Farness via Galois adjunctions and a separation theorem for uniform frames

Ana Belén Avilez
Joint work with Jorge Picado
CMUC, University of Coimbra
23 June 2022
TACL

Galois Adjunctions

Let A and B be posets:

Galois Adjunctions

Let A and B be posets:

Galois Adjunction

$$
f(a) \leq b \Leftrightarrow a \leq g(b)
$$

$$
\forall a \in A \quad \forall b \in B
$$

Galois Adjunctions

Let A and B be posets:

Galois Adjunction

$$
f(a) \leq b \Leftrightarrow a \leq g(b)
$$

$$
\forall a \in A \quad \forall b \in B
$$

Dual Galois Adjunction (Galois
Connection)

$b \leq f(a) \Leftrightarrow a \leq g(b)$ $\forall a \in A \quad \forall b \in B$

Galois Adjunctions

Let A and B be posets:

Galois Adjunction

$f(a) \leq b \Leftrightarrow a \leq g(b)$
$\forall a \in A \quad \forall b \in B$

- Complete lattices: left adjoints are precisely the complete join homomorphisms

$$
f\left[\bigvee_{i \in I} a_{i}\right]=\bigvee_{i \in I} f\left(a_{i}\right) .
$$

Dual Galois Adjunction (Galois
Connection)

$b \leq f(a) \Leftrightarrow a \leq g(b)$
$\forall a \in A \quad \forall b \in B$

Galois Adjunctions

Let A and B be posets:

Galois Adjunction

- Complete lattices: left adjoints are precisely the complete join homomorphisms $f\left[\bigvee_{i \in I} a_{i}\right]=\bigvee_{i \in I} f\left(a_{i}\right)$.

Dual Galois Adjunction (Galois Connection)

$$
\begin{gathered}
b \leq f(a) \Leftrightarrow a \leq g(b) \\
\forall a \in A \quad \forall b \in B
\end{gathered}
$$

- Complete lattices: $f: A \rightarrow B^{o p}$ and $g: B \rightarrow A^{o p}$ are complete join homomorphisms.

Some adjunctions in frames

Examples in frames: Recall that a frame L is complete lattice with distributive law: $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$

Some adjunctions in frames

Examples in frames: Recall that a frame L is complete lattice with distributive law: $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$

$$
\begin{aligned}
a \wedge_{-}: L & \longrightarrow L \\
x & \longmapsto a \wedge x
\end{aligned} \quad \nmid \quad a \rightarrow_{-}: \begin{array}{ll}
L & \longrightarrow L \\
y & \longmapsto a \rightarrow y \\
a & \\
& \\
& \\
& \\
& \\
\end{array}
$$

Some adjunctions in frames

Examples in frames: Recall that a frame L is complete lattice with distributive law: $a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}$

$$
\begin{aligned}
a \wedge_{-}: L & \longrightarrow L \\
x & \longmapsto a \wedge x
\end{aligned} \quad \dashv \quad a \rightarrow_{-}: L \quad \longrightarrow L
$$

We have the pseducomplement of an element $a \in L: a^{*}=$ $a \rightarrow 0$.

$$
\begin{array}{llll}
\mathrm{P}: & L & \longrightarrow L \\
x & \longmapsto x^{*}
\end{array}
$$

P is a self-dual Galois adjoint : $a \leq b^{*} \Leftrightarrow b \leq a^{*}$.

The frame of Reals

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: $(p,-)$ and $(-, q)$ for all rationals p and q.

The frame of Reals

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: $(p,-)$ and $(-, q)$ for all rationals p and q.
- relations:
(r1) $(p,-) \wedge(-, q)=0$ if $q \leq p$,
(r2) $(p,-) \vee(-, q)=1$ if $p<q$,
(r3) $(p,-)=\bigvee_{r>p}(r,-)$,
(r4) $(-, q)=\bigvee_{s<q}(-, s)$,
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$,
(r6) $\bigvee_{q \in \mathbb{Q}}(-, q)=1$.

The frame of Reals

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: $(p,-)$ and $(-, q)$ for all rationals p and q.
- relations:
(r1) $(p,-) \wedge(-, q)=0$ if $q \leq p$,
(r2) $(p,-) \vee(-, q)=1$ if $p<q$,
(r3) $(p,-)=\bigvee_{r>p}(r,-)$,
(r4) $(-, q)=\bigvee_{s<q}(-, s)$,
(r5) $\bigvee_{p \in \mathbb{Q}}(p,-)=1$,
(r6) $\bigvee_{q \in \mathbb{Q}}(-, q)=1$.

