
Algorithmic correspondence and analytic rules for
(D)LE logics

Andrea De Domenico, Giuseppe Greco

Vrije Universiteit, The Netherlands

1 / 16

Analytic inductive↔ analytic rules↔ geometric formulas

modal
⊇

formulas
analytic

∋
inductive

φ

[LR]⊣⊢

ψ

[DR]⊣⊢

MASSA

ALBA

geom.
∈

formula
first-order

⊆
formulas

FO correspondent

modal companion

A geometric theory is a FO theory whose models are preserved and reflected
by geometric morphisms.

2 / 16

Analytic inductive↔ analytic rules↔ geometric formulas

modal
⊇

formulas
analytic

∋
inductive

φ

[LR]⊣⊢

ψ

[DR]⊣⊢

MASSA

ALBA

geom.
∈

formula
first-order

⊆
formulas

FO correspondent

modal companion

A geometric theory is a FO theory whose models are preserved and reflected
by geometric morphisms.

2 / 16

Analytic-inductive formulas (I)

Definition (Signed Generation Tree)

The signed generation tree of φ is defined by labelling the root of the syntax tree
of φ with + or −, and then propagating the labelling as follows:

∨, ∧, ