Algorithmic correspondence and analytic rules for (D)LE logics

Andrea De Domenico, Giuseppe Greco

Vrije Universiteit, The Netherlands

Analytic inductive \leftrightarrow analytic rules \leftrightarrow geometric formulas

Analytic inductive \leftrightarrow analytic rules \leftrightarrow geometric formulas

- A geometric theory is a FO theory whose models are preserved and reflected by geometric morphisms.

Analytic-inductive formulas (I)

Definition (Signed Generation Tree)

The signed generation tree of φ is defined by labelling the root of the syntax tree of φ with + or - , and then propagating the labelling as follows:

- \vee, \wedge, \diamond or \square : assign the same sign to its children.
- \neg : assign the opposite sign to its child (treat $s \rightarrow t$ as $\neg s \vee t$).

Analytic-inductive formulas (I)

Definition (Signed Generation Tree)

The signed generation tree of φ is defined by labelling the root of the syntax tree of φ with + or - , and then propagating the labelling as follows:

- \vee, \wedge, \diamond or \square : assign the same sign to its children.
- \neg : assign the opposite sign to its child (treat $s \rightarrow t$ as $\neg s \vee t$).

Definition (Order type)

An order type is a map $\epsilon:\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow\{1, \partial\}$.
An ϵ-critical node is a leaf node $+p_{i}$ with $\epsilon\left(p_{i}\right)=1$ or $-p_{i}$ with $\epsilon\left(p_{i}\right)=\partial$.

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)

For any order type ϵ, and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ)-inductive if:

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)

For any order type ϵ, and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ)-inductive if:

- every branch is a concatenation of two paths P_{1} and P_{2} from leaf to root, such that P_{1} consists of PIA nodes, i.e. $\{-\wedge,+\vee,-\diamond,+\square,+\rightarrow, \pm \neg\}$; and P_{2} consists of skeleton nodes, i.e. $\{-\vee,+\wedge,+\diamond,-\square,-\rightarrow, \pm \neg\}$.

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)

For any order type ϵ, and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ)-inductive if:

- every branch is a concatenation of two paths P_{1} and P_{2} from leaf to root, such that P_{1} consists of PIA nodes, i.e. $\{-\wedge,+\vee,-\diamond,+\square,+\rightarrow, \pm \neg\}$; and P_{2} consists of skeleton nodes, i.e. $\{-\vee,+\wedge,+\diamond,-\square,-\rightarrow, \pm \neg\}$.
- each subtree rooted in a binary PIA node contains at most one ϵ-critical variable p and all the other variables q in the subtree are such that $q<_{\Omega} p$. A formula $\varphi \rightarrow \psi$ is an analytic-inductive if $+\varphi,-\psi$ are analytic (Ω, ϵ)-inductive for some $\epsilon,<_{\Omega}$.

Example: analytic inductive formula

$\diamond \square(p \vee q) \rightarrow \square \diamond p \vee \square \diamond q$, with $\epsilon(p)=\epsilon(q)=\partial$ and $p<\Omega q$.

Example: analytic inductive formula

$\diamond \square(p \vee q) \rightarrow \square \diamond p \vee \square \diamond q$, with $\epsilon(p)=\epsilon(q)=\partial$ and $p<\Omega q$.

- Not analytic-inductive:

$$
\begin{aligned}
A & \rightarrow \square \square \diamond \square \diamond A \\
{[\square(\diamond A \rightarrow \square B) \wedge(\square C} & \rightarrow A)] \rightarrow[\diamond \square C \vee A \vee(C \rightarrow B)]
\end{aligned}
$$

The labelled Gentzen calculus G3K

Propositional rules

$$
\wedge_{L} \frac{\Gamma, x: A, x: B \vdash \Delta}{\Gamma, x: A \wedge B \vdash \Delta} \quad \frac{\Gamma \vdash x: A, \Delta \quad \Gamma \vdash x: B, \Delta}{\Gamma \vdash x: A \wedge B, \Delta} \wedge_{R}
$$

