathcal{V} = \mathcal{V}$ -wCat of (small) \mathcal{V} -weighted categories

Objects of $\operatorname{Cat}//\mathcal{V}$ are (small) categories \mathbb{X} enriched in $\operatorname{Set}//\mathcal{V}$; this means (neglecting \forall): $\mathbb{X}(x, y) \otimes \mathbb{X}(y, z) \longrightarrow \mathbb{X}(x, z)$ and $E \longrightarrow \mathbb{X}(x, x)$ live in $\operatorname{Set}//\mathcal{V}$

 \iff $|f| \otimes |g| = |(f,g)| \le |g \cdot f|$ and $k \le |1_x|$

 \iff $|-|: \mathbb{X} \longrightarrow (\mathcal{V}, \otimes, \mathbf{k})$ is a lax functor

For a functor $F : \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in **Set**// \mathcal{V} means (without universal quantifiers):

$$\mathbb{X}(x,y) \longrightarrow \mathbb{Y}(Fx,Fy)$$
 lives in Set// \mathcal{V}
 $\iff |f| \leq |Ff|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

7.3 The adjunction $\mathbf{s}\dashv\mathbf{i},$ monoidal-closed structure, preserved by \mathbf{i},\mathbf{s}

7.4.1 Example: $(\mathcal{V}, \leq, \otimes, k) = (2, \perp < \top, \land, \top)$

2-Cat = OrdCat//2 = sCatX, $x \le y \land y \le z \Longrightarrow x \le z$ $\stackrel{i}{\longmapsto}$ iX, ob(iX) = X $\top \Longrightarrow x \le x$ $(x \xrightarrow{(x,y)} y) \in S \iff x \le y$

$$s\mathbb{X} = ob\mathbb{X}, \quad x \leq y \iff \exists (f: x \to y) \in \mathcal{S} \quad \stackrel{s}{\longleftarrow} \quad \mathbb{X}, \mathcal{S}, \quad f, g \in \mathcal{S} \Longrightarrow g \cdot f \in \mathcal{S} \\ \top \Longrightarrow 1_{x} \in \mathcal{S}$$

 $egin{aligned} X\otimes Y &= X imes Y \ (x,y) &\leq (x',y') \Longleftrightarrow \ x \leq x' \ \land \ y \leq y' \end{aligned}$

 $[X, Y] = \operatorname{Ord}(X, Y)$ $f \le g \iff \forall x \in X : fx \le gx$

$$\begin{split} \mathbb{X}\otimes\mathbb{Y}=\mathbb{X}\times\mathbb{Y} \text{ (as a category)}\\ \mathcal{S}_{\mathbb{X}\otimes\mathbb{Y}}=\mathcal{S}_{\mathbb{X}}\times\mathcal{S}_{\mathbb{Y}} \end{split}$$

$$\begin{split} & [\mathbb{X},\mathbb{Y}] = \textbf{sCat}(\mathbb{X},\mathbb{Y}) \text{ (as a cat)} \\ & \alpha \in \mathcal{S}_{[\mathbb{X},\mathbb{Y}]} \Longleftrightarrow \forall \textbf{x} \in \text{ob} \mathbb{X} : \alpha_{\textbf{x}} \in \mathcal{S}_{\mathbb{Y}} \end{split}$$

7.4.2 Example: $(\mathcal{V}, \leq, \otimes, k) = ([0, \infty], \geq, +, 0)$

 $\begin{array}{ll} [0,\infty]\text{-Cat} = \operatorname{\mathsf{Met}} & \operatorname{\mathsf{Cat}} / \\ X, \quad d(x,y) + d(y,z) \geq d(x,z) & \stackrel{\mathrm{i}}{\longmapsto} & \mathrm{i} X, \\ 0 \geq d(x,x) & x \stackrel{(i)}{\longrightarrow} \end{array}$

$$\begin{aligned} & \operatorname{Cat} / [0, \infty] = \operatorname{wCat} \\ & \operatorname{i} X, \quad \operatorname{ob}(\operatorname{i} X) = X \\ & x \xrightarrow{(x,y)} y, \quad |(x,y)| = d(x,y) \end{aligned}$$

$$s\mathbb{X} = ob\mathbb{X}, \quad d(x, y) = \inf_{f:x \to y} |f|$$

$$\prec \overset{\mathrm{s}}{\longrightarrow}$$
 X, $|f|+|g|\geq |g\cdot f|$
 $0\geq |1_X|$

