Equidivisibility and profinite coproduct

Alfredo Costa (CMUC, University of Coimbra)

Joint work with Jorge Almeida (CMUP, University of Porto)

Centre for Mathematics University of Coimbra

TACL 2022 Equidivisibility and profinite coproduct

Part I

Background

TACL 2022 Equidivisibility and profinite coproduct

Equidivisible semigroups

For a semigroup S, let S' be the monoid obtained from S by adjoining a neutral element I.

A semigroup S is equidivisible if every factorization

uv = xy

has a common refinement, that is, there is $t\in S'$ such that

$$\begin{cases} ut = x \\ v = ty \end{cases} \quad \text{or} \quad \begin{cases} u = xt \\ tv = y \end{cases}$$

Equidivisible semigroups

For a semigroup S, let S' be the monoid obtained from S by adjoining a neutral element I.

A semigroup S is equidivisible if every factorization

uv = xy

has a common refinement, that is, there is $t \in S'$ such that

 $\begin{cases} ut = x \\ v = ty \end{cases} \quad \text{or} \quad \begin{cases} u = xt \\ tv = y \end{cases}$

Equidivisible semigroups

For a semigroup S, let S' be the monoid obtained from S by adjoining a neutral element I.

A semigroup S is equidivisible if every factorization

$$uv = xy$$

has a common refinement, that is, there is $t \in S'$ such that

$$\begin{cases} ut = x \\ v = ty \end{cases} \quad \text{or} \quad \begin{cases} u = xt \\ tv = y \end{cases}$$

Examples

• Free semigroups

• Groups

Theorem (McKnight & Storey, 1969)

A semigroup S is completely simple if and only if for every factorization

$$uv = xy$$

there are $t_1, t_2 \in S'$ such that

$$\begin{cases} ut_1 = x \\ v = t_1 y \end{cases} \quad \frac{\text{and}}{t_2 v = y}$$

Examples

- Free semigroups
- Groups

Theorem (McKnight & Storey, 1969)

A semigroup *S* is completely simple if and only if for every factorization

$$uv = xy$$

there are $t_1, t_2 \in S'$ such that

$$\begin{cases} ut_1 = x \\ v = t_1 y \end{cases} \quad \frac{\text{and}}{t_2 v = y}$$

- Free semigroups
- Groups

Theorem (McKnight & Storey, 1969)

A semigroup S is completely simple if and only if for every factorization

$$uv = xy$$

there are $t_1, t_2 \in S'$ such that

$$\begin{cases} ut_1 = x \\ v = t_1 y \end{cases} \qquad \underline{and} \qquad \begin{cases} u = xt_2 \\ t_2 v = y \end{cases}$$

Coproducts in the category of semigroups: free products.

Theorem (McKnight & Storey, 1969)

For every nonempty family $(S_i)_{i \in I}$ of equidivisible semigroups, its free product

$$* S_i$$

is equidivisible.

Pseudovarieties

A pseudovariety of semigroups is a class V of $\underline{\text{finite}}$ semigroups such that

$$\mathsf{V}=\mathbb{H}(\mathsf{V})=\mathbb{S}(\mathsf{V})=\mathbb{P}_{\mathsf{fin}}(\mathsf{V})$$

Examples

- Sgp finite semigroups
- Grp finite groups
- Ap finite aperiodic semigroups
- CS finite completely simple semigroups
- J finite aperiodic semigroups satisfying $(xy)^{\omega} = (yx)^{\omega}$ where s^{ω} denotes the unique idempotent power of s
- DS largest pseudovariety not containing B₂

Relatively free profinite semigroups

• Pro-V semigroups are inverse limits of semigroups of V (in the category of compact semigroups)

• The A-generated free pro-V semigroup $\overline{\Omega}_A V$ exists.

