Farness via Galois adjunctions and a separation theorem for uniform frames

Ana Belén Avilez Joint work with Jorge Picado

CMUC, University of Coimbra 23 June 2022 TACL

Let A and B be posets:

Let A and B be posets:

Galois Adjunction

$$\begin{array}{c} A \xrightarrow{f} & B \\ \xleftarrow{g} & B \\ f(a) \leq b \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B \end{array}$$

Let A and B be posets:

Galois Adjunction

$$\begin{array}{c} A \xrightarrow{f} & B \\ \hline g & g \\ f(a) \leq b \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B \end{array}$$

Dual Galois Adjunction (Galois Connection) $A \xrightarrow{f} \xrightarrow{f} B$ $b \leq f(a) \Leftrightarrow a \leq g(b)$ $\forall a \in A \quad \forall b \in B$

Let A and B be posets:

Galois Adjunction

$$\begin{array}{c} A \xrightarrow{f} & B \\ \hline g & g \\ f(a) \leq b \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B \end{array}$$

• Complete lattices: left adjoints are precisely the complete join homomorphisms $f[\bigvee_{i \in I} a_i] = \bigvee_{i \in I} f(a_i).$ Dual Galois Adjunction (Galois Connection) $A \xrightarrow{f} \\ f \\ g \\ b \leq f(a) \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B$

Let A and B be posets:

Galois Adjunction

$$\begin{array}{c} A \xrightarrow{f} & B \\ \hline g & g \\ f(a) \leq b \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B \end{array}$$

• Complete lattices: left adjoints are precisely the complete join homomorphisms $f[\bigvee_{i \in I} a_i] = \bigvee_{i \in I} f(a_i).$ Dual Galois Adjunction (Galois Connection) $A \xrightarrow{f} \\ \overleftarrow{\Box}^{op} \\ g \\ b \leq f(a) \Leftrightarrow a \leq g(b) \\ \forall a \in A \quad \forall b \in B$

• Complete lattices: $f: A \rightarrow B^{op}$ and $g: B \rightarrow A^{op}$ are complete join homomorphisms.

Some adjunctions in frames

Examples in frames: Recall that a frame *L* is complete lattice with distributive law: $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$

Some adjunctions in frames

Examples in frames: Recall that a frame *L* is complete lattice with distributive law: $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$

Some adjunctions in frames

Examples in frames: Recall that a frame *L* is complete lattice with distributive law: $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}$

We have the pseducomplement of an element $a \in L$: $a^* = a \rightarrow 0$.

P is a self-dual Galois adjoint : $a \le b^* \Leftrightarrow b \le a^*$.

Recall the frame of reals $\mathcal{L}(\mathbb{R}).$ We define it as the frame presented by:

• generators: (p, -) and (-, q) for all rationals p and q.

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: (p, -) and (-, q) for all rationals p and q.
- relations:

(r1)
$$(p,-) \land (-,q) = 0$$
 if $q \le p$,
(r2) $(p,-) \lor (-,q) = 1$ if $p < q$,
(r3) $(p,-) = \bigvee_{r>p}(r,-)$,
(r4) $(-,q) = \bigvee_{s < q}(-,s)$,
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-) = 1$,
(r6) $\bigvee_{q \in \mathbb{Q}}(-,q) = 1$.

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: (p, -) and (-, q) for all rationals p and q.
- relations:

(r1)
$$(p,-) \land (-,q) = 0$$
 if $q \le p$,
(r2) $(p,-) \lor (-,q) = 1$ if $p < q$,
(r3) $(p,-) = \bigvee_{r>p}(r,-)$,
(r4) $(-,q) = \bigvee_{s < q}(-,s)$,
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-) = 1$,
(r6) $\bigvee_{q \in \mathbb{Q}}(-,q) = 1$.

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: (p, -) and (-, q) for all rationals p and q.
- relations:

$$\begin{array}{ll} (r1) & (p,-) \land (-,q) = 0 & \text{if } q \leq p, \\ (r2) & (p,-) \lor (-,q) = 1 & \text{if } p < q, \\ (r3) & (p,-) = \bigvee_{r > p} (r,-), \\ (r4) & (-,q) = \bigvee_{s < q} (-,s), \\ (r5) & \bigvee_{p \in \mathbb{Q}} (p,-) = 1, \\ (r6) & \bigvee_{q \in \mathbb{Q}} (-,q) = 1. \end{array}$$

For rationals $p \leq q$, the element $(p, -) \land (-, q)$ in $\mathcal{L}(\mathbb{R})$ is denoted by (p, q).