$\vee_{L} \frac{\Gamma, x: A+\Delta \quad \Gamma, x: B+\Delta}{\Gamma, x: A \vee B+\Delta} \frac{\Gamma \vdash x: A, x: B, \Delta}{\Gamma+x: A \vee B, \Delta} \vee_{R}$
$\rightarrow L \frac{\Gamma \vdash x: A, \Delta \quad \Gamma, x: B+\Delta}{\Gamma, x: A \rightarrow B+\Delta} \quad \frac{\Gamma, x: A+x: B, \Delta}{\Gamma \vdash x: A \rightarrow B, \Delta} \rightarrow_{R}$
Modal rules (side condition on y in \square_{R} and \diamond_{L})

$$
\begin{aligned}
& \square_{L} \frac{x R y ; \Gamma, x: \square A, y: A+\Delta}{x R y ; \Gamma, x: \square A \vdash \Delta} \quad \frac{x R y ; \Gamma \vdash y: A, \Delta}{\Gamma \vdash x: \square A, \Delta} \square_{R} \\
& \quad \diamond_{L} \frac{x R y ; \Gamma, y: A+\Delta}{\Gamma, x: \diamond A \vdash \Delta} \quad \frac{x R y ; \Gamma \vdash y: A, x: \diamond A, \Delta}{x R y ; \Gamma \vdash x: \diamond A, \Delta} \diamond_{R}
\end{aligned}
$$

Example: derivation in G3K

$$
\begin{aligned}
& \operatorname{ld}_{y: B} \frac{\overline{x R y ; y: B+y: B} \overline{x R y ; y: A \vdash y: A}}{\operatorname{ld}_{y: A}} \\
& \quad \square_{L} \frac{x R y ; y: A \rightarrow B, x: \square A+y: B}{x R y ; x: \square(A \rightarrow B), x: \square A+y: B} \square_{R} \quad \frac{x: \square(A \rightarrow B), x: \square A \vdash x: \square B}{x: \square(A \rightarrow B) \vdash x: \square A \rightarrow \square B} \rightarrow_{R} \rightarrow_{R}
\end{aligned}
$$

The problem

- Given a modal formula φ, we want to find a rule R such that G3K $+R$ captures the logic $K+\varphi$.

The problem

- Given a modal formula φ, we want to find a rule R such that G3K $+R$ captures the logic $K+\varphi$.
- R should be an analytic rule, that is, we should be able to add it to the calculus in a modular way (preserving cut elimination).

The problem

- Given a modal formula φ, we want to find a rule R such that G3K $+R$ captures the logic $K+\varphi$.
- R should be an analytic rule, that is, we should be able to add it to the calculus in a modular way (preserving cut elimination).
- The shape of a geometric formula is shown below. They can always be transformed into analytic rules.

$$
\forall \bar{x}\left(P_{1} \& \ldots \& P_{m} \rightarrow \exists y_{1_{1}} \ldots y_{1_{k}} M_{1} \vee \ldots \vee \exists y_{n_{1}} \ldots y_{n_{k}} M_{n}\right)
$$

The idea

- Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that makes $\Gamma \vdash \varphi$ derivable? The obvious choice is $\Gamma=\varphi$.

The idea

- Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that makes $\Gamma \vdash \varphi$ derivable? The obvious choice is $\Gamma=\varphi$.
- The plan: we derive $x: \varphi \vdash x: \varphi$ and eliminate the red assumptions cutting on the atoms in the proof tree, preserving the relational information.

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free π_{φ} proof of the sequent $x: \varphi \vdash x: \varphi$ and propagate the colours to formulas following the rules.