•
$$\widehat{A^+} \cong \overline{\Omega}_A \mathsf{Sgp}$$

Theorem (†)

For every finite set A, the free profinite semigroup $\widehat{A^+}$ is equidivisible. More generally, $\overline{\Omega}_A \vee$ is equidivisible if $\bullet \vee \supseteq \operatorname{Ap}$ $\bullet \overline{\Omega}_A \vee$ has open multiplication

† independently:

Almeida & C (2009) Henckell & Rhodes & Steinberg (2010)

Theorem (†)

For every finite set A, the free profinite semigroup $\widehat{A^+}$ is equidivisible.

More generally, $\overline{\Omega}_A V$ is equidivisible if

- $V \supseteq Ap$
- $\overline{\Omega}_A V$ has open multiplication

† independently:

Almeida & C (2009) Henckell & Rhodes & Steinberg (2010)

Part II

When are all free pro-V semigroups equidivisible?

- J. Almeida, A. Costa, J.C. Costa and M. Zeitoun, The linear nature of pseudowords, Publicacions Matemàtiques 63 (2019)
- S.J. van Gool, B. Steinberg, Pro-aperiodic monoids via saturated models. Isr. J. Math. 234, (2019)
- Works by A. Moura, and by M. Kufleitner and his co-authors, on the pseudovariety $\mathsf{DA} := \mathsf{DS} \cap \mathsf{Ap}$
 - Antecedent work by Almeida & Zeitoun (& J.C. Costa) on the pseudovariety R, the largest where the prefix quasi-order of pseudowords is a partial order.
- It may provide inspiration for when we no longer have equidivisibility, e.g.
 A. Costa & A. Escada, Bases for pseudovarieties closed under bideterministic product, Algebra Universalis 80 (2019)

- J. Almeida, A. Costa, J.C. Costa and M. Zeitoun, The linear nature of pseudowords, Publicacions Matemàtiques 63 (2019)
- S.J. van Gool, B. Steinberg, Pro-aperiodic monoids via saturated models. Isr. J. Math. 234, (2019)
- Works by A. Moura, and by M. Kufleitner and his co-authors, on the pseudovariety DA := DS ∩ Ap
 - Antecedent work by Almeida & Zeitoun (& J.C. Costa) on the pseudovariety R, the largest where the prefix quasi-order of pseudowords is a partial order.
- It may provide inspiration for when we no longer have equidivisibility, e.g.
 A. Costa & A. Escada, Bases for pseudovarieties closed under bideterministic product, Algebra Universalis 80 (2019)

- J. Almeida, A. Costa, J.C. Costa and M. Zeitoun, The linear nature of pseudowords, Publicacions Matemàtiques 63 (2019)
- S.J. van Gool, B. Steinberg, Pro-aperiodic monoids via saturated models. Isr. J. Math. 234, (2019)
- Works by A. Moura, and by M. Kufleitner and his co-authors, on the pseudovariety DA := DS ∩ Ap
 - Antecedent work by Almeida & Zeitoun (& J.C. Costa) on the pseudovariety R, the largest where the prefix quasi-order of pseudowords is a partial order.
- It may provide inspiration for when we no longer have equidivisibility, e.g.
 A. Costa & A. Escada, Bases for pseudovarieties closed under bideterministic product, Algebra Universalis 80 (2019)

- J. Almeida, A. Costa, J.C. Costa and M. Zeitoun, The linear nature of pseudowords, Publicacions Matemàtiques 63 (2019)
- S.J. van Gool, B. Steinberg, Pro-aperiodic monoids via saturated models. Isr. J. Math. 234, (2019)
- Works by A. Moura, and by M. Kufleitner and his co-authors, on the pseudovariety DA := DS ∩ Ap
 - Antecedent work by Almeida & Zeitoun (& J.C. Costa) on the pseudovariety R, the largest where the prefix quasi-order of pseudowords is a partial order.
- It may provide inspiration for when we no longer have equidivisibility, e.g.
 A. Costa & A. Escada, Bases for pseudovarieties closed under bideterministic product, Algebra Universalis 80 (2019)