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: (p, -) and (-, q) for all rationals p and q.
- relations:

$$\begin{array}{ll} (r1) & (p,-) \land (-,q) = 0 & \text{if } q \leq p, \\ (r2) & (p,-) \lor (-,q) = 1 & \text{if } p < q, \\ (r3) & (p,-) = \bigvee_{r > p} (r,-), \\ (r4) & (-,q) = \bigvee_{s < q} (-,s), \\ (r5) & \bigvee_{p \in \mathbb{Q}} (p,-) = 1, \\ (r6) & \bigvee_{q \in \mathbb{Q}} (-,q) = 1. \end{array}$$

For rationals $p \leq q$, the element $(p, -) \land (-, q)$ in $\mathcal{L}(\mathbb{R})$ is denoted by (p, q).

A **continuous real-valued function** on a frame *L* is a frame homomorphism $\mathcal{L}(\mathbb{R}) \to L$.

A cover of a frame *L* is a nonempty subset $U \subseteq L$ such that $\bigvee U = 1$.

• We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $Ux = \bigvee \{u \in U \mid u \land x \neq 0\}.$

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers *U* and *V* is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $Ux = \bigvee \{u \in U \mid u \land x \neq 0\}.$
- For any pair of covers $U, V \subseteq L$, set $UV = \{Uv \mid v \in V\}$. Notice UV is also a cover.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers *U* and *V* is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $Ux = \bigvee \{u \in U \mid u \land x \neq 0\}.$
- For any pair of covers $U, V \subseteq L$, set $UV = \{Uv \mid v \in V\}$. Notice UV is also a cover.

A cover of a frame *L* is a nonempty subset $U \subseteq L$ such that $\bigvee U = 1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers *U* and *V* is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $Ux = \bigvee \{u \in U \mid u \land x \neq 0\}.$
- For any pair of covers $U, V \subseteq L$, set $UV = \{Uv \mid v \in V\}$. Notice UV is also a cover.

 $U\left(\bigvee_{i\in I} x_i\right) = \bigvee_{i\in I} Ux_i$

A cover of a frame *L* is a nonempty subset $U \subseteq L$ such that $\bigvee U = 1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers *U* and *V* is: $U \wedge V = \{u \wedge v \mid u \in U, v \in V\}.$
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $Ux = \bigvee \{u \in U \mid u \land x \neq 0\}.$
- For any pair of covers $U, V \subseteq L$, set $UV = \{Uv \mid v \in V\}$. Notice UV is also a cover.

 $U(\bigvee_{i \in I} x_i) = \bigvee_{i \in I} Ux_i$: For every cover U of L we have an adjunction

Uniform frames

A (covering) **uniformity** on *L* is a nonempty system \mathcal{U} of covers of *L* such that

- (U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
- (U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
- (U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $VV \leq U$, and
- (U4) for every $a \in L$, $a = \bigvee \{b \mid b \triangleleft_{\mathcal{U}} a\}$ (where $b \triangleleft_{\mathcal{U}} a$ if $Ub \leq a$ for some $U \in \mathcal{U}$).

Uniform frames

A (covering) **uniformity** on *L* is a nonempty system \mathcal{U} of covers of *L* such that

- (U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
- (U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
- (U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $VV \leq U$, and
- (U4) for every $a \in L$, $a = \bigvee \{b \mid b \triangleleft_{\mathcal{U}} a\}$ (where $b \triangleleft_{\mathcal{U}} a$ if $Ub \leq a$ for some $U \in \mathcal{U}$).

(pre-)uniformity: (U1), (U2), (U3) basis of a uniformity: (U2), (U3), (U4) basis of a (pre-)uniformity: (U2), (U3)

Uniform frames

A (covering) **uniformity** on *L* is a nonempty system \mathcal{U} of covers of *L* such that

- (U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
- (U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
- (U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $VV \leq U$, and
- (U4) for every $a \in L$, $a = \bigvee \{b \mid b \triangleleft_{\mathcal{U}} a\}$ (where $b \triangleleft_{\mathcal{U}} a$ if $Ub \leq a$ for some $U \in \mathcal{U}$).

A frame homomorphism $h: L \rightarrow M$ is a **uniform homomorphism**

$$h: (L, \mathcal{U}) \to (M, \mathcal{V})$$

if $h[U] \in V$ for every $U \in U$. for bases: For every $U \in U$, $V \leq h[U]$ for some $V \in V$.

$$\mathsf{D}_n = ig\{(\mathsf{p},\mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q}-\mathsf{p} = rac{1}{n}ig\}$$

is a cover in $\mathcal{L}(\mathbb{R})$.

$$\mathsf{D}_n = ig\{(\mathsf{p},\mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q}-\mathsf{p} = rac{1}{n}ig\}$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\{D_n \mid n \in \mathbb{N}\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$.

$$\mathsf{D}_n = \left\{ (\mathsf{p}, \mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q} - \mathsf{p} = \frac{1}{n} \right\}$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\{D_n \mid n \in \mathbb{N}\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$. In general, we consider for every $\delta \in \mathbb{Q}^+$:

$$\mathsf{D}_{\delta} = \left\{ (\mathsf{p}, \mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q} - \mathsf{p} = rac{1}{\delta}
ight\}.$$

$$\mathsf{D}_n = \left\{ (\mathsf{p}, \mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q} - \mathsf{p} = \frac{1}{n} \right\}$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\{D_n \mid n \in \mathbb{N}\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$. In general, we consider for every $\delta \in \mathbb{Q}^+$:

$$\mathsf{D}_{\delta} = \left\{ (\mathsf{p}, \mathsf{q}) \in \mathcal{L}(\mathbb{R}) \mid \mathsf{q} - \mathsf{p} = rac{1}{\delta}
ight\}.$$

A **uniform continuous real-valued function** on a (pre-)uniform frame (L, U) is a frame homomorphism $f : \mathcal{L}(\mathbb{R}) \to L$ such that

 $\forall n \in \mathbb{N} \quad U \leq f[D_n] \text{ for some } U \in \mathcal{U}.$

Let U be a cover of L, a and b in L are U-far if

Let U be a cover of L, a and b in L are U-far if (1) $\forall u \in U$ $a \land u \neq 0 \Rightarrow b \land u = 0$

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U$ $a \land u \neq o \Rightarrow b \land u = o$ $\Rightarrow \forall u \in U$ $b \land u \neq o \Rightarrow a \land u = o$ $\Rightarrow \forall u \in U$ $a \land u = o$ or $b \land u = o$

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U \quad a \land u \neq o \Rightarrow b \land u = o$ $\Rightarrow \quad \forall u \in U \quad b \land u \neq o \Rightarrow a \land u = o$ $\Rightarrow \quad \forall u \in U \quad a \land u = o \quad or \quad b \land u = o$ (2) $Ua \land b = o$

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U \quad a \land u \neq o \Rightarrow b \land u = o$ $\Rightarrow \quad \forall u \in U \quad b \land u \neq o \Rightarrow a \land u = o$ $\Rightarrow \quad \forall u \in U \quad a \land u = o \quad or \quad b \land u = o$ (2) $Ua \land b = o \quad \Leftrightarrow \quad Ub \land a = o$

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U$ $a \land u \neq 0 \Rightarrow b \land u = 0$ $\Rightarrow \forall u \in U$ $b \land u \neq 0 \Rightarrow a \land u = 0$ $\Rightarrow \forall u \in U$ $a \land u = 0$ or $b \land u = 0$ (2) $Ua \land b = 0 \Leftrightarrow Ub \land a = 0$ (3) $Ua \leq b^*$

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U$ $a \land u \neq 0 \Rightarrow b \land u = 0$ $\Leftrightarrow \forall u \in U$ $b \land u \neq 0 \Rightarrow a \land u = 0$ $\Leftrightarrow \forall u \in U$ $a \land u = 0$ or $b \land u = 0$ (2) $Ua \land b = 0 \Leftrightarrow Ub \land a = 0$ (3) $Ua \leq b^* \Leftrightarrow b \leq (Ua)^* \Leftrightarrow Ub \leq a^* \Leftrightarrow a \leq (Ub)^*$

Farness

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U$ $a \land u \neq 0 \Rightarrow b \land u = 0$ $\Leftrightarrow \forall u \in U$ $b \land u \neq 0 \Rightarrow a \land u = 0$ $\Leftrightarrow \forall u \in U$ $a \land u = 0$ or $b \land u = 0$ (2) $Ua \land b = 0 \Leftrightarrow Ub \land a = 0$ (3) $Ua \leq b^* \Leftrightarrow b \leq (Ua)^* \Leftrightarrow Ub \leq a^* \Leftrightarrow a \leq (Ub)^*$ (4) $U \leq \{a^*, b^*\}$

Farness

Let U be a cover of L, a and b in L are U-far if

(1) $\forall u \in U$ $a \land u \neq 0 \Rightarrow b \land u = 0$ $\Rightarrow \forall u \in U$ $b \land u \neq 0 \Rightarrow a \land u = 0$ $\Rightarrow \forall u \in U$ $a \land u = 0$ or $b \land u = 0$ (2) $Ua \land b = 0 \Leftrightarrow Ub \land a = 0$ (3) $Ua \leq b^* \Leftrightarrow b \leq (Ua)^* \Leftrightarrow Ub \leq a^* \Leftrightarrow a \leq (Ub)^*$ (4) $U \leq \{a^*, b^*\}$

Properties:

- *a* and *b* are *U*-far and $V \leq U \Rightarrow a$ and *b* are *V*-far.
- *a* and *b* are *U*-far, $c \le a$ and $d \le b \Rightarrow c$ and *d* are *U*-far.
- *a* and *b* are *U*-far \Leftrightarrow *a*^{**} and *b*^{**} are *U*-far.
- *a* and *b* are *U*-far for some $U \in \mathcal{U} \Leftrightarrow a \triangleleft_{\mathcal{U}} b^*$.
- *a* and *b* are *U*-far \Rightarrow *a*^{*} \lor *b*^{*} = 1.

Let (L, U) be a (pre-)uniform frame and $f : \mathcal{L}(\mathbb{R}) \to L$ a frame homomorphism, then the following are equivalent:

Let (L, U) be a (pre-)uniform frame and $f : \mathcal{L}(\mathbb{R}) \to L$ a frame homomorphism, then the following are equivalent:

(i) *f* is uniformly continuous.

Let (L, U) be a (pre-)uniform frame and $f : \mathcal{L}(\mathbb{R}) \to L$ a frame homomorphism, then the following are equivalent:

(i) f is uniformly continuous. That is, for every $\delta \in \mathbb{Q}^+$ there is $U \in \mathcal{U}$ such that $U \leq f[D_{\delta}] = \{f(p,q) \mid q-p = \frac{1}{\delta}\}.$

Let (L, U) be a (pre-)uniform frame and $f : \mathcal{L}(\mathbb{R}) \to L$ a frame homomorphism, then the following are equivalent:

- (i) f is uniformly continuous. That is, for every $\delta \in \mathbb{Q}^+$ there is $U \in \mathcal{U}$ such that $U \leq f[D_{\delta}] = \{f(p,q) \mid q-p = \frac{1}{\delta}\}.$
- (ii) For every $\delta \in \mathbb{Q}^+$ there is $U \in \mathcal{U}$ such that f(-, r) and f(s, -) are U-far for $s, r \in \mathbb{Q}$ with $s r > \frac{1}{\delta}$.

Let U be a cover of L

$$\mathsf{P}: \ L \longrightarrow \ L$$

$$a \hspace{0.2cm} \mapsto \hspace{0.2cm} a^{*}$$

Let U be a cover of L

We define $F_U = PS_U$.

We define $F_U = PS_U$. For any $a, b \in L$ we have

We define $F_U = \mathsf{PS}_U$. For any $a, b \in L$ we have $Ua \leq b^* \quad \Leftrightarrow \quad b \leq (Ua)^* \quad \Leftrightarrow \quad Ub \leq a^* \quad \Leftrightarrow \quad a \leq (Ub)^*$

 $\begin{array}{lll} \text{We define } F_U = \mathsf{PS}_U. \\ \text{For any } a, b \in L \text{ we have} \\ & Ua \leq b^* \quad \Leftrightarrow \quad b \leq (Ua)^* \quad \Leftrightarrow \quad Ub \leq a^* \quad \Leftrightarrow \quad a \leq (Ub)^* \\ \text{S}_U(a) \leq \mathsf{P}(b) \quad \Leftrightarrow \quad b \leq \mathsf{F}_U(a) \quad \Leftrightarrow \quad \mathsf{S}_U(b) \leq \mathsf{P}(a) \quad \Leftrightarrow \quad a \leq \mathsf{F}_U(b). \end{array}$

