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Galois Adjunctions

Let A and B be posets:

Galois Adjunction

A ⊥ B
f

g

f (a) ≤ b ⇔ a ≤ g(b)
∀a ∈ A ∀b ∈ B

• Complete lattices: left
adjoints are precisely the
complete join
homomorphisms
f [
∨

i∈I ai] =
∨

i∈I f (ai).

Dual Galois Adjunction (Galois
Connection)

A ⊥op B
f

g

b ≤ f (a) ⇔ a ≤ g(b)
∀a ∈ A ∀b ∈ B

• Complete lattices:
f : A → Bop and g : B → Aop

are complete join
homomorphisms.
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Some adjunctions in frames

Examples in frames: Recall that a frame L is complete lattice with
distributive law: a ∧

∨
S =

∨
{a ∧ s | s ∈ S}

a ∧ _ : L −→ L ⊣ a → _ : L −→ L
x 7−→ a ∧ x y 7−→ a → y

a ∧ x ≤ y ⇔ x ≤ a → y (Heyting operator)

We have the pseducomplement of an element a ∈ L: a∗ =

a → 0.
P : L −→ L

x 7−→ x∗

P is a self-dual Galois adjoint : a ≤ b∗ ⇔ b ≤ a∗.
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The frame of Reals

Recall the frame of reals L(R). We define it as the frame presented
by:

• generators: (p,−) and (−,q) for all rationals p and q.

• relations:
(r1) (p,−) ∧ (−,q) = 0 if q ≤ p,
(r2) (p,−) ∨ (−,q) = 1 if p < q,
(r3) (p,−) =

∨
r>p(r,−),

(r4) (−,q) =
∨

s<q(−, s),
(r5)

∨
p∈Q(p,−) = 1,

(r6)
∨

q∈Q(−,q) = 1.

For rationals p ≤ q, the element (p,−)∧ (−,q) in L(R) is denoted by
(p,q).
A continuous real-valued function on a frame L is a frame
homomorphism L(R) → L.
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Covers

A cover of a frame L is a nonempty subset U ⊆ L such that
∨

U = 1.

• We say U refines V and write U ≤ V, if ∀u ∈ U ∃v ∈ V such that
u ≤ v.

• The largest common refinement for covers U and V is:
U ∧ V = {u ∧ v | u ∈ U, v ∈ V}.

• For a cover U ⊆ L and x ∈ L the star of x in U is the element:
Ux =

∨
{u ∈ U | u ∧ x ̸= 0}.

• For any pair of covers U, V ⊆ L, set UV = {Uv | v ∈ V} . Notice
UV is also a cover.

U
(∨

i∈I xi
)
=

∨
i∈I Uxi : For every cover U of L we have an adjunction

SU : L −→ L ⊣ S̃U : L −→ L
x 7−→ Ux y 7−→ y/U =

∨
{b | Ub ≤ y} .
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Uniform frames

A (covering) uniformity on L is a nonempty system U of covers of L
such that

(U1) U ∈ U and U ≤ V implies V ∈ U ,

(U2) U, V ∈ U implies U ∧ V ∈ U ,

(U3) for every U ∈ U there is a V ∈ U such that VV ≤ U, and

(U4) for every a ∈ L, a =
∨
{b | b ◁U a} ( where b ◁U a if Ub ≤ a for

some U ∈ U ).

A frame homomorphism h : L → M is a uniform homomorphism

h : (L,U) → (M,V)

if h[U] ∈ V for every U ∈ U .
for bases: For every U ∈ U , V ≤ h[U] for some V ∈ V .
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Metric Uniformity of L(R)

For every n natural

Dn =
{
(p,q) ∈ L(R) | q − p = 1

n
}

is a cover in L(R).

Then {Dn | n ∈ N} is a basis for the metric
uniformity of L(R). In general, we consider for every δ ∈ Q+:

Dδ =
{
(p,q) ∈ L(R) | q − p = 1

δ

}
.