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free π_{φ} proof of the sequent $x: \varphi \vdash x: \varphi$ and propagate the colours to formulas following the rules.

$$
\begin{aligned}
& \text { [1]xRy,yRt; } t: A \vdash t: A ~ \operatorname{ld}_{t: A} \\
& \begin{aligned}
\square_{L} & \frac{\frac{x R y, y R t ; y: \square A+t: A}{x R y ; y: \square A+y: \square A}}{} \\
& \square_{R} \\
\diamond_{L} & \frac{x R y ; y: \square A+x: \diamond \square A}{x: \diamond \square A+x: \diamond \square A}
\end{aligned} \\
& \begin{array}{l}
\frac{[2] x R z, z R w ; w: A \vdash w: A}{} \overbrace{w: A} \\
\diamond_{L} \frac{x R z, z R w ; w: A \vdash z: \diamond A}{x R z ; z: \diamond A+z: \diamond A} \\
\square_{L} \frac{\frac{x R z ; x: \square \diamond A+z: \diamond A}{}}{\frac{x: \square \diamond A \vdash x: \square \diamond A}{}} \square_{R} \\
\square \diamond A+x: \square \diamond A \\
x: \diamond \square A \rightarrow \square \diamond A
\end{array} \rightarrow_{R},
\end{aligned}
$$

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free π_{φ} proof of the sequent $x: \varphi \vdash x: \varphi$ and propagate the colours to formulas following the rules.

$$
\begin{aligned}
& {[1] x R y, y R t ; t: A+t: A \quad \mathrm{ld}_{t: A}} \\
& \begin{aligned}
\square_{L} & \frac{\frac{x R y, y R t ; y: \square A \vdash t: A}{x R y ; y: \square A+y: \square A}}{} \square_{R} \\
\diamond_{L} & \frac{x R y ; y: \square A+x: \diamond \square A}{x: \diamond \square A+x: \diamond \square A}
\end{aligned} \\
& \begin{array}{l}
\frac{[2] x R z, z R w ; w: A \vdash w: A}{} \overbrace{w: A} \\
\diamond_{L} \frac{x R z, z R w ; w: A \vdash z: \diamond A}{x R z ; z: \diamond A+z: \diamond A} \\
\square_{L} \frac{\frac{x R z ; x: \square \diamond A \vdash z: \diamond A}{x R}}{\frac{x: \square \diamond A \vdash x: \square \diamond A}{}} \square_{R} \\
\square \diamond A+x: \square \diamond A \\
x: \diamond \square A \rightarrow \square \diamond A
\end{array} \rightarrow_{R},
\end{aligned}
$$

Now all the information is stored in the leaves.
Note that we can always do this in an obvious way.

The algorithm (II)

Step II. Consider the leaves of π_{φ} and perform all possible cuts on atomic red formulas. Collect all the conclusions and use them as leaves in a forward-chaining proof search with goal $\vdash x: \varphi$. Collect all the attempts π_{φ}^{i}.

The algorithm (II)

Step II. Consider the leaves of π_{φ} and perform all possible cuts on atomic red formulas. Collect all the conclusions and use them as leaves in a forward-chaining proof search with goal $\vdash x: \varphi$. Collect all the attempts π_{φ}^{i}.

$$
\frac{[1] x R y, y R t ; t: A \vdash t: A}{x R y, y R t, x R z, z R w, t=w ; t: A \vdash w: A} \overline{[2] x R, z R w ; w: A \vdash w: A} C u t
$$

The algorithm (II)

Step II. Consider the leaves of π_{φ} and perform all possible cuts on atomic red formulas. Collect all the conclusions and use them as leaves in a forward-chaining proof search with goal $\vdash x: \varphi$. Collect all the attempts π_{φ}^{i}.

$$
\begin{gathered}
\frac{[1] x R y, y R t ; t: A \vdash t: A}{x R y, y R t, x R z, z R w, t=w ; t: A \vdash w: A} \overline{[2] x R, z R w ; w: A \vdash w: A} \\
\hline
\end{gathered}
$$

The algorithm (II)

Step II. Consider the leaves of π_{φ} and perform all possible cuts on atomic red formulas. Collect all the conclusions and use them as leaves in a forward-chaining proof search with goal $\vdash x: \varphi$. Collect all the attempts π_{φ}^{i}.