The frame of Reals

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: $(p,-)$ and $(-, q)$ for all rationals p and q.
- relations:

$$
\begin{aligned}
& \text { (r1) }(p,-) \wedge(-, q)=0 \text { if } q \leq p, \\
& \text { (r2) }(p,-) \vee(-, q)=1 \text { if } p<q, \\
& \text { (r3) }(p,-)=\vee_{r>p}(r,-), \\
& \text { (r4) }(-, q)=\bigvee_{s<q}(-, s), \\
& \text { (r5) } \vee_{p \in \mathbb{Q}}(p,-)=1, \\
& \text { (r6) } \vee_{q \in \mathbb{Q}}(-, q)=1 .
\end{aligned}
$$

For rationals $p \leq q$, the element $(p,-) \wedge(-, q)$ in $\mathcal{L}(\mathbb{R})$ is denoted by (p, q).

The frame of Reals

Recall the frame of reals $\mathcal{L}(\mathbb{R})$. We define it as the frame presented by:

- generators: $(p,-)$ and $(-, q)$ for all rationals p and q.
- relations:

$$
\begin{aligned}
& \text { (r1) }(p,-) \wedge(-, q)=0 \text { if } q \leq p, \\
& \text { (r2) }(p,-) \vee(-, q)=1 \text { if } p<q, \\
& \text { (r3) }(p,-)=\bigvee_{r>p}(r,-), \\
& \text { (r4) }(-, q)=\bigvee_{s<q}(-, s), \\
& \text { (r5) } \bigvee_{p \in \mathbb{Q}}(p,-)=1, \\
& \text { (r6) } \vee_{q \in \mathbb{Q}}(-, q)=1 .
\end{aligned}
$$

For rationals $p \leq q$, the element $(p,-) \wedge(-, q)$ in $\mathcal{L}(\mathbb{R})$ is denoted by (p, q).
A continuous real-valued function on a frame L is a frame homomorphism $\mathcal{L}(\mathbb{R}) \rightarrow L$.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $U x=\bigvee\{u \in U \mid u \wedge x \neq 0\}$.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $U x=\bigvee\{u \in U \mid u \wedge x \neq 0\}$.
- For any pair of covers $U, V \subseteq L$, set $U V=\{U v \mid V \in V\}$. Notice UV is also a cover.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $U x=\bigvee\{u \in U \mid u \wedge x \neq 0\}$.
- For any pair of covers $U, V \subseteq L$, set $U V=\{U v \mid V \in V\}$. Notice UV is also a cover.

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $U x=\bigvee\{u \in U \mid u \wedge x \neq 0\}$.
- For any pair of covers $U, V \subseteq L$, set $U V=\{U v \mid V \in V\}$. Notice UV is also a cover.
$U\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I} U x_{i}$

Covers

A cover of a frame L is a nonempty subset $U \subseteq L$ such that $\bigvee U=1$.

- We say U refines V and write $U \leq V$, if $\forall u \in U \exists v \in V$ such that $u \leq v$.
- The largest common refinement for covers U and V is: $U \wedge V=\{u \wedge v \mid u \in U, v \in V\}$.
- For a cover $U \subseteq L$ and $x \in L$ the star of x in U is the element: $U x=\bigvee\{u \in U \mid u \wedge x \neq 0\}$.
- For any pair of covers $U, V \subseteq L$, set $U V=\{U v \mid V \in V\}$. Notice UV is also a cover.
$U\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in 1} U x_{i}$: For every cover U of L we have an adjunction $\begin{aligned} S_{U}: L & \longrightarrow L \\ x & \longmapsto U x\end{aligned} \quad \begin{aligned} \widetilde{S_{U}}: L & \longrightarrow L \\ y & \longmapsto y / U=\bigvee\{b \mid U b \leq y\} .\end{aligned}$

Uniform frames

A (covering) uniformity on L is a nonempty system \mathcal{U} of covers of L such that
(U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
(U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
(U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $V V \leq U$, and
(U4) for every $a \in L, a=\bigvee\left\{b \mid b \triangleleft_{\mathcal{U}} a\right\}$ (where $b \triangleleft_{\mathcal{U}} a$ if $U b \leq a$ for some $U \in \mathcal{U})$.