 $X \otimes Y = X \times Y$ d((x, y), (x', y')) = d(x, y) + d(y, y')

 $[X, Y] = \mathbf{Met}(X, Y)$ $d(f, g) = \sup_{x \in X} d(fx, gx)$

 $\mathbb{X}\otimes\mathbb{Y}=\mathbb{X} imes\mathbb{Y}$ (as a category) |(f,g)|=|f|+|g|

$$[\mathbb{X}, \mathbb{Y}] = \mathbf{wCat}(\mathbb{X}, \mathbb{Y}) \text{ (as a cat)}$$

 $| F \xrightarrow{\alpha} G | = \sup_{x \in ob\mathbb{X}} |\alpha_x|$

イロト 不得下 イラト イラト・ラー

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May Set be "naturally" $[0,\infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f : X \to Y$ fails to be surjective.

Simply put $|f| := #(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0, \infty].$

Then: $0 \ge |\operatorname{id}_X|$, and with $g : Y \to Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

 $Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$

Note: f surjective $\iff |f| = 0$.

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" $[0, \infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f : X \to Y$ fails to be surjective.

Simply put $|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0,\infty].$

Then: $0 \ge |\mathrm{id}_X|$, and with $g : Y \to Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$$

Note: f surjective $\iff |f| = 0$.

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" $[0, \infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f : X \to Y$ fails to be surjective.

Simply put $|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0,\infty].$

Then: $0 \ge |id_X|$, and with $g : Y \rightarrow Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$$

Note: f surjective $\iff |f| = 0$.

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map $f : X \to Y$ fails to be injective.

First consider $#f := \sup_{y \in Y} #f^{-1}y$; then, with $g : Y \to Z$, we have:

$$\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \# \mathrm{id}_X$$

Not what we wanted! But $([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} \log([0,\infty],\geq,+,0)$ comes to the rescue: Put $|f| := \max\{0, \log \# f\}$; then: $|g| + |f| \geq |g \cdot |f|$. $0 \geq |\operatorname{id}_X|$.

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map $f : X \to Y$ fails to be injective.

First consider $#f := \sup_{y \in Y} #f^{-1}y$; then, with $g : Y \to Z$, we have:

$$\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \# \mathrm{id}_X$$

Not what we wanted! But $([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} \log ([0,\infty],\geq,+,0)$ comes to the rescue: Put $|f| := \max\{0, \log \# f\}$; then: $|g| + |f| \geq |g \cdot |f|$. $0 \geq |\operatorname{id}_X|$. Note: f injective $\iff |f| = 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQの

ob Lip = ob Met, Lip(X, Y) = Set(X, Y); why call this category Lip ??

Recall: $f: X \to Y$ is $K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$)

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \ge \operatorname{Lip}(g \cdot f), \quad 1 \ge \operatorname{Lip}(\operatorname{id}_X)$

No problem:

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0), \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then: $|g| + |f| \ge |g \cdot f|, \quad 0 \ge |\mathrm{id}_X|, \quad (f \text{ 1-Lipschitz} \iff |f| = 0)$

Walter Tholen (York University)

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip ?? $f: X \to Y$ is $K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$ Recall: In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz Question: How far is an arbitrary map f away from being 1-Lipschitz? That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated) $([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0), \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$ Then: $|g| + |f| \ge |g \cdot f|, \quad 0 \ge |\operatorname{id}_X|, \quad (f \text{ 1-Lipschitz} \iff |f| = 0)$

Walter Tholen (York University)

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip ??

Recall: $f: X \to Y$ is $K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff *f* is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$)

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \ge \operatorname{Lip}(g \cdot f), \quad 1 \ge \operatorname{Lip}(\operatorname{id}_X)$

No problem:

 $([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0), \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$

Then: $|g| + |f| \ge |g \cdot f|, \quad 0 \ge |\mathrm{id}_X|, \quad (f \text{ 1-Lipschitz} \iff |f| = 0)$

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip ??