$$
\begin{aligned}
& \frac{\overline{[1] x R y, y R t ; t: A \vdash t: A} \quad \overline{[2] x R z, z R w ; w: A \vdash w: A}}{x R y, y R t, x R z, z R w, t=w ; t: A \vdash w: A} C u t \\
& \square_{L} \frac{\frac{x R y, y R t, x R z, z R w, t=w ; ~ t: A \vdash w: A}{x R y, y R t, x R z, z R w, t=w ; ~ t: A \vdash z: \diamond A}}{x R y, y R t, x R z, z R w, t=w ; y: \square A \vdash z: \diamond A}
\end{aligned}
$$

The process always terminates because $<_{\Omega}$ is well founded.

The algorithm (III)

Step III. Consider $\vdash x: \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

The algorithm (III)

Step III. Consider $\vdash x: \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

$$
\diamond_{L} \frac{x \bar{R} \bar{z}, \bar{x} R y ; y: \square \bar{A} \vdash z: \diamond A}{\frac{x R z ; x: \diamond \square A+z: \diamond A}{x: \diamond \square A \vdash x: \square \diamond A}} \square_{R}
$$

The algorithm (III)

Step III. Consider $\vdash x: \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

$$
\diamond_{L} \frac{x \bar{R}, x R y ; y: \square \bar{A} \vdash z: \diamond A}{\frac{x R z ; x: \diamond \square A+z: \diamond A}{x: \diamond \square A \vdash x: \square \diamond A}} \square_{R}
$$

Due to the nature of the G3K rules, this step can always be done, also you can not proceed further.

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

$$
\begin{aligned}
& \overline{x R y, y R t, x R z, z R w, t=w ; t: A+w: A} \stackrel{l d}{w: A} \\
& x R y, y R t, x R z, z R w, t=w ; t: A+z: \diamond A \\
& x R y, y R t, x R z, z R w, t=w ; y: \square A \vdash z: \diamond A \\
& \diamond_{L} \frac{x \overline{R z}, \bar{x} \overline{R y} ; \bar{y}: \square \bar{A} \vdash z: \diamond A}{\frac{x R z ; x: \diamond A+z: \diamond A}{x: \diamond \square A+x: \square \diamond A}} \square_{R}
\end{aligned}
$$

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

$$
\begin{aligned}
& \begin{array}{l}
\frac{x R y, y R t, x R z, z R w, t=w ; t: A+w: A}{x R y, y R t, x R z, z R w, t=w ; t: A+z: \diamond A} \stackrel{l d}{w: A}^{\diamond_{R}} \\
\frac{x R y, y R t, x R z, z R w, t=w ; y: \square A \vdash z: \diamond A}{}
\end{array} \\
& \diamond_{L} \frac{x \overline{R z}, \bar{x} \overline{R y} ; \bar{y}: \square \bar{A} \vdash z: \diamond A}{\frac{x R z ; x: \diamond \Delta+z: \diamond A}{x: \diamond \square A+x: \square \diamond A}} \square_{R}
\end{aligned}
$$

The definition of analytic-inductive formulas guarantees that the "merging point" is well-defined.

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

The definition of analytic-inductive formulas guarantees that the "merging point" is well-defined.

$$
\begin{aligned}
C o n & \equiv \\
& \forall x y z(x R y \& x R z \Rightarrow \exists w t(y R t \& z R w \& t=w)) \equiv \\
& \equiv \forall x y z(x R y \& x R z \Rightarrow \exists w(y R w \& z R w))
\end{aligned}
$$

Conclusion and future work (I)

- We introduced an algorithm that associates analytic-inductive formulas with both their corresponding analytic rules and their first-order correspondents, using only the machinery of the G3K calculus...

Conclusion and future work (I)

- We introduced an algorithm that associates analytic-inductive formulas with both their corresponding analytic rules and their first-order correspondents, using only the machinery of the G3K calculus...

Can we do better?

