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Analytic inductive < analytic rules <> geometric formulas

[LR].
MASSA +~
modal _  analytic Riddisisdiand W < 9eom. _ first-order
formulas —  inductive modal companion formula — formulas
ALBA ¥
[DR].
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Analytic inductive < analytic rules <> geometric formulas

[LR].
MASSA +~
modal _  analytic Riddisisdiand W < 9eom. _ first-order
formulas —  inductive modal companion formula — formulas
ALBA ¥
[DR].

@ A geometric theory is a FO theory whose models are preserved and reflected
by geometric morphisms.
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Analytic-inductive formulas (1)

Definition (Signed Generation Tree)

The signed generation tree of ¢ is defined by labelling the root of the syntax tree
of ¢ with + or —, and then propagating the labelling as follows:

@ V, A, ¢ or O: assign the same sign to its children.
@ —: assign the opposite sign to its child (treat s — t as =s Vv t).
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Definition (Signed Generation Tree)

The signed generation tree of ¢ is defined by labelling the root of the syntax tree
of ¢ with + or —, and then propagating the labelling as follows:

@ V, A, ¢ or O: assign the same sign to its children.
@ —: assign the opposite sign to its child (treat s — t as =s Vv t).

-

Definition (Order type)

An order typeisamap e : {p1,...,pn} — {1,0}.
An e-critical node is a leaf node +p; with €(p;) = 1 or —p; with €(p;) = 9.

3/16



Analytic-inductive formulas (1)

Definition (Definite analytic-inductive formula)

For any order type €, and any strict linear order <q on the variables, a formula is
analytic (€2, €)-inductive if:
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Analytic-inductive formulas (1)

Definition (Definite analytic-inductive formula)

For any order type €, and any strict linear order <q on the variables, a formula is
analytic (€2, €)-inductive if:
@ every branch is a concatenation of two paths P; and P, from leaf to root,
such that P; consists of PIA nodes, i.e. {—A, +V, =<0, +0, + —, £-}; and P,
consists of skeleton nodes, i.e. {-V,+A,+<, -0, — —, £}
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Analytic-inductive formulas (1)

Definition (Definite analytic-inductive formula)
For any order type €, and any strict linear order <q on the variables, a formula is
analytic (€2, €)-inductive if:
@ every branch is a concatenation of two paths P; and P, from leaf to root,
such that P; consists of PIA nodes, i.e. {—A, +V, =<0, +0, + —, £-}; and P,
consists of skeleton nodes, i.e. {-V,+A, +<¢, -0, — —, +=}.

@ each subtree rooted in a binary PIA node contains at most one e-critical
variable p and all the other variables g in the subtree are such that q <q p.
A formula ¢ — ¥ is an analytic-inductive if +¢, —y are analytic (€2, €)-inductive
for some ¢, <q.
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Example: analytic inductive formula

¢o(p v q) —» oop v Ooq, with e(p) = e(q) =d and p <q q.
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Example: analytic inductive formula

¢o(p v q) —» oop v Ooq, with e(p) = e(q) =d and p <q q.

@ Not analytic-inductive:
A - ooonCA

[O(¢A - OB)A(DC > A)] > [0oCVAV(C— B)]
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The labelled Gentzen calculus G3K

Propositional rules
XA x:Br A N x:A,A N x:B,A A
T XAABF A T+ xAAB,A A

v MxAEFA MxBr A N+ x:A,x:B, A v
- I xAVBr A FTrxAVB,A 1

N x:A,A x:Br A XA+ xB A -
FxA>BrA [ xA—>BA 1

Modal rules (side condition on y in og and <)
xRy; I, x:0A,y:A + A XRy; T + y:A, A

O, OrR
xRy, I,x0A + A M+ x:0A,A

XRy; T,y:A + A xRy; T+ y:A,x:0A, A

ETTLx0A A XRy: T r x0A, A R
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Example: derivation in G3K

Idy.s Idy.a

—L

xRy; y:B + y:B XRy; y:A + y:A
xRy; y:A - B, y:A + y:B
t xRy; y:A — B, x:0A + y:B
‘ xRy; x:0(A - B), xx0A + y:B
x:0(A - B), x:0A + x:0B
x:0(A - B) + x0A - OB .
+ x:0(A - B) » (DA — 0OB)

]

OR
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The problem

@ Given a modal formula ¢, we want to find a rule R such that G3K + R
captures the logic K + .
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The problem

@ Given a modal formula ¢, we want to find a rule R such that G3K + R
captures the logic K + .