Uniform frames

A (covering) uniformity on L is a nonempty system \mathcal{U} of covers of L such that
(U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
(U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
(U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $V V \leq U$, and
(U4) for every $a \in L, a=\bigvee\{b \mid b \triangleleft \mathcal{U} a\}$ (where $b \triangleleft_{\mathcal{U}} a$ if $U b \leq a$ for some $U \in \mathcal{U})$.
(pre-)uniformity: (U_{1}), (U_{2}), (U_{3})
basis of a uniformity: (U2), (U3), (U4) basis of a (pre-)uniformity: (U2), (U3)

Uniform frames

A (covering) uniformity on L is a nonempty system \mathcal{U} of covers of L such that
(U1) $U \in \mathcal{U}$ and $U \leq V$ implies $V \in \mathcal{U}$,
(U2) $U, V \in \mathcal{U}$ implies $U \wedge V \in \mathcal{U}$,
(U3) for every $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that $V V \leq U$, and
(U4) for every $a \in L, a=\bigvee\{b \mid b \triangleleft \mathcal{U} a\}$ (where $b \triangleleft \mathcal{U} a$ if $U b \leq a$ for some $U \in \mathcal{U})$.

A frame homomorphism $h: L \rightarrow M$ is a uniform homomorphism

$$
h:(L, \mathcal{U}) \rightarrow(M, \mathcal{V})
$$

if $h[U] \in V$ for every $U \in \mathcal{U}$.
for bases: For every $U \in \mathcal{U}, V \leq h[U]$ for some $V \in \mathcal{V}$.

Metric Uniformity of $\mathcal{L}(\mathbb{R})$

For every n natural

$$
D_{n}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{n}\right.\right\}
$$

is a cover in $\mathcal{L}(\mathbb{R})$.

Metric Uniformity of $\mathcal{L}(\mathbb{R})$

For every n natural

$$
D_{n}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{n}\right.\right\}
$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\left\{D_{n} \mid n \in \mathbb{N}\right\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$.

Metric Uniformity of $\mathcal{L}(\mathbb{R})$

For every n natural

$$
D_{n}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{n}\right.\right\}
$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\left\{D_{n} \mid n \in \mathbb{N}\right\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$. In general, we consider for every $\delta \in \mathbb{Q}^{+}$:

$$
D_{\delta}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{\delta}\right.\right\}
$$

Metric Uniformity of $\mathcal{L}(\mathbb{R})$

For every n natural

$$
D_{n}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{n}\right.\right\}
$$

is a cover in $\mathcal{L}(\mathbb{R})$. Then $\left\{D_{n} \mid n \in \mathbb{N}\right\}$ is a basis for the metric uniformity of $\mathcal{L}(\mathbb{R})$. In general, we consider for every $\delta \in \mathbb{Q}^{+}$:

$$
D_{\delta}=\left\{(p, q) \in \mathcal{L}(\mathbb{R}) \left\lvert\, q-p=\frac{1}{\delta}\right.\right\}
$$

A uniform continuous real-valued function on a (pre-)uniform frame (L, \mathcal{U}) is a frame homomorphism $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ such that

$$
\forall n \in \mathbb{N} \quad U \leq f\left[D_{n}\right] \text { for some } U \in \mathcal{U}
$$

Farness

Let U be a cover of L, a and b in L are U-far if

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0 \quad$ or $\quad b \wedge u=0$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0 \quad$ or $\quad b \wedge u=0$
(2) $U a \wedge b=0$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0 \quad$ or $\quad b \wedge u=0$
(2) $U a \wedge b=0 \quad \Leftrightarrow \quad U b \wedge a=0$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0$ or $b \wedge u=0$
(2) $U a \wedge b=0 \quad \Leftrightarrow \quad U b \wedge a=0$
(3) $\cup a \leq b^{*}$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0$ or $b \wedge u=0$
(2) $U a \wedge b=0 \quad \Leftrightarrow \quad U b \wedge a=0$
(3) $U a \leq b^{*} \Leftrightarrow b \leq(U a)^{*} \Leftrightarrow U b \leq a^{*} \quad \Leftrightarrow \quad a \leq(U b)^{*}$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad b \wedge u \neq 0 \Rightarrow a \wedge u=0$
$\Leftrightarrow \quad \forall u \in U \quad a \wedge u=0$ or $b \wedge u=0$
(2) $U a \wedge b=0 \quad \Leftrightarrow \quad U b \wedge a=0$
(3) $U a \leq b^{*} \Leftrightarrow b \leq(U a)^{*} \Leftrightarrow U b \leq a^{*} \quad \Leftrightarrow \quad a \leq(U b)^{*}$
(4) $U \leq\left\{a^{*}, b^{*}\right\}$