Recall: $f: X \to Y$ is $K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff *f* is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$)

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \ge \operatorname{Lip}(g \cdot f), \quad 1 \ge \operatorname{Lip}(\operatorname{id}_X)$

No problem:

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0), \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then:
$$|g| + |f| \geq |g \cdot f|, \quad 0 \geq |\mathrm{id}_X|, \quad (f \text{ 1-Lipschitz} \iff |f| = 0), \quad \text{if } f = 0$$

Walter Tholen (York University)

7.6 On the axiomatics for weighted/normed categories

$$\begin{array}{ll} \text{The category } \mathbb{X} \text{ is } \mathcal{V}\text{-weighted by } |\cdot| : \mathbb{X} \longrightarrow \mathcal{V} \text{ if} \\ k \leq |\mathbf{1}_{X}| \\ |g| \otimes |f| \leq |g \cdot f| & \iff |f| \leq \bigwedge_{g} [|g|, |g \cdot f|] & \iff |f| = \bigwedge_{g} [|g|, |g \cdot f|] \\ & \iff |g| \leq \bigwedge_{f} [|f|, |g \cdot f|] & \iff |g| = \bigwedge_{f} [|f|, |g \cdot f|] \end{array}$$

The \mathcal{V} -weighted category \mathbb{X} is *right/left cancellable* if

$$\begin{split} |f| \otimes |g \cdot f| &\leq |g| &\iff |f| \leq \bigwedge_{f} [|g \cdot f|, |g|] =: |f|^{R} \quad (\text{right cancellable}) \\ |g| \otimes |g \cdot f| &\leq |f| &\iff |g| \leq \bigwedge_{f} [|g \cdot f|, |f|] =: |g|^{L} \quad (\text{left cancellable}; \text{Kubiś: "norm"}) \\ \text{Facts (Insall-Luckhardt for } \mathcal{V} = [0, \infty]): \quad \mathbb{X} \text{ weighted by } |-| \implies \mathbb{X} \text{ weighted by } |-|^{R} \text{ and } |-|^{L}, \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

7.6 On the axiomatics for weighted/normed categories

The category
$$\mathbb{X}$$
 is \mathcal{V} -weighted by $|\cdot| : \mathbb{X} \longrightarrow \mathcal{V}$ if
 $|g| \otimes |f| \leq |g \cdot f| \iff |f| \leq \bigwedge_{g} [|g|, |g \cdot f|] \iff |f| = \bigwedge_{g} [|g|, |g \cdot f|]$
 $\iff |g| \leq \bigwedge_{f} [|f|, |g \cdot f|] \iff |g| = \bigwedge_{f} [|f|, |g \cdot f|]$

The \mathcal{V} -weighted category \mathbb{X} is *right/left cancellable* if

$$\begin{split} |f| \otimes |g \cdot f| &\leq |g| & \iff |f| \leq \bigwedge_{g} [|g \cdot f|, |g|] =: |f|^{R} & \text{(right cancellable)} \\ |g| \otimes |g \cdot f| &\leq |f| & \iff |g| \leq \bigwedge_{g} [|g \cdot f|, |f|] =: |g|^{L} & \text{(left cancellable; Kubiś: "norm"} \end{split}$$

Facts (Insall-Luckhardt for $\mathcal{V} = [0, \infty]$): \mathbb{X} weighted by $|\cdot| \Longrightarrow \mathbb{X}$ weighted by $|\cdot|^R$ and $|\cdot|^L$, and $|f| \le |f|^{RR}$, $|f| \le |f|^{LL}$.

