Algorithmic correspondence and analytic rules for (D)LE logics

Andrea De Domenico, Giuseppe Greco

Vrije Universiteit, The Netherlands

Analytic inductive \leftrightarrow analytic rules \leftrightarrow geometric formulas

Analytic inductive \leftrightarrow analytic rules \leftrightarrow geometric formulas

 A geometric theory is a FO theory whose models are preserved and reflected by geometric morphisms.

Definition (Signed Generation Tree)

The **signed generation tree** of φ is defined by labelling the root of the syntax tree of φ with + or -, and then propagating the labelling as follows:

- \lor , \land , \diamond or \Box : assign the same sign to its children.
- \neg : assign the opposite sign to its child (treat $s \rightarrow t$ as $\neg s \lor t$).

Definition (Signed Generation Tree)

The **signed generation tree** of φ is defined by labelling the root of the syntax tree of φ with + or -, and then propagating the labelling as follows:

- \lor , \land , \diamond or \Box : assign the same sign to its children.
- \neg : assign the opposite sign to its child (treat $s \rightarrow t$ as $\neg s \lor t$).

Definition (Order type)

An order type is a map $\epsilon : \{p_1, \dots, p_n\} \to \{1, \partial\}$. An ϵ -critical node is a leaf node $+p_i$ with $\epsilon(p_i) = 1$ or $-p_i$ with $\epsilon(p_i) = \partial$.

Definition (Definite analytic-inductive formula)

For any order type ϵ , and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ) -inductive if:

Definition (Definite analytic-inductive formula)

For any order type ϵ , and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ) -inductive if:

every branch is a concatenation of two paths P₁ and P₂ from leaf to root, such that P₁ consists of **PIA** nodes, i.e. {−∧, +∨, −◇, +□, + →, ±¬}; and P₂ consists of **skeleton** nodes, i.e. {−∨, +∧, +◇, −□, − →, ±¬}.

Definition (Definite analytic-inductive formula)

For any order type ϵ , and any strict linear order $<_{\Omega}$ on the variables, a formula is analytic (Ω, ϵ) -inductive if:

- every branch is a concatenation of two paths P₁ and P₂ from leaf to root, such that P₁ consists of **PIA** nodes, i.e. {-∧, +∨, -◇, +□, + →, ±¬}; and P₂ consists of **skeleton** nodes, i.e. {-∨, +∧, +◇, -□, →, ±¬}.
- each subtree rooted in a binary PIA node contains at most one *ε*-critical variable *p* and all the other variables *q* in the subtree are such that *q* <_Ω *p*.

A formula $\varphi \to \psi$ is an **analytic-inductive** if $+\varphi$, $-\psi$ are analytic (Ω, ϵ) -inductive for some ϵ , $<_{\Omega}$.

Example: analytic inductive formula

 $\diamond \Box (p \lor q) \rightarrow \Box \diamond p \lor \Box \diamond q$, with $\epsilon(p) = \epsilon(q) = \partial$ and $p <_{\Omega} q$.

Example: analytic inductive formula

 $\diamond \Box (p \lor q) \rightarrow \Box \diamond p \lor \Box \diamond q$, with $\epsilon(p) = \epsilon(q) = \partial$ and $p <_{\Omega} q$.

Not analytic-inductive:

$$A \to \Box\Box \Diamond\Box \Diamond A$$
$$[\Box(\Diamond A \to \Box B) \land (\Box C \to A)] \to [\Diamond\Box C \lor A \lor (C \to B)]$$