Farness

Let U be a cover of L, a and b in L are U-far if
(1) $\forall u \in U \quad a \wedge u \neq 0 \Rightarrow b \wedge u=0$

$$
\begin{array}{lll}
\Leftrightarrow & \forall u \in U & b \wedge u \neq 0 \Rightarrow a \wedge u=0 \\
\Leftrightarrow & \forall u \in U & a \wedge u=0 \quad \text { or } \quad b \wedge u=0
\end{array}
$$

(2) $U a \wedge b=0 \quad \Leftrightarrow \quad U b \wedge a=0$
(3) $U a \leq b^{*} \Leftrightarrow b \leq(U a)^{*} \Leftrightarrow U b \leq a^{*} \quad \Leftrightarrow \quad a \leq(U b)^{*}$
(4) $U \leq\left\{a^{*}, b^{*}\right\}$

Properties:

- a and b are U-far and $V \leq U \Rightarrow a$ and b are V-far.
- a and b are U-far, $c \leq a$ and $d \leq b \Rightarrow c$ and d are U-far.
- a and b are U-far $\Leftrightarrow a^{* *}$ and $b^{* *}$ are U-far.
- a and b are U-far for some $U \in \mathcal{U} \Leftrightarrow a \triangleleft \mathcal{U} b^{*}$.
- a and b are $U-f a r \Rightarrow a^{*} \vee b^{*}=1$.

Characterization Uniformly continuous real-valued functions

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame and $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ a frame homomorphism, then the following are equivalent:

Characterization Uniformly continuous real-valued functions

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame and $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ a frame homomorphism, then the following are equivalent:
(i) f is uniformly continuous.

Characterization Uniformly continuous real-valued functions

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame and $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ a frame homomorphism, then the following are equivalent:
(i) f is uniformly continuous.

That is, for every $\delta \in \mathbb{Q}^{+}$there is $U \in \mathcal{U}$ such that

$$
U \leq f\left[D_{\delta}\right]=\left\{f(p, q) \left\lvert\, q-p=\frac{1}{\delta}\right.\right\} .
$$

Characterization Uniformly continuous real-valued functions

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame and $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ a frame homomorphism, then the following are equivalent:
(i) f is uniformly continuous.

That is, for every $\delta \in \mathbb{Q}^{+}$there is $U \in \mathcal{U}$ such that

$$
U \leq f\left[D_{\delta}\right]=\left\{f(p, q) \left\lvert\, q-p=\frac{1}{\delta}\right.\right\} .
$$

(ii) For every $\delta \in \mathbb{Q}^{+}$there is $U \in \mathcal{U}$ such that $f(-, r)$ and $f(s,-)$ are U-far for $s, r \in \mathbb{Q}$ with $s-r>\frac{1}{\delta}$.

Farness + Galois Adjunctions

Let U be a cover of L

$$
\begin{array}{lllc}
\text { P: } & L & \longrightarrow & L \\
a & \longmapsto & a^{*}
\end{array}
$$

Farness + Galois Adjunctions

Let U be a cover of L
$\begin{array}{rlcccccccc}P: L & \longrightarrow & L & S_{U}: & L & \longrightarrow & L & \widetilde{S_{U}}: L & \longrightarrow & L \\ a & \longmapsto & a^{*} & & a & \longmapsto & U a & & b & \longmapsto \\ & & & & \end{array}$

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$
$a \longmapsto a^{*} \quad a \longmapsto U a \quad b \quad b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=P_{U}$.