- J. Almeida, A. Costa, J.C. Costa and M. Zeitoun, The linear nature of pseudowords, Publicacions Matemàtiques 63 (2019)
- S.J. van Gool, B. Steinberg, Pro-aperiodic monoids via saturated models. Isr. J. Math. 234, (2019)
- Works by A. Moura, and by M. Kufleitner and his co-authors, on the pseudovariety DA := DS ∩ Ap
 - Antecedent work by Almeida & Zeitoun (& J.C. Costa) on the pseudovariety R, the largest where the prefix quasi-order of pseudowords is a partial order.
- It may provide inspiration for when we no longer have equidivisibility, e.g.
 A. Costa & A. Escada, Bases for pseudovarieties closed under bideterministic product, Algebra Universalis 80 (2019)

The two-sided Cayley graph

The two-sided Cayley graph of an onto homomorphism $\varphi \colon A^+ \to S$ is what one expects:

- the vertices are the elements of $S' \times S'$
- we have an edge, labeled by the letter *a*, from (x, y) to (x', y') if

$$x\varphi(a) = x'$$
 $y = \varphi(a)y'$

Note that:

we have a path, labeled by the word u ∈ A⁺, from (x, y) to (x', y'), if

$$x\varphi(u) = x'$$
 $y = \varphi(u)y'$

The two-sided Cayley graph

The two-sided Cayley graph of an onto homomorphism $\varphi \colon A^+ \to S$ is what one expects:

- the vertices are the elements of $S' \times S'$
- we have an edge, labeled by the letter a, from (x, y) to (x', y') if

$$x\varphi(a) = x'$$
 $y = \varphi(a)y'$

Note that:

we have a path, labeled by the word u ∈ A⁺, from (x, y) to (x', y'), if

$$x\varphi(u) = x'$$
 $y = \varphi(u)y'$

Consider an onto homomorphism

$$\varphi \colon A^+ \to S$$

For every $u \in A^+$, the associated path is the path

$$(I, \varphi(u)) \xrightarrow{u} (\varphi(u), I)$$

We denote by $\tau(u)$ the set of transition edges (i.e., not inside a strongly connected component of the graph) of this path.

Consider an onto homomorphism

$$\varphi \colon A^+ \to S$$

For every $u \in A^+$, the associated path is the path

$$(I, \varphi(u)) \xrightarrow{u} (\varphi(u), I)$$

We denote by $\tau(u)$ the set of transition edges (i.e., not inside a strongly connected component of the graph) of this path.

We have the following congruence \equiv_{φ} on A^+ :

$$u \equiv_{\varphi} v \Leftrightarrow \begin{cases} \varphi(u) = \varphi(v) \\ \tau(u) = \tau(v) \end{cases}$$

The two-sided Karnofsky–Rhodes expansion of S (by arphi) is

$$S_{arphi}^{
m KR}=A^+/{\equiv_arphi}$$

We have the following congruence \equiv_{φ} on A^+ :

$$u \equiv_{\varphi} v \Leftrightarrow \begin{cases} \varphi(u) = \varphi(v) \\ \tau(u) = \tau(v) \end{cases}$$

The two-sided Karnofsky–Rhodes expansion of S (by φ) is

$$S_{arphi}^{
m KR}={\it A}^+/{\equiv_arphi}$$

In semigroup theory, an expansion is an endofunctor F in the category **Semigroups** together with a natural transformation $F \Rightarrow Id_{Semigroups}$

In semigroup theory, an expansion cut to generators is an endofunctor F in the category **Semigroups_generated_by_A** together with a natural transformation $F \Rightarrow Id_{\text{Semigroups_generated_by_A}}$

Theorem (Mário Branco, 2006)

A class C is closed under two-sided Karnofsky–Rhodes expansion when

$$S \in \mathcal{C} \Rightarrow S_{\varphi}^{\mathrm{KR}} \in \mathcal{C}$$

Examples

- the pseudovariety of all finite semigroups
- DA
- DS
- the complexity pseudovarieties

$$C_n = Ap * Grp * Ap * \cdots * Ap * Grp * Ap$$

A class C is closed under two-sided Karnofsky–Rhodes expansion when

$$\mathcal{S} \in \mathcal{C} \Rightarrow \mathcal{S}_{\varphi}^{\mathrm{KR}} \in \mathcal{C}$$