The labelled Gentzen calculus G3K

$$\begin{array}{l} & \Pr opsitional rules \\ & \wedge_{L} \ \frac{\Gamma, x:A, x:B \vdash \Delta}{\Gamma, x:A \land B \vdash \Delta} & \frac{\Gamma \vdash x:A, \Delta \qquad \Gamma \vdash x:B, \Delta}{\Gamma \vdash x:A \land B, \Delta} \land_{R} \\ & \vee_{L} \ \frac{\Gamma, x:A \vdash \Delta \qquad \Gamma, x:B \vdash \Delta}{\Gamma, x:A \lor B \vdash \Delta} & \frac{\Gamma \vdash x:A, x:B, \Delta}{\Gamma \vdash x:A \lor B, \Delta} \lor_{R} \\ & \rightarrow_{L} \ \frac{\Gamma \vdash x:A, \Delta \qquad \Gamma, x:B \vdash \Delta}{\Gamma, x:A \to B \vdash \Delta} & \frac{\Gamma, x:A \vdash x:B, \Delta}{\Gamma \vdash x:A \lor B, \Delta} \rightarrow_{R} \\ & \begin{array}{c} & \mathbf{Modal rules} (\text{side condition on } y \text{ in } \Box_{R} \text{ and } \diamond_{L}) \\ & \Box_{L} \ \frac{xRy; \ \Gamma, x:\Box A \vdash \Delta}{xRy; \ \Gamma, x:\Box A \vdash \Delta} & \frac{xRy; \ \Gamma \vdash y:A, \Delta}{\Gamma \vdash x:\Box A, \Delta} \Box_{R} \\ & \\ & \diamond_{L} \ \frac{xRy; \ \Gamma, y:A \vdash \Delta}{\Gamma, x:\diamond A \vdash \Delta} & \frac{xRy; \ \Gamma \vdash y:A, x:\diamond A, \Delta}{xRy; \ \Gamma \vdash x:\diamond A, \Delta} \diamond_{R} \end{array}$$

Example: derivation in G3K

$$\overset{\operatorname{Id}_{y:B}}{\to_{L}} \underbrace{\frac{xRy; \ y:B \vdash y:B}{xRy; \ y:A \to B, \ y:A \vdash y:A}}_{\square_{L}} \underbrace{\frac{xRy; \ y:A \to B, \ y:A \vdash y:B}{xRy; \ y:A \to B, \ x:\squareA \vdash y:B}}_{(A \to B), \ x:\squareA \vdash y:B} \underbrace{\frac{xRy; \ x:\square(A \to B), \ x:\squareA \vdash y:B}{x:\square(A \to B) \vdash x:\squareA \to \squareB}}_{\square_{R}} \underbrace{\frac{x:\square(A \to B) \vdash x:\squareA \to \squareB}{\square_{R}}}_{\square_{R}} \xrightarrow{\square_{R}} \underbrace{\frac{x:\square(A \to B) \vdash x:\squareA \to \squareB}{\square_{R}}}_{\square_{R}}$$

• Given a modal formula φ , we want to find a rule *R* such that G3K + *R* captures the logic $K + \varphi$.

- Given a modal formula φ , we want to find a rule *R* such that G3K + *R* captures the logic $K + \varphi$.
- *R* should be an **analytic** rule, that is, we should be able to add it to the calculus in a modular way (preserving cut elimination).

- Given a modal formula φ, we want to find a rule R such that G3K + R captures the logic K + φ.
- *R* should be an **analytic** rule, that is, we should be able to add it to the calculus in a modular way (preserving cut elimination).
- The shape of a geometric formula is shown below. They can always be transformed into analytic rules.

$$\forall \overline{x}(P_1 \& \dots \& P_m \to \exists y_{1_1} \dots y_{1_k} M_1 \lor \dots \lor \exists y_{n_1} \dots y_{n_k} M_n)$$

Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that makes Γ ⊢ φ derivable? The obvious choice is Γ = φ.

- Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that makes Γ ⊢ φ derivable? The obvious choice is Γ = φ.
- The plan: we derive x : φ ⊢ x : φ and eliminate the red assumptions cutting on the atoms in the proof tree, preserving the relational information.

Step I. Given the modal formula φ , construct a cut-free π_{φ} proof of the sequent $x : \varphi \vdash x : \varphi$ and propagate the colours to formulas following the rules.

Step I. Given the modal formula φ , construct a cut-free π_{φ} proof of the sequent $x : \varphi \vdash x : \varphi$ and propagate the colours to formulas following the rules.

Step I. Given the modal formula φ , construct a cut-free π_{φ} proof of the sequent $x : \varphi \vdash x : \varphi$ and propagate the colours to formulas following the rules.

Now all the information is stored in the leaves. Note that we can always do this in an obvious way.