@ R should be an analytic rule, that is, we should be able to add it to the
calculus in a modular way (preserving cut elimination).
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The problem

@ Given a modal formula ¢, we want to find a rule R such that G3K + R
captures the logic K + .

@ R should be an analytic rule, that is, we should be able to add it to the
calculus in a modular way (preserving cut elimination).

@ The shape of a geometric formula is shown below. They can always be
transformed into analytic rules.

V?(P1 & ...& P, — 3y11...y1kM1 V..V Hym...ynan)
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@ Let ¢ be not derivable in G3K. What is the minimal set of assumptions I that
makes ' + ¢ derivable? The obvious choice is I = ¢.
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@ Let ¢ be not derivable in G3K. What is the minimal set of assumptions I that
makes ' + ¢ derivable? The obvious choice is I = ¢.

@ The plan: we derive x : ¢ + x : ¢ and eliminate the red assumptions cutting
on the atoms in the proof tree, preserving the relational information.
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The algorithm (1)

Step I. Given the modal formula ¢, construct a cut-free m,, proof of the sequent
X 1@ F X : ¢ and propagate the colours to formulas following the rules.
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The algorithm (1)

Step I. Given the modal formula ¢, construct a cut-free m,, proof of the sequent
X 1@ F X : ¢ and propagate the colours to formulas following the rules.

[1] xRy, yRt; t:A + tA dea [2] xRz, zRw; w:A + w:A ‘da
xRy, yRt;, y:0A + t:A On o xRz, zRw; w:A + z:0A R
XRy; y:0A + y:0A " T XRz; z20A + Z:OA
oL XxRy; y:0A + x:OOA A t xRz; x:00A +r z:0A OR
X:O0A + x:O0A x:00A + x:O00A

L

X:O0A, x:00A — OOCA + x:00A
X:O0A —» OCA + x:00A — O0A
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The algorithm (1)

Step I. Given the modal formula ¢, construct a cut-free m,, proof of the sequent
X 1@ F X : ¢ and propagate the colours to formulas following the rules.

[1] xRy, yRt; t:A + tA dea [2] xRz, zRw; w:A + w:A ‘da
xRy, yRt;, y:0A + t:A On o xRz, zRw; w:A + z:0A ©r
XRy; y:0A + y:0A o xRz z20A + z:0A
oL XxRy; y:0A + x:OOA A t xRz; x:00A +r z:0A OR
5, X:O0A + x:O0A x:00A + x:O00A

X:O0A, x:00A — OOCA + x:00A
X:O0A —» OCA + x:00A — O0A

Now all the information is stored in the leaves.
Note that we can always do this in an obvious way.
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The algorithm (11)

Step Il. Consider the leaves of r, and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal + x : ¢. Collect all the attempts ..
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The algorithm (11)

Step Il. Consider the leaves of r, and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal + x : ¢. Collect all the attempts ..

[1] xRy,yRt;t : A F t: A [2] xRz, zRw;w: A + w: A
xRy, yRt, xRz, zRw,t=w;t: A + w: A Cut
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The algorithm (11)

Step Il. Consider the leaves of r, and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal + x : ¢. Collect all the attempts ..

[1] xRy,yRt;t : A F t: A [2] xRz, zRw;w: A + w: A
xRy, yRt, xRz, zRw,t=w;t: A + w: A Cut

xRy, yRt, xRz, zRw, t=w; t:A + w:A o
xRy, yRt, xRz, zRw, t=w; t:A + z:0A R
t xRy, yRt, xRz, zRw, t=w; y:0A + z:0A
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The algorithm (11)

Step Il. Consider the leaves of r, and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal + x : ¢. Collect all the attempts ..