7.6 On the axiomatics for weighted/normed categories

The category
$$\mathbb{X}$$
 is \mathcal{V} -weighted by $|\cdot| : \mathbb{X} \longrightarrow \mathcal{V}$ if
 $k \le |\mathbf{1}_{X}|$
 $|g| \otimes |f| \le |g \cdot f| \qquad \iff |f| \le \bigwedge_{g} [|g|, |g \cdot f|] \qquad \iff |f| = \bigwedge_{g} [|g|, |g \cdot f|]$
 $\iff |g| \le \bigwedge_{f} [|f|, |g \cdot f|] \qquad \iff |g| = \bigwedge_{f} [|f|, |g \cdot f|]$

The $\mathcal V\text{-weighted category}\ \mathbb X$ is <code>right/left cancellable</code> if

$$\begin{split} |f| \otimes |g \cdot f| &\leq |g| &\iff |f| \leq \bigwedge_{g} [|g \cdot f|, |g|] =: |f|^{R} \quad (\text{right cancellable}) \\ |g| \otimes |g \cdot f| &\leq |f| &\iff |g| \leq \bigwedge_{f} [|g \cdot f|, |f|] =: |g|^{L} \quad (\text{left cancellable}; \text{Kubiś: "norm"}) \\ \\ \hline \text{Facts (Insall-Luckhardt for } \mathcal{V} = [0, \infty]): \quad \mathbb{X} \text{ weighted by } |\cdot| \implies \mathbb{X} \text{ weighted by } |\cdot|^{R} \text{ and } |\cdot|^{L}, \end{split}$$

and $|f| \le |f|^{RR}$, $|f| \le |f|^{LL}$.

Note:

An isomorphism f in \mathbb{X} may not satisfy $k \leq |f|$, and even when it does, we may not have $k \leq |f^{-1}|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal{V} = [0, \infty]$ considered in the literature, morphisms f, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms f with $k \le |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category X_0 of the (Set//V)-enriched category X.

Note:

An isomorphism *f* in \mathbb{X} may not satisfy $k \leq |f|$, and even when it does, we may not have $k \leq |f^{-1}|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal{V} = [0, \infty]$ considered in the literature, morphisms *f*, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms *f* with $k \le |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category X_0 of the (Set//V)-enriched category X.

7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X, -, 0) in subtractive notation:

$$x - 0 = x, \ x - x = 0, \ (x - y) - (z - y) = x - z$$

Write \mathcal{V} -Met for \mathcal{V} -Cat_{sym}: " \mathcal{V} -metric spaces" = \mathcal{V} -categories X with X(x, y) = X(y, x)Form the category \mathcal{V} -MetGrp of " \mathcal{V} -metric groups":

objects are \mathcal{V} -metric spaces X with a group structure that makes distances invariant under translations:

$$X(x, y) = X(x - z, y - z);$$

morphisms are \mathcal{V} -contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.

Recall: groups (X, -, 0) in subtractive notation:

$$x - 0 = x, \ x - x = 0, \ (x - y) - (z - y) = x - z$$

Write \mathcal{V} -Met for \mathcal{V} -Cat_{sym}: " \mathcal{V} -metric spaces" = \mathcal{V} -categories X with X(x, y) = X(y, x)Form the category \mathcal{V} -MetGrp of " \mathcal{V} -metric groups":

objects are \mathcal{V} -metric spaces X with a group structure that makes distances invariant under translations:

$$X(x,y) = X(x-z,y-z);$$

morphisms are \mathcal{V} -contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.

7.8.2 \mathcal{V} -metric groups as \mathcal{V} -weighted groups

The category $\mbox{Grp}/\!/\mathcal{V}$ has as

objects: \mathcal{V} -weighted sets (X, |-|) with a group structure such that

 $\mathbf{k} \leq |\mathbf{0}|, \quad |\mathbf{x}| \otimes |\mathbf{y}| \leq |\mathbf{x} - \mathbf{y}|;$

morphisms live in both, $\textbf{Set}/\!/\mathcal{V}$ and Grp.

Obtain:

$$\operatorname{Grp} / / \mathcal{V} \xleftarrow{\cong} \mathcal{V} \cdot \operatorname{MetGrp}$$

$$X \longmapsto X(x, y) = |x - y|$$

$$|x| = X(x,0) \lt X$$

Walter Tholen (York University)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

7.8.2 \mathcal{V} -metric groups as \mathcal{V} -weighted groups

The category $\mbox{Grp}/\!/\mathcal{V}$ has as

objects: \mathcal{V} -weighted sets (X, |-|) with a group structure such that

 $\mathbf{k} \leq |\mathbf{0}|, \quad |\mathbf{x}| \otimes |\mathbf{y}| \leq |\mathbf{x} - \mathbf{y}|;$

morphisms live in both, $\textbf{Set}/\!/\mathcal{V}$ and Grp.

Obtain:

$$\operatorname{Grp} / / \mathcal{V} \xleftarrow{\cong} \mathcal{V}$$
-MetGrp

$$X \longmapsto X(x,y) = |x - y|$$

$$|x| = X(x,0) \lt X$$

Walter Tholen (York University)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

Walter Tholen (York University)

Quantale-enriched categories

TACL School 2022 64/67

3

イロト イボト イヨト イヨト

7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

Walter Tholen (York University)

TACL School 2022 64/67

-

イロト イボト イヨト イヨト

7.10.1 Principal references, I

F. W. Lawvere: Metric spaces, generalized logic, and closed categories *Rendiconti del Seminario Matematico e Fisico di Milano* 43:135–166, 1973.
Republished in *Reprints in Theory and Applications of Categories* 1, 2002.

(This paper not only introduces metric spaces as small categories enriched in the extended real half-line, considered as a symmetric monoidal-closed category under addition, but it is also the birthplace of *normed categories*, introduced as categories enriched in a certain symmetric monoidal category of *normed sets*.)

D. Hofmann, G.J. Seal, W.T. (eds.): *Monoidal Topology–A Categorical Approach to Order, Metric and Topology*, Cambridge University Press, 2014.

(This book studies the category $(\mathbb{T}, \mathcal{V})$ -**Cat**, for a **Set**-monad \mathbb{T} which is assumed to interact with the \mathcal{V} -presheaf monad $\mathcal{P}_{\mathcal{V}}$ via a lax distributive law; for \mathbb{T} the identity monad on **Set**, one obtains the category \mathcal{V} -**Cat** as considered in these lectures.)

7.10.2 Principal references, II

- A. Akhvlediani, M.M. Clementino, W. Tholen: On the categorical meaning of Hausdorff and Gromov distances I, Topology and its Applications, 2010
- M.M. Clementino, D. Hofmann, W. Tholen: One setting for all: metric, topology, uniformity, approach structure, Applied Categorical Structures, 2004
- M.M. Clementino, W. Tholen: Metric, topology and multicategory–a common approach, Journal of Pure and Applied Algebra, 2003
- D. Hofmann: Topological theories and closed objects, Advances in Math., 2007
- D. Hofmann, C. Reis: Convergence and quantale-enriched categories, CAGSA, 2018
- A. Joyal, M. Tierney: An extension of the Galois theory of Grothendieck, AMS, 1984
- E. Martinelli: Actions, injectives and injective hulls in quantale-enriched categories, PhD thesis, Universidade de Aveiro, 2021
- I. Stubbe: "Hausdorff distance" via conical cocompletion, Cahiers de Topologie et Géom. Diff. Catégoriques, 2010

3

A D N A P N A P N A P N

7.10.3 Selected other references (related to weighted/normed cats)

- A. Aliouche and C. Simpson: Fixed points and lines in 2-metric spaces, Advances in Mathematics, 2012
- P. Bubenik, V. de Silva, J. Scott: Interleaving and Gromov-Hausdorff distance, arXiv, 2017
- M. Grandis: Directed Algebraic Topology, Cambridge University Press, 2009
- M. Insall, D. Luckhardt: Norms on categories and analogs of the Schröder-Bernstein Theorem, arXiv, 2021
- W. Kubiś: Categories with norms, arXiv, 2018
- A. Neeman: Metrics on triangulated categories, arXiv, 2019.
- P. Perrone: Lifting couples in Wasserstein spaces, arXiv, 2021
- W. Tholen: Remarks on weighted categories and the non-symmetric Pompeiu-Hausdorff-Gromov metric, Talk at CT 2018 (Ponta Delgada)
- W. Tholen, J. Wang: Metagories, Topology and its Applications, 2020