 $\begin{array}{c|c}
\hline [1] xRy, yRt; t: A \vdash t: A \\
\hline [2] xRz, zRw; w: A \vdash w: A \\
\hline xRy, yRt, xRz, zRw, t=w; t: A \vdash w: A \\
\hline \\
\Box_L \frac{xRy, yRt, xRz, zRw, t=w; t: A \vdash w: A \\
\hline \\
xRy, yRt, xRz, zRw, t=w; t: A \vdash z: \diamond A \\
\hline \\
xRy, yRt, xRz, zRw, t=w; y: \Box A \vdash z: \diamond A \\
\hline \\
\end{array}$ Cut

 $\begin{array}{c|c}
\hline [1] xRy, yRt; t: A \vdash t: A \\
\hline [2] xRz, zRw; w: A \vdash w: A \\
\hline xRy, yRt, xRz, zRw, t=w; t: A \vdash w: A \\
\hline \\
\Box_L \frac{xRy, yRt, xRz, zRw, t=w; t: A \vdash w: A \\
\hline \\
xRy, yRt, xRz, zRw, t=w; t: A \vdash z: \diamond A \\
\hline \\
xRy, yRt, xRz, zRw, t=w; y: \Box A \vdash z: \diamond A \\
\hline \\
\end{array}$ Cut

The process always terminates because $<_{\Omega}$ is well founded.

Step III. Consider $\vdash x : \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

Step III. Consider $\vdash x : \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

$$\diamond_{L} \frac{\overline{xRz, xRy; y: \Box A + z: \diamond A}}{\underline{xRz; x: \diamond \Box A + z: \diamond A}} = \frac{xRz; x: \diamond \Box A + z: \diamond A}{\underline{x: \diamond \Box A + x: \Box \diamond A}} = A$$

Step III. Consider $\vdash x : \varphi$ and derive it using a backward-chaining proof search until you reach a sequent containing only the maximal PIA nodes.

$$\diamond_{L} \frac{\overline{xRz, xRy; y: \Box A \vdash z: \diamond A}}{\underline{xRz; x: \diamond \Box A \vdash z: \diamond A}} \frac{\Box R}{\Box R}$$

$$\frac{\overline{x: \diamond \Box A \vdash x: \Box \diamond A}}{\underline{x: \diamond \Box A \vdash x: \Box \diamond A}} \xrightarrow{\Box R}$$

Due to the nature of the G3K rules, this step can always be done, also you can not proceed further.

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

The algorithm (IV)

Step IV. Merge each π_{φ}^{i} with the lower portion of the proof.

$$\begin{array}{c}
\overbrace{xRy, yRt, xRz, zRw, t=w; t:A + w:A}^{\Box} \stackrel{\mathsf{Id}_{w:A}}{xRy, yRt, xRz, zRw, t=w; t:A + z:\diamond A} \diamond_{R} \\
\overbrace{xRy, yRt, xRz, zRw, t=w; y:\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz, xRy; y:\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz; x:\diamond\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz; x:\diamond\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz, xRy; \to\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz; x:\diamond\Box A + z:\diamond A}^{\Box} \\
\overbrace{xRz; x:\diamond A + z:\diamond A}^{\Box} \\
\overbrace{xRz; x:\leftarrow A + z:\diamond A}^$$

Step IV. Merge each π_{ω}^{i} with the lower portion of the proof.

$$Con = \begin{bmatrix} xRy, yRt, xRz, zRw, t=w; t:A + w:A & |d_{w:A} \\ xRy, yRt, xRz, zRw, t=w; t:A + z:\diamond A \\ \hline xRy, yRt, xRz, zRw, t=w; y:\Box A + z:\diamond A \\ \diamond_L & \frac{xRz, xRy; y:\Box A + z:\diamond A}{xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A + z:\diamond A}{-xRz; x:\diamond\Box A + z:\diamond A} \\ \hline \frac{xRz; x:\diamond\Box A + x:\Box A + z:\diamond A$$

The definition of analytic-inductive formulas guarantees that the "merging point" is well-defined.