A uniform continuous real-valued function on a (pre-)uniform
frame (L,U) is a frame homomorphism f : L(R) → L such that

∀n ∈ N U ≤ f [Dn] for some U ∈ U .
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Farness

Let U be a cover of L, a and b in L are U-far if

(1) ∀u ∈ U a ∧ u ̸= 0 ⇒ b ∧ u = 0

⇔ ∀u ∈ U b ∧ u ̸= 0 ⇒ a ∧ u = 0
⇔ ∀u ∈ U a ∧ u = 0 or b ∧ u = 0

(2) Ua ∧ b = 0

⇔ Ub ∧ a = 0

(3) Ua ≤ b∗

⇔ b ≤ (Ua)∗ ⇔ Ub ≤ a∗ ⇔ a ≤ (Ub)∗

(4) U ≤ {a∗,b∗}

Properties:
• a and b are U-far and V ≤ U ⇒ a and b are V-far.
• a and b are U-far, c ≤ a and d ≤ b ⇒ c and d are U-far.
• a and b are U-far ⇔ a∗∗ and b∗∗ are U-far.
• a and b are U-far for some U ∈ U ⇔ a ◁U b∗.
• a and b are U-far ⇒ a∗ ∨ b∗ = 1.
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Characterization Uniformly continuous real-valued functions

Theorem

Let (L,U) be a (pre-)uniform frame and f : L(R) → L a frame
homomorphism, then the following are equivalent:

(i) f is uniformly continuous.

That is, for every δ ∈ Q+ there is U ∈ U such that
U ≤ f [Dδ] =

{
f (p,q) | q − p = 1

δ

}
.

(ii) For every δ ∈ Q+ there is U ∈ U such that f (—, r) and
f (s,—) are U-far for s, r ∈ Q with s − r > 1

δ .
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Farness + Galois Adjunctions

Let U be a cover of L
P : L −→ L

a 7−→ a∗

SU : L −→ L
a 7−→ Ua

S̃U : L −→ L
b 7−→ b/U =

∨
{y | Uy ≤ b}

L ⊣ L ⊣ op L
SU P

PS̃U

FU

FU

We define FU = PSU.
For any a,b ∈ L we have

Ua ≤ b∗ ⇔ b ≤ (Ua)∗ ⇔ Ub ≤ a∗ ⇔ a ≤ (Ub)∗
SU(a) ≤ P(b) ⇔ b ≤ FU(a) ⇔ SU(b) ≤ P(a) ⇔ a ≤ FU(b).

FU is a self-dual Galois adjoint.
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FU

FU is a self-dual Galois adjoint (FU ⊣ FU), thus :

(F1) FU(
∨

ai) =
∧

FU(ai)

(F2) F2
U ≥ idL

(F3) F3
U = FU

Remember a,b ∈ L are U-far if b ≤ (Ua)∗ (equiv. a ≤ (Ub)∗).

• Definition: a and b are U-far if a ≤ FU(b) (equiv. b ≤ FU(a))

• FU(a) is the largest element in L that is U-far from a:

• From (F2): a ≤ FU(FU(a)) so a and FU(a) are U-far.

• By defintion, if b is U-far from a, then b ≤ FU(a).
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Separation Theorem

Theorem

Let (L,U) be a (pre-)uniform frame. If a and b are U-far for
some U ∈ U then there is a uniformly continuous f : L(R) → L
with 0 ≤ f ≤ 1 such that f (0,—) ∧ a = 0 and f (—, 1) ∧ b = 0.

Idea:

• Define f for generators of L(R): {ar}r∈Q ⊆ L and
{bs}s∈Q ⊆ L such that
f (—, r) = ar and f (s,—) = bs.

• Check relations (r1)-(r6).
• Check that ∀δ ∈ Q+ there is U ∈ U such that ar and

bs are U-far for every s − r > 1
δ (uniformity).
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Construction

• We will build {ar}r∈D ⊆ L and {bs}s∈D ⊆ L where

D =
{m

2n | n = 1, 2, · · · ,m = 0, · · · , 2n}
= {0, 1} ∪

⋃
n∈N

{
2k−1

2n | k = 1, · · · 2n−1
}
.

• a and b are U-far so we set U0 := U.

By (U3) there is V ∈ U
such that V ≤ V2 ≤ U0, and we define U1 := V. We iterate
and obtain a chain of covers

· · · ≤ U3 ≤ U2 ≤ U1 ≤ U0 = U

· · · FU3 FU2 FU1 FU0

where Un+1 ≤ U2
n+1 ≤ Un for every natural n.

• Idea of construction: When we have a distance of 1
2n in D

(s − r = 1
2n ) we want ar and bs to be Un-far.
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Construction

Idea: When we have a distance of 1
2n in D (s − r = 1

2n ) we want ar and
bs to be Un-far.

n=0

n=1 n=2

a0 = a

a 1
4
= FU2 FU1(a)

a 1
2
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