 $\begin{array}{lll} \text{We define } F_U = \mathsf{PS}_U. \\ \text{For any } a, b \in L \text{ we have} \\ & Ua \leq b^* \quad \Leftrightarrow \quad b \leq (Ua)^* \quad \Leftrightarrow \quad Ub \leq a^* \quad \Leftrightarrow \quad a \leq (Ub)^* \\ & \mathsf{S}_U(a) \leq \mathsf{P}(b) \quad \Leftrightarrow \quad b \leq \mathsf{F}_U(a) \quad \Leftrightarrow \quad \mathsf{S}_U(b) \leq \mathsf{P}(a) \quad \Leftrightarrow \quad a \leq \mathsf{F}_U(b). \end{array}$

We define $F_U = PS_U$. For any $a, b \in L$ we have $Ua \leq b^* \Leftrightarrow b \leq (Ua)^* \Leftrightarrow Ub \leq a^* \Leftrightarrow a \leq (Ub)^*$ $S_U(a) \leq P(b) \Leftrightarrow b \leq F_U(a) \Leftrightarrow S_U(b) \leq P(a) \Leftrightarrow a \leq F_U(b)$.

 F_U is a self-dual Galois adjoint.

```
(F1) F_U(\bigvee a_i) = \bigwedge F_U(a_i)
(F2) F_U^2 \ge id_L
(F3) F_U^3 = F_U
```

```
(F1) F_U(\bigvee a_i) = \bigwedge F_U(a_i)
(F2) F_U^2 \ge id_L
(F3) F_U^3 = F_U
```

```
(F1) F_U(\bigvee a_i) = \bigwedge F_U(a_i)
(F2) F_U^2 \ge id_L
(F3) F_U^3 = F_U
```

Remember $a, b \in L$ are U-far if $b \leq (Ua)^*$ (equiv. $a \leq (Ub)^*$).

• **Definition**: *a* and *b* are *U*-far if $a \leq F_U(b)$ (equiv. $b \leq F_U(a)$)

```
 \begin{array}{ll} (\mathsf{F1}) \ \ \mathsf{F}_U(\bigvee a_i) = \bigwedge \mathsf{F}_U(a_i) \\ (\mathsf{F2}) \ \ \mathsf{F}_U^2 \geq id_L \\ (\mathsf{F3}) \ \ \mathsf{F}_U^3 = \mathsf{F}_U \end{array}
```

- **Definition**: *a* and *b* are *U*-far if $a \leq F_U(b)$ (equiv. $b \leq F_U(a)$)
- $F_U(a)$ is the largest element in L that is U-far from a:

```
(F1) F_U(\bigvee a_i) = \bigwedge F_U(a_i)
(F2) F_U^2 \ge id_L
(F3) F_U^3 = F_U
```

- **Definition**: *a* and *b* are *U*-far if $a \leq F_U(b)$ (equiv. $b \leq F_U(a)$)
- $F_U(a)$ is the largest element in *L* that is *U*-far from *a*:
 - From (F2): $a \leq F_U(F_U(a))$ so a and $F_U(a)$ are U-far.

```
(F1) F_U(\bigvee a_i) = \bigwedge F_U(a_i)
(F2) F_U^2 \ge id_L
(F3) F_U^3 = F_U
```

- **Definition**: *a* and *b* are *U*-far if $a \leq F_U(b)$ (equiv. $b \leq F_U(a)$)
- $F_U(a)$ is the largest element in *L* that is *U*-far from *a*:
 - From (F2): $a \leq F_U(F_U(a))$ so a and $F_U(a)$ are U-far.
 - By definition, if b is U-far from a, then $b \leq F_U(a)$.

Theorem

Let (L, U) be a (pre-)uniform frame. If a and b are U-far for some $U \in U$ then there is a uniformly continuous $f : \mathcal{L}(\mathbb{R}) \to L$ with $0 \le f \le 1$ such that $f(0, -) \land a = 0$ and $f(-, 1) \land b = 0$.

Theorem

Let (L, U) be a (pre-)uniform frame. If a and b are U-far for some $U \in U$ then there is a uniformly continuous $f : \mathcal{L}(\mathbb{R}) \to L$ with $0 \le f \le 1$ such that $f(0, -) \land a = 0$ and $f(-, 1) \land b = 0$.