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$
$a \longmapsto a^{*} \quad a \longmapsto U a \quad b \longmapsto b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=\mathrm{PS}_{U}$.
For any $a, b \in L$ we have

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$
$a \longmapsto a^{*} \quad a \longmapsto U a \quad b \longmapsto b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=\mathrm{PS}_{U}$.
For any $a, b \in L$ we have

$$
U a \leq b^{*} \quad \Leftrightarrow \quad b \leq(U a)^{*} \quad \Leftrightarrow \quad U b \leq a^{*} \quad \Leftrightarrow \quad a \leq(U b)^{*}
$$

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$ $a \longmapsto a^{*} \quad a \longmapsto U a \quad b \longmapsto b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=\mathrm{PS}_{U}$.
For any $a, b \in L$ we have

$$
\begin{array}{ccccc}
U a \leq b^{*} & \Leftrightarrow \quad b \leq(U a)^{*} & \Leftrightarrow & U b \leq a^{*} & \Leftrightarrow \quad a \leq(U b)^{*} \\
S_{U}(a) \leq \mathrm{P}(b) & \Leftrightarrow \quad b \leq F_{U}(a) \quad \Leftrightarrow \quad S_{U}(b) \leq \mathrm{P}(a) & \Leftrightarrow a \leq F_{U}(b) .
\end{array}
$$

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$ $a \longmapsto a^{*} \quad a \longmapsto U a \quad b \longmapsto b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=\mathrm{PS}_{U}$.
For any $a, b \in L$ we have

$$
\begin{array}{ccccc}
U a \leq b^{*} & \Leftrightarrow \quad b \leq(U a)^{*} \quad \Leftrightarrow \quad U b \leq a^{*} & \Leftrightarrow \quad a \leq(U b)^{*} \\
S_{U}(a) \leq \mathrm{P}(b) & \Leftrightarrow \quad b \leq \mathrm{F}_{U}(a) \quad \Leftrightarrow \quad \mathrm{S}_{U}(b) \leq \mathrm{P}(a) & \Leftrightarrow \quad a \leq \mathrm{F}_{U}(b) .
\end{array}
$$

Farness + Galois Adjunctions

Let U be a cover of L
$P: L \longrightarrow L \quad S_{U}: L \longrightarrow L \quad \widetilde{S_{u}: L} \longrightarrow L$
$a \longmapsto a^{*} \quad a \longmapsto U a \quad b \longmapsto b / U=\bigvee\{y \mid U y \leq b\}$

We define $F_{U}=P_{U}$.
For any $a, b \in L$ we have

$$
\begin{array}{ccccc}
U a \leq b^{*} & \Leftrightarrow \quad b \leq(U a)^{*} \quad \Leftrightarrow \quad U b \leq a^{*} & \Leftrightarrow \quad a \leq(U b)^{*} \\
S_{U}(a) \leq \mathrm{P}(b) & \Leftrightarrow \quad b \leq F_{U}(a) \quad \Leftrightarrow \quad S_{U}(b) \leq \mathrm{P}(a) & \Leftrightarrow a \leq F_{U}(b) .
\end{array}
$$

F_{U} is a self-dual Galois adjoint.
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $\mathrm{F}_{\mathrm{U}}\left(\bigvee \mathrm{a}_{i}\right)=\Lambda \mathrm{F}_{U}\left(a_{i}\right)$
(F2) $F_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $\mathrm{F}_{\mathrm{U}}\left(\bigvee \mathrm{a}_{i}\right)=\Lambda \mathrm{F}_{U}\left(a_{i}\right)$
(F2) $F_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
Remember $a, b \in L$ are U-far if $b \leq(U a)^{*}$ (equiv. $a \leq(U b)^{*}$).
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $F_{u}\left(V a_{i}\right)=\wedge F_{u}\left(a_{i}\right)$
(F2) $F_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
Remember $a, b \in L$ are U-far if $b \leq(U a)^{*}$ (equiv. $a \leq(U b)^{*}$).