Step IV. Merge each π_{ω}^{i} with the lower portion of the proof.

$$Con \xrightarrow{xRy, yRt, xRz, zRw, t=w; t:A + w:A}{xRy, yRt, xRz, zRw, t=w; t:A + z:\diamond A} \diamond_{R} \diamond_$$

The definition of analytic-inductive formulas guarantees that the "merging point" is well-defined.

$$Con \equiv \forall xyz (xRy \& xRz \Rightarrow \exists wt (yRt \& zRw \& t = w)) \equiv \\ \equiv \forall xyz (xRy \& xRz \Rightarrow \exists w (yRw \& zRw))$$

• We introduced an **algorithm** that associates **analytic-inductive formulas** with both their corresponding **analytic rules** and their **first-order correspondents**, using only the machinery of the G3K calculus...

• We introduced an **algorithm** that associates **analytic-inductive formulas** with both their corresponding **analytic rules** and their **first-order correspondents**, using only the machinery of the G3K calculus...

Can we do better?

• ... We can extend the approach from G3K to **every LE-logic** (nondistributive-lattice with finite-arity normal operators)...

 ... We can extend the approach from G3K to every LE-logic (nondistributive-lattice with finite-arity normal operators)...

$$\frac{\Gamma, \overline{\mathbf{h} \leq A}, \overline{B \leq \mathbf{n}} \vdash \mathbf{j} \leq g(\overline{\mathbf{n}}, \overline{\mathbf{h}}), \Delta}{\Gamma \vdash \mathbf{j} \leq g(\overline{B}, \overline{A}), \Delta} g_R \qquad \qquad \frac{\Gamma, \overline{\mathbf{h} \leq A}, \overline{B \leq \mathbf{n}} \vdash f(\overline{\mathbf{h}}, \overline{\mathbf{n}}) \leq \mathbf{m}, \Delta}{\Gamma \vdash f(\overline{A}, \overline{B}) \leq \mathbf{m}, \Delta} f_L$$

$$\frac{\left(\Gamma \vdash \mathbf{h}_j \leq A_j, \Delta\right)_j \qquad \left(\Gamma \vdash B_j \leq \mathbf{n}_i, \Delta\right)_j}{\Gamma, \mathbf{j} \leq g(\overline{B}, \overline{A}) \vdash \mathbf{j} \leq g(\overline{\mathbf{n}}, \overline{\mathbf{h}}), \Delta} g_L \qquad \frac{\left(\Gamma \vdash \mathbf{h}_i \leq A_i, \Delta\right)_i \qquad \left(\Gamma \vdash B_j \leq \mathbf{n}_j, \Delta\right)_j}{\Gamma, f(\overline{A}, \overline{B}) \leq \mathbf{m} \vdash f(\overline{\mathbf{h}}, \overline{\mathbf{n}}) \leq \mathbf{m}, \Delta} f_R$$

(of course I need the appropriate labelled calculus)

Conclusion and future work (III)

 ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$GA_{0} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge M_{1} \lor ... \lor \exists y_{m} \bigwedge M_{m})$$
$$GA_{n+1} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge GA_{k_{1}} \lor ... \lor \exists y_{m} \bigwedge GA_{k_{m}})$$

Conclusion and future work (III)

 ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$GA_{0} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge M_{1} \lor ... \lor \exists y_{m} \bigwedge M_{m})$$
$$GA_{n+1} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge GA_{k_{1}} \lor ... \lor \exists y_{m} \bigwedge GA_{k_{m}})$$

For example:

$$A \to \Box\Box \Diamond \Box \Diamond A$$
$$[\Box(\Diamond A \to \Box B) \land (\Box C \to A)] \to [\Diamond \Box C \lor A \lor (C \to B)]$$

Conclusion and future work (III)

 ... We will also consider a larger class of formulas, inductive formulas, that correspond to systems of rules and generalized geometric formulas.

$$GA_{0} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge M_{1} \lor ... \lor \exists y_{m} \bigwedge M_{m})$$
$$GA_{n+1} := \forall \overline{x} (\bigwedge P_{i} \to \exists y_{1} \bigwedge GA_{k_{1}} \lor ... \lor \exists y_{m} \bigwedge GA_{k_{m}})$$

For example:

 $A \to \Box\Box \Diamond \Box \Diamond A$ $[\Box(\Diamond A \to \Box B) \land (\Box C \to A)] \to [\Diamond \Box C \lor A \lor (C \to B)]$