Idea:

Theorem

Let (L, U) be a (pre-)uniform frame. If a and b are U-far for some $U \in U$ then there is a uniformly continuous $f : \mathcal{L}(\mathbb{R}) \to L$ with $0 \leq f \leq 1$ such that $f(0, -) \land a = 0$ and $f(-, 1) \land b = 0$.

Idea:

• Define f for generators of $\mathcal{L}(\mathbb{R})$: $\{a_r\}_{r\in\mathbb{Q}} \subseteq L$ and $\{b_s\}_{s\in\mathbb{Q}} \subseteq L$ such that $f(-,r) = a_r$ and $f(s,-) = b_s$.

Theorem

Let (L, U) be a (pre-)uniform frame. If a and b are U-far for some $U \in U$ then there is a uniformly continuous $f : \mathcal{L}(\mathbb{R}) \to L$ with $0 \leq f \leq 1$ such that $f(0, -) \land a = 0$ and $f(-, 1) \land b = 0$.

Idea:

- Define f for generators of $\mathcal{L}(\mathbb{R})$: $\{a_r\}_{r\in\mathbb{Q}} \subseteq L$ and $\{b_s\}_{s\in\mathbb{Q}} \subseteq L$ such that $f(-,r) = a_r$ and $f(s,-) = b_s$.
- Check relations (r1)-(r6).

Theorem

Let (L, U) be a (pre-)uniform frame. If a and b are U-far for some $U \in U$ then there is a uniformly continuous $f : \mathcal{L}(\mathbb{R}) \to L$ with $0 \leq f \leq 1$ such that $f(0, -) \land a = 0$ and $f(-, 1) \land b = 0$.

Idea:

- Define f for generators of $\mathcal{L}(\mathbb{R})$: $\{a_r\}_{r\in\mathbb{Q}} \subseteq L$ and $\{b_s\}_{s\in\mathbb{Q}} \subseteq L$ such that $f(-,r) = a_r$ and $f(s,-) = b_s$.
- Check relations (r1)-(r6).
- Check that $\forall \delta \in \mathbb{Q}^+$ there is $U \in \mathcal{U}$ such that a_r and b_s are *U*-far for every $s r > \frac{1}{\delta}$ (uniformity).

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots 2^{n-1} \right\}.$$

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots 2^{n-1} \right\}.$$

• *a* and *b* are *U*-far so we set $U_0 := U$.

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots 2^{n-1} \right\}.$$

• *a* and *b* are *U*-far so we set $U_0 := U$. By (U3) there is $V \in U$ such that $V \le V^2 \le U_0$, and we define $U_1 := V$.

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots, 2^{n-1} \right\}.$$

• *a* and *b* are *U*-far so we set $U_0 := U$. By (U3) there is $V \in U$ such that $V \le V^2 \le U_0$, and we define $U_1 := V$. We iterate and obtain a chain of covers

$$\cdots \ \leq \ U_3 \ \leq \ U_2 \ \leq \ U_1 \ \leq \ U_0 = U$$

where $U_{n+1} \leq U_{n+1}^2 \leq U_n$ for every natural n.

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots 2^{n-1} \right\}.$$

 a and b are U-far so we set U₀ := U. By (U₃) there is V ∈ U such that V ≤ V² ≤ U₀, and we define U₁ := V. We iterate and obtain a chain of covers

where $U_{n+1} \leq U_{n+1}^2 \leq U_n$ for every natural n.

• We will build $\{a_r\}_{r\in\mathbb{D}}\subseteq L$ and $\{b_s\}_{s\in\mathbb{D}}\subseteq L$ where

$$\mathbb{D} = \left\{ \frac{m}{2^n} \mid n = 1, 2, \cdots, m = 0, \cdots, 2^n \right\}$$
$$= \left\{ 0, 1 \right\} \cup \bigcup_{n \in \mathbb{N}} \left\{ \frac{2k-1}{2^n} \mid k = 1, \cdots, 2^{n-1} \right\}.$$

• *a* and *b* are *U*-far so we set $U_0 := U$. By (U3) there is $V \in U$ such that $V \le V^2 \le U_0$, and we define $U_1 := V$. We iterate and obtain a chain of covers

where $U_{n+1} \leq U_{n+1}^2 \leq U_n$ for every natural n.