- Definition: a and b are U-far if $a \leq F_{U}(b)$ (equiv. $b \leq F_{U}(a)$)
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $F_{u}\left(V_{i}\right)=\wedge F_{u}\left(a_{i}\right)$
(F2) $F_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
Remember $a, b \in L$ are U-far if $b \leq(U a)^{*}$ (equiv. $a \leq(U b)^{*}$).
- Definition: a and b are U-far if $a \leq F_{U}(b)$ (equiv. $b \leq F_{U}(a)$)
- $F_{U}(a)$ is the largest element in L that is U-far from a :
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $F_{u}\left(V a_{i}\right)=\wedge F_{u}\left(a_{i}\right)$
(F2) $\mathrm{F}_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
Remember $a, b \in L$ are U-far if $b \leq(U a)^{*}$ (equiv. $a \leq(U b)^{*}$).
- Definition: a and b are U-far if $a \leq F_{U}(b)$ (equiv. $b \leq F_{U}(a)$)
- $F_{U}(a)$ is the largest element in L that is U-far from a :
- From (F2): $a \leq F_{U}\left(F_{U}(a)\right)$ so a and $F_{U}(a)$ are U-far.
F_{U} is a self-dual Galois adjoint $\left(F_{U} \dashv F_{U}\right)$, thus :
(F1) $F_{u}\left(V_{i}\right)=\wedge F_{U}\left(a_{i}\right)$
(F2) $F_{U}^{2} \geq i d_{L}$
(F3) $F_{U}^{3}=F_{U}$
Remember $a, b \in L$ are U-far if $b \leq(U a)^{*}$ (equiv. $a \leq(U b)^{*}$).
- Definition: a and b are U-far if $a \leq F_{U}(b)$ (equiv. $b \leq F_{U}(a)$)
- $\mathrm{F}_{U}(a)$ is the largest element in L that is U-far from a :
- From (F2): $a \leq F_{U}\left(F_{U}(a)\right)$ so a and $F_{U}(a)$ are U-far.
- By defintion, if b is U-far from a, then $b \leq F_{U}(a)$.

Separation Theorem

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame. If a and b are U-far for some $U \in \mathcal{U}$ then there is a uniformly continuous $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ with $\mathrm{o} \leq f \leq 1$ such that $f(0,-) \wedge a=0$ and $f(-, 1) \wedge b=0$.

Separation Theorem

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame. If a and b are U-far for some $U \in \mathcal{U}$ then there is a uniformly continuous $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ with $\mathrm{o} \leq f \leq 1$ such that $f(0,-) \wedge a=0$ and $f(-, 1) \wedge b=0$.

Idea:

Separation Theorem

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame. If a and b are U-far for some $U \in \mathcal{U}$ then there is a uniformly continuous $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ with $\mathrm{o} \leq f \leq 1$ such that $f(0,-) \wedge a=0$ and $f(-, 1) \wedge b=0$.

Idea:

- Define f for generators of $\mathcal{L}(\mathbb{R}):\left\{a_{r}\right\}_{r \in \mathbb{Q}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{Q}} \subseteq L$ such that $f(-, r)=a_{r}$ and $f(s,-)=b_{s}$.

Separation Theorem

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame. If a and b are U-far for some $U \in \mathcal{U}$ then there is a uniformly continuous $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ with $0 \leq f \leq 1$ such that $f(0,-) \wedge a=0$ and $f(-, 1) \wedge b=0$.

Idea:

- Define f for generators of $\mathcal{L}(\mathbb{R}):\left\{a_{r}\right\}_{r \in \mathbb{Q}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{Q}} \subseteq L$ such that $f(-, r)=a_{r} \quad$ and $\quad f(s,-)=b_{s}$.
- Check relations (r1)-(r6).

Separation Theorem

Theorem

Let (L, \mathcal{U}) be a (pre-)uniform frame. If a and b are U-far for some $U \in \mathcal{U}$ then there is a uniformly continuous $f: \mathcal{L}(\mathbb{R}) \rightarrow L$ with $0 \leq f \leq 1$ such that $f(0,-) \wedge a=0$ and $f(-, 1) \wedge b=0$.

Idea:

- Define f for generators of $\mathcal{L}(\mathbb{R}):\left\{a_{r}\right\}_{r \in \mathbb{Q}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{Q}} \subseteq L$ such that $f(-, r)=a_{r} \quad$ and $\quad f(s,-)=b_{s}$.
- Check relations (r1)-(r6).
- Check that $\forall \delta \in \mathbb{Q}^{+}$there is $U \in \mathcal{U}$ such that a_{r} and b_{s} are U-far for every $s-r>\frac{1}{\delta}$ (uniformity).

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

- a and b are U-far so we set $U_{0}:=U$.