Examples

- the pseudovariety of all finite semigroups
- DA
- DS
- the complexity pseudovarieties

$$C_n = Ap * Grp * Ap * \cdots * Ap * Grp * Ap$$

A class C is closed under two-sided Karnofsky–Rhodes expansion when

$$\mathcal{S} \in \mathcal{C} \Rightarrow \mathcal{S}_{\varphi}^{\mathrm{KR}} \in \mathcal{C}$$

Examples

- the pseudovariety of all finite semigroups
- DA
- DS
- the complexity pseudovarieties

$$C_n = Ap * Grp * Ap * \cdots * Ap * Grp * Ap$$

A class C is closed under two-sided Karnofsky–Rhodes expansion when

$$\mathcal{S} \in \mathcal{C} \Rightarrow \mathcal{S}_{\varphi}^{\mathrm{KR}} \in \mathcal{C}$$

Examples

- the pseudovariety of all finite semigroups
- DA
- DS

• the complexity pseudovarieties

$$C_n = Ap * Grp * Ap * \cdots * Ap * Grp * Ap$$

A class C is closed under two-sided Karnofsky–Rhodes expansion when

$$\mathcal{S} \in \mathcal{C} \Rightarrow \mathcal{S}_{\varphi}^{\mathrm{KR}} \in \mathcal{C}$$

Examples

- the pseudovariety of all finite semigroups
- DA
- DS
- the complexity pseudovarieties

$$C_n = Ap * Grp * Ap * \cdots * Ap * Grp * Ap$$

Theorem (Almeida & C, 2017)

The following are equivalent:

- all finitely generated free pro-V semigroups are equidivisible
- V is closed under two-sided Karnofsky–Rhodes expansion or V \subseteq CS

Theorem (Almeida & C, 2022)

The following are equivalent:

- all finitely generated free pro-V semigroups are equidivisible
- V is closed under two-sided Karnofsky–Rhodes expansion or V \subseteq CS

A cancellation property

Let S be a profinite semigroup generated by a finite subset A. Suppose:

```
For every a, b \in A and u, v \in S,

au = bv \Rightarrow \begin{cases} a = b \\ u = v \end{cases}
and

ua = vb \Rightarrow \begin{cases} a = b \\ u = v \end{cases}
```

We call a semigroup with this property

letter super-cancellative

If V is closed under two-sided Karnofsky–Rhodes expansion, then all $\overline{\Omega}_A$ V, with A finite, are

• equidivisible

• letter super-cancellative

Part III

Profinite coproducts of equidivisible profinite semigroups

TACL 2022 Equidivisibility and profinite coproduct

Every nonempty family $(S_i)_{i \in I}$ of pro-V semigroups has a coproduct,

$$\prod_{i\in I}^{\bullet} S_i$$

dubbed the V-coproduct.

Embedding of the free product

Theorem

The natural mapping

$$\underset{i\in I}{*}S_i \to \coprod_{i\in I}^{\mathsf{V}}S_i$$

has dense image.

It is injective under a mild condition:

 $\mathsf{V}=\mathsf{N}\, \textcircled{m}\mathsf{V}$

Embedding of the free product

Theorem

The natural mapping

$$\underset{i\in I}{*}S_i \to \coprod_{i\in I}^{\mathsf{V}}S_i$$

has dense image.

It is injective under a mild condition:

$$\mathsf{V}=\mathsf{N}\, \textcircled{}_{\mathcal{O}}\mathsf{V}$$

Def. The profinite semigroup S is a KR-cover of T when

• $|T| < \infty$

- $\varphi(S) = T$ for some continuous homomorphism φ
- for every such φ ,
 - \exists generating mapping

$$\psi: A \to T \qquad |A| < \infty$$

 \exists continuous homomorphism

$$\varphi_{\psi}: \mathcal{S} \to \mathcal{T}_{\psi}^{\mathrm{KR}}$$

such that

Def. The profinite semigroup S is a KR-cover of T when

• $|T| < \infty$

- $\varphi(S) = T$ for some continuous homomorphism φ
- for every such φ ,
 - \forall generating mapping

$$\psi: A \to T \qquad |A| < \infty$$

 \exists continuous homomorphism

$$\varphi_{\psi}: \mathcal{S} \to \mathcal{T}_{\psi}^{\mathrm{KR}}$$

such that

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples Groups Groups More generally: completely simple semigroups V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion Free pro-V semigroups for V closed under two-sided Karnofsky–Rhodes expansion