• Idea of construction: When we have a distance of $\frac{1}{2^n}$ in \mathbb{D} $(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

Idea: When we have a distance of $\frac{1}{2^n}$ in $\mathbb{D}(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

n=0 n=0 $a_0 = a$ $b_0 = 1$

*a*₁ = 1

 $b_1 = b$

Idea: When we have a distance of $\frac{1}{2^n}$ in $\mathbb{D}(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

 n=0
 n=1
 n=0
 n=1

 $a_0 = a$ $b_0 = 1$ $b_0 = 1$

 $a_{\frac{1}{2}} = F_{U_1}(b)$ $b_{\frac{1}{2}} = F_{U_1}(a)$

*a*₁ = 1

 $b_1 = b$

Idea: When we have a distance of $\frac{1}{2^n}$ in $\mathbb{D}(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

n=o **n=1** n=2 n=o **n=1** n=2 $b_{\rm o} = 1$ $a_0 = a$ $a_{\frac{1}{4}} = \mathsf{F}_{U_2}\mathsf{F}_{U_1}(a)$ $b_{\frac{1}{4}}=\mathsf{F}_{U_2}(a)$ $b_{\frac{1}{2}} = F_{U_1}(a)$ $a_{\frac{1}{2}} = F_{U_1}(b)$ $b_{\frac{3}{4}}=\mathsf{F}_{U_2}\mathsf{F}_{U_1}(b)$ $a_{\frac{3}{4}} = F_{U_2}(b)$ $b_1 = b$ $a_1 = 1$

Idea: When we have a distance of $\frac{1}{2^n}$ in $\mathbb{D}(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

n=o **n=1** n=2 n=o **n=1** n=2 $b_{\rm o} = 1$ $a_0 = a$ $a_{\frac{1}{4}} = \mathsf{F}_{U_2}\mathsf{F}_{U_1}(a)$ $b_{\frac{1}{4}}=\mathsf{F}_{U_2}(a)$ $b_{\frac{1}{2}} = F_{U_1}(a)$ $a_{\frac{1}{2}} = F_{U_1}(b)$ $b_{\frac{3}{4}}=\mathsf{F}_{U_2}\mathsf{F}_{U_1}(b)$ $a_{\frac{3}{4}} = F_{U_2}(b)$ $b_1 = b$ $a_1 = 1$

Idea: When we have a distance of $\frac{1}{2^n}$ in $\mathbb{D}(s - r = \frac{1}{2^n})$ we want a_r and b_s to be U_n -far.

n=o **n=1 n=2** n=o **n=1** n=2 $b_0 = 1$ $a_0 = a$ $a_{\frac{1}{4}} = \mathsf{F}_{U_2}\mathsf{F}_{U_1}(a)$ $b_{\frac{1}{4}} = F_{U_2}(a)$ $b_{\frac{1}{2}} = F_{U_1}(a)$ $a_{\frac{1}{2}} = F_{U_1}(b)$ $a_{\frac{3}{4}} = F_{U_2}(b)$ $b_{\frac{3}{4}} = \mathsf{F}_{U_2}\mathsf{F}_{U_1}(b)$ $b_1 = b$ $a_1 = 1$

$$a_{0} = a, a_{1} = 1 \text{ and } a_{\frac{2k-1}{2^{n}}} = F_{U_{n}}\left(b_{\frac{k}{2^{n-1}}}\right) \text{ for } k = 1, \cdots, 2^{n} - 1$$

 $b_{0} = 1, b_{1} = b \text{ and } b_{\frac{2k-1}{2^{n}}} = F_{U_{n}}\left(a_{\frac{k-1}{2^{n-1}}}\right) \text{ for } k = 1, \cdots, 2^{n} - 1.$

References

A. B. Avilez and J. Picado, Uniform continuity of pointfree real functions via farness and related Galois connections, DMUC preprint 22-08.

B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática, Vol. 12, University of Coimbra (1997).

J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, vol. 28, Springer, Basel (2012).

D. Preiss and J. Vilimovský, In-between theorems in uniform spaces, *Trans. Amer. Math. Soc.* 261 (1980) 483–501.

A. Pultr, Pointless uniformities I, Comment. Math. Univ. Carolin. 25 (1984) 91–104.

J. M. Smirnov, On proximity spaces, (Russian), Mat. Sb. 31 (1952) 543–574; English trans.: Amer. Math. Soc. Transl. (Ser. 2) 38 (1964) 5–35.

Thank you!