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

- a and b are U-far so we set $U_{0}:=U$. By (U3) there is $V \in \mathcal{U}$ such that $V \leq V^{2} \leq U_{0}$, and we define $U_{1}:=V$.

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

- a and b are U-far so we set $U_{0}:=U$. By (U3) there is $V \in \mathcal{U}$ such that $V \leq V^{2} \leq U_{0}$, and we define $U_{1}:=V$. We iterate and obtain a chain of covers

$$
\cdots \leq U_{3} \leq U_{2} \leq U_{1} \leq U_{0}=U
$$

where $U_{n+1} \leq U_{n+1}^{2} \leq U_{n}$ for every natural n.

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

- a and b are U-far so we set $U_{0}:=U$. By (U3) there is $V \in \mathcal{U}$ such that $V \leq V^{2} \leq U_{0}$, and we define $U_{1}:=V$. We iterate and obtain a chain of covers

$$
\begin{aligned}
& \cdots \leq U_{3} \leq U_{2} \leq U_{1} \leq U_{0}=U \\
& \cdots \\
& \mathrm{~F}_{U_{3}} \\
& \mathrm{~F}_{U_{1}}
\end{aligned} \mathrm{~F}_{U_{0}}
$$

where $U_{n+1} \leq U_{n+1}^{2} \leq U_{n}$ for every natural n.

Construction

- We will build $\left\{a_{r}\right\}_{r \in \mathbb{D}} \subseteq L$ and $\left\{b_{s}\right\}_{s \in \mathbb{D}} \subseteq L$ where

$$
\begin{aligned}
\mathbb{D} & =\left\{\left.\frac{m}{2^{n}} \right\rvert\, n=1,2, \cdots, m=0, \cdots, 2^{n}\right\} \\
& =\{0,1\} \cup \bigcup_{n \in \mathbb{N}}\left\{\left.\frac{2 k-1}{2^{n}} \right\rvert\, k=1, \cdots 2^{n-1}\right\} .
\end{aligned}
$$

- a and b are U-far so we set $U_{0}:=U$. By (U3) there is $V \in \mathcal{U}$ such that $V \leq V^{2} \leq U_{0}$, and we define $U_{1}:=V$. We iterate and obtain a chain of covers

$$
\begin{aligned}
& \cdots \leq \underset{U_{3}}{ } \leq \underset{U_{U_{2}}}{U_{U_{2}}} \leq \underset{U_{1}}{U_{U_{1}}} \leq \underset{U_{0}}{ }=U \\
& \cdots
\end{aligned}
$$

where $U_{n+1} \leq U_{n+1}^{2} \leq U_{n}$ for every natural n.

- Idea of construction: When we have a distance of $\frac{1}{2^{n}}$ in \mathbb{D} ($s-r=\frac{1}{2^{n}}$) we want a_{r} and b_{s} to be U_{n}-far.

Construction

Idea: When we have a distance of $\frac{1}{2^{n}}$ in $\mathbb{D}\left(s-r=\frac{1}{2^{n}}\right)$ we want a_{r} and b_{s} to be U_{n}-far.
$\mathrm{n}=0$
$a_{0}=a$

$$
\begin{aligned}
& \mathbf{n}=\mathbf{0} \\
& b_{0}=1
\end{aligned}
$$

$$
a_{1}=1
$$

$$
b_{1}=b
$$

Construction

Idea: When we have a distance of $\frac{1}{2^{n}}$ in $\mathbb{D}\left(s-r=\frac{1}{2^{n}}\right)$ we want a_{r} and b_{s} to be U_{n}-far.

$$
\begin{array}{lll}
\mathrm{n}=0 & \mathbf{n = 1} & \mathrm{n}=0 \\
a_{0}=a & b_{0}=1 & \mathbf{n = 1} \\
& a_{\frac{1}{2}}=\mathrm{F}_{U_{1}}(b) & \\
a_{1}=1 & & b_{\frac{1}{2}}=F_{U_{1}}(a) \\
& b_{1}=b
\end{array}
$$

Construction

Idea: When we have a distance of $\frac{1}{2^{n}}$ in $\mathbb{D}\left(s-r=\frac{1}{2^{n}}\right)$ we want a_{r} and b_{s} to be U_{n}-far.