[1] xRy,yRt;t : A F t: A [2] xRz, zRw;w: A + w: A
xRy, yRt, xRz, zRw,t=w;t: A + w: A Cut

xRy, yRt, xRz, zRw, t=w; t:A + w:A o
xRy, yRt, xRz, zRw, t=w; t:A + z:0A R
t xRy, yRt, xRz, zRw, t=w; y:0A + z:0A

The process always terminates because <q is well founded.
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The algorithm (l11)

Step lll. Consider + x : ¢ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.
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The algorithm (l11)

Step lll. Consider + x : ¢ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.

xRz, xRy ; y:0A + z:0A
xRz ; x:00A + z:0A
x:O0A + x:O00A
F x:O0OA —» OCA

oL

—R
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The algorithm (l11)

Step lll. Consider + x : ¢ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.

xRz, xRy ; y:0A + z:0A
xRz ; x:00A + z:0A
x:O0A + x:O00A
F x:O0OA —» OCA

oL

-

Due to the nature of the G3K rules, this step can always be done, also you can not
proceed further.
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The algorithm (1V)

Step IV. Merge each nj, with the lower portion of the proof.
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The algorithm (1V)

Step IV. Merge each 7rj, with the lower portion of the proof.

xRy, yRt, xRz, zRw, t=w; t:A + w:A
xRy, yRt, xRz, zRw, t=w; t:A + z:0A
- xRy, yRt, xRz, zRw, t=w; y:0OA + z:0A
~ xRz,xRy; yoA + zz0A
XRz; x:O0OA + z:0A
x:O0A + x:O00A
F X:OOA — OCA
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The algorithm (1V)

Step IV. Merge each 7rj, with the lower portion of the proof.

xRy, yRt, xRz, zRw, t=w; t:A + w:A
xRy, yRt, xRz, zRw, t=w; t:A + z:0A
- xRy, yRt, xRz, zRw, t=w; y:0OA + z:0A
~ xRz,xRy; yoA + zz0A
XRz; x:O0OA + z:0A Or
x:O0A + x:O00A
F X:OOA — OCA

—R

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.
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The algorithm (1V)

Step IV. Merge each 7rj, with the lower portion of the proof.

xRy, yRt, xRz, zRw, t=w; t:A + w:A
xRy, yRt, xRz, zRw, t=w; t:A + z:0A
- xRy, yRt, xRz, zRw, t=w; y:0OA + z:0A
~ xRz,xRy; yoA + zz0A
XRz; x:O0OA + z:0A Or
x:O0A + x:O00A
F X:OOA — OCA

—R

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.

Con = Vxyz(xRy & xRz = dwt (yRt& zRw &t = w)) =
= Vxyz (xRy & xRz = dw (yRw & zRw))
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Conclusion and future work (I)

@ We introduced an algorithm that associates analytic-inductive formulas
with both their corresponding analytic rules and their first-order
correspondents, using only the machinery of the G3K calculus...
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Conclusion and future work (I)

@ We introduced an algorithm that associates analytic-inductive formulas
with both their corresponding analytic rules and their first-order
correspondents, using only the machinery of the G3K calculus...

Can we do better?
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Conclusion and future work (II)

@ ... We can extend the approach from G3K to every LE-logic
(nondistributive-lattice with finite-arity normal operators)...
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Conclusion and future work (II)

@ ... We can extend the approach from G3K to every LE-logic
(nondistributive-lattice with finite-arity normal operators)...

Mh<AB<ntrj<g(nh)A g Mh<AB<nt f(hin)<mA .

— R p—— L
rri<g(B.A).A I+ f(A,B)<m,A
(Fl—hjSAj,A)l, (r+Bi<n,A) . (Frhi<ALA) (FrBjsnj,A)j f

— — L p— — R
ri<g(B.A) rj<g(.h),A rf(A,B)<m+ f(h,n) <m,A

(of course | need the appropriate labelled calculus)
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Conclusion and future work (ll1)

@ ... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GAy = v7(A P — Jy, A M V...V Ay, A M)

GAn+1 = V}(/\ P — dy, /\ GAK1 V..Vdy, /\ GAkm)
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Conclusion and future work (ll1)

@ ... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GAy = v7(A P — Jy, A M V...V Ay, A M)

GAn+1 = V}(/\ P — dy, /\ GAK1 V..Vdy, /\ GAkm)

@ For example:
A — OooOoA

[O(0A > oB)A(OC - A)] > [¢oC VAV (C - B)]
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Conclusion and future work (ll1)

@ ... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GAy = v7(A P — Jy, A M V...V Ay, A M)

GAn+1 = V}(/\ P — dy, /\ GAK1 V..Vdy, /\ GAkm)

@ For example:
A — OooOoA

[O(0A > oB)A(OC - A)] > [¢oC VAV (C - B)]

Thanks!
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