Theorem

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples

Groups

more generally: completely simple semigroups

- V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion
- Free pro-V semigroups for V closed under two-sided Karnofsky–Rhodes expansion

Theorem

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples

• Groups

more generally: completely simple semigroups

- V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion
- Free pro-V semigroups for V closed under two-sided Karnofsky–Rhodes expansion

Theorem

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples

Groups

more generally: completely simple semigroups

- V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion
- Free pro-V semigroups for V closed under two-sided Karnofsky–Rhodes expansion

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples

• Groups

more generally: completely simple semigroups

• V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion

• Free pro-V semigroups

for V closed under two-sided Karnofsky-Rhodes expansion

Theorem

A profinite semigroup S is a KR-cover if it is a KR-cover of each of its finite continuous homomorphic images.

Examples

• Groups

more generally: completely simple semigroups

• V-projective profinite semigroups for V closed under two-sided Karnofsky–Rhodes expansion

• Free pro-V semigroups for V closed under two-sided Karnofsky–Rhodes expansion

Theorem

Theorem (First closure theorem)

For every pseudovariety of semigroups V closed under two-sided Karnofsky–Rhodes expansion, the class of all pro-V KR-covers is closed under V-coproducts

Corollary

Every profinite coproduct of KR-covers is a KR-cover, whence equidivisible.

Theorem (First closure theorem)

For every pseudovariety of semigroups V closed under two-sided Karnofsky–Rhodes expansion, the class of all pro-V KR-covers is closed under V-coproducts

Corollary

Every profinite coproduct of KR-covers is a KR-cover, whence equidivisible.

Adding the cancellation property

Theorem

Let *S* be a finitely generated profinite semigroup that is *letter super-cancellative*. Then:

S is equidivisible \Leftrightarrow S is a KR-cover

Theorem (Second closure theorem)

For every pseudovariety of semigroups V closed under two-sided Karnofsky–Rhodes expansion, the class of letter super-cancellative equidivisible finitely generated pro-V semigroups is closed under finite V-coproducts.

Adding the cancellation property

Theorem

Let *S* be a finitely generated profinite semigroup that is *letter super-cancellative*. Then:

S is equidivisible \Leftrightarrow S is a KR-cover

Theorem (Second closure theorem)

For every pseudovariety of semigroups V closed under two-sided Karnofsky–Rhodes expansion, the class of letter super-cancellative equidivisible finitely generated pro-V semigroups is closed under finite V-coproducts.

Example

The profinite semigroup $\lim_{n\geq 1} \{0,1\}^{KR^n}$ is a KR-cover wich is letter super-cancellative, but not relatively free.

Theorem (Almeida et al., 2019)

Let S be an equidivisible profinite semigroup which is letter super-cancellative. Let $u, g \in S$. If ug = u and g is regular (i.e., $g \in gSg$), then g is idempotent.

Example

The profinite semigroup $\lim_{n\geq 1} \{0,1\}^{KR^n}$ is a KR-cover wich is letter super-cancellative, but not relatively free.

Theorem (Almeida et al., 2019)

Let S be an equidivisible profinite semigroup which is letter super-cancellative. Let $u, g \in S$. If ug = u and g is regular (i.e., $g \in gSg$), then g is idempotent.

- When does V-coproduct preserve equidivisibility of pro-V semigroups?
- Characterize the equidivisible (pro)finite semigroups that are KR-covers.
- Characterize the equidivisible profinite semigroups.