$$
\begin{array}{lllll}
\mathrm{n}=\mathbf{0} & \mathbf{n = 1} & \mathbf{n = 2} & \begin{array}{l}
\mathrm{n}=\mathbf{0} \\
a_{0}=a
\end{array} & \begin{array}{l}
\text { n=1 } \\
b_{0}=1
\end{array} \\
a_{\frac{1}{4}}=F_{U_{2}} F_{U_{1}}(a) & \mathbf{n = 2} \\
a_{\frac{1}{2}}=F_{U_{1}}(b) & & b_{\frac{1}{2}}=F_{U_{1}}(a) & b_{\frac{1}{4}}=F_{U_{2}}(a) \\
a_{1}=1 & & a_{\frac{3}{4}}=F_{U_{2}}(b) & & b_{\frac{3}{4}}=F_{U_{2}} F_{U_{1}}(b)
\end{array}
$$

Construction

Idea: When we have a distance of $\frac{1}{2^{n}}$ in $\mathbb{D}\left(s-r=\frac{1}{2^{n}}\right)$ we want a_{r} and b_{s} to be U_{n}-far.

$$
\begin{array}{lllll}
\mathrm{n}=\mathbf{0} & \mathbf{n = 1} & \mathbf{n = 2} & \begin{array}{l}
\mathrm{n}=\mathbf{0} \\
a_{0}=a
\end{array} & \begin{array}{l}
\text { n=1 } \\
b_{0}=1
\end{array} \\
a_{\frac{1}{4}}=F_{U_{2}} F_{U_{1}}(a) & \mathbf{n = 2} \\
a_{\frac{1}{2}}=F_{U_{1}}(b) & & b_{\frac{1}{2}}=F_{U_{1}}(a) & b_{\frac{1}{4}}=F_{U_{2}}(a) \\
a_{1}=1 & & a_{\frac{3}{4}}=F_{U_{2}}(b) & & b_{\frac{3}{4}}=F_{U_{2}} F_{U_{1}}(b)
\end{array}
$$

Construction

Idea: When we have a distance of $\frac{1}{2^{n}}$ in $\mathbb{D}\left(s-r=\frac{1}{2^{n}}\right)$ we want a_{r} and b_{s} to be U_{n}-far.
$\mathbf{n}=\mathbf{0}$
$a_{0}=a$

$$
\begin{aligned}
& \mathbf{n}=\mathbf{1} \\
& a_{\frac{1}{2}}=F_{U_{1}}(b)
\end{aligned}
$$

$\mathrm{n}=2$
$\mathrm{n}=0 \quad \mathrm{n}=\mathbf{1}$

$$
n=2
$$

$$
b_{0}=1
$$

$$
a_{\frac{1}{4}}=\mathrm{F}_{U_{2}} \mathrm{~F}_{U_{1}}(a)
$$

$$
a_{\frac{3}{4}}=F_{U_{2}}(b)
$$

$$
b_{\frac{1}{2}}=F_{U_{1}}(a)
$$

$$
b_{1}=b
$$

$$
\begin{aligned}
& a_{0}=a, a_{1}=1 \text { and } \frac{a_{\frac{2 k-1}{}}^{2^{n}}}{}=F_{U_{n}}\left(b_{\frac{k}{2^{n-1}}}\right) \text { for } k=1, \cdots, 2^{n}-1 \\
& b_{0}=1, b_{1}=b \text { and } \frac{b_{\frac{2 k-1}{2^{n}}}=F_{U_{n}}\left(a_{\frac{k-1}{2^{n-1}}}\right) \text { for } k=1, \cdots, 2^{n}-1 .}{} .
\end{aligned}
$$

References

A. B. Avilez and J. Picado, Uniform continuity of pointfree real functions via farness and related Galois connections, DMUC preprint 22-08.
B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática, Vol. 12, University of Coimbra (1997).
J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, vol. 28, Springer, Basel (2012).
D. Preiss and J. Vilimovský, In-between theorems in uniform spaces, Trans. Amer. Math. Soc. 261 (1980) 483-501.
A. Pultr, Pointless uniformities I, Comment. Math. Univ. Carolin. 25 (1984) 91-104.
J. M. Smirnov, On proximity spaces, (Russian), Mat. Sb. 31 (1952) 543-574; English trans.: Amer. Math. Soc. Transl. (Ser. 2) 38 (1964) 5-35.

Thank you!