Conclusion and future work (II)

- ... We can extend the approach from G3K to every LE-logic (nondistributive-lattice with finite-arity normal operators)...

Conclusion and future work (II)

- ... We can extend the approach from G3K to every LE-logic (nondistributive-lattice with finite-arity normal operators)...

$$
\begin{array}{cc}
\frac{\Gamma, \overline{\mathbf{h} \leq A}, \overline{B \leq \mathbf{n}} \vdash \mathbf{j} \leq g(\overline{\mathbf{n}}, \overline{\mathbf{h}}), \Delta}{\Gamma \vdash \mathbf{j} \leq g(\bar{B}, \bar{A}), \Delta} g_{R} & \frac{\Gamma, \overline{\mathbf{h} \leq A}, \overline{B \leq \mathbf{n}} \vdash f(\overline{\mathbf{h}}, \overline{\mathbf{n}}) \leq \mathbf{m}, \Delta}{\Gamma \vdash f(\bar{A}, \bar{B}) \leq \mathbf{m}, \Delta} f_{L} \\
\frac{\left(\Gamma \vdash \mathbf{h}_{j} \leq A_{j}, \Delta\right)_{j} \quad\left(\Gamma \vdash B_{i} \leq \mathbf{n}_{i}, \Delta\right)_{i}}{\Gamma, \mathbf{j} \leq g(\bar{B}, \bar{A})+\mathbf{j} \leq g(\overline{\mathbf{n}}, \overline{\mathbf{h}}), \Delta} g_{L} & \frac{\left(\Gamma \vdash \mathbf{h}_{i} \leq A_{i}, \Delta\right)_{i} \quad\left(\Gamma \vdash B_{j} \leq \mathbf{n}_{j}, \Delta\right)_{j}}{\Gamma, f(\bar{A}, \bar{B}) \leq \mathbf{m}+f(\overline{\mathbf{h}}, \overline{\mathbf{n}}) \leq \mathbf{m}, \Delta} f_{R}
\end{array}
$$

(of course I need the appropriate labelled calculus)

Conclusion and future work (III)

- ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$
\begin{aligned}
& G A_{0}:=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge M_{1} \vee \ldots \vee \exists y_{m} \bigwedge M_{m}\right) \\
& G A_{n+1}: \\
&=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge G A_{k_{1}} \vee \ldots \vee \exists y_{m} \bigwedge G A_{k_{m}}\right)
\end{aligned}
$$

Conclusion and future work (III)

- ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$
\begin{aligned}
G A_{0} & :=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge M_{1} \vee \ldots \vee \exists y_{m} \bigwedge M_{m}\right) \\
G A_{n+1} & :=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge G A_{k_{1}} \vee \ldots \vee \exists y_{m} \bigwedge G A_{k_{m}}\right)
\end{aligned}
$$

- For example:

$$
\begin{aligned}
A & \rightarrow \square \square \diamond \square \diamond A \\
{[\square(\diamond A \rightarrow \square B) \wedge(\square C} & \rightarrow A)] \rightarrow[\diamond \square C \vee A \vee(C \rightarrow B)]
\end{aligned}
$$

Conclusion and future work (III)

- ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$
\begin{aligned}
G A_{0} & :=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge M_{1} \vee \ldots \vee \exists y_{m} \bigwedge M_{m}\right) \\
G A_{n+1} & :=\forall \bar{x}\left(\bigwedge P_{i} \rightarrow \exists y_{1} \bigwedge G A_{k_{1}} \vee \ldots \vee \exists y_{m} \bigwedge G A_{k_{m}}\right)
\end{aligned}
$$

- For example:

$$
\begin{aligned}
A & \rightarrow \square \square \diamond \square \diamond A \\
{[\square(\diamond A \rightarrow \square B) \wedge(\square C} & \rightarrow A)] \rightarrow[\diamond \square C \vee A \vee(C \rightarrow B)]
\end{aligned}
$$

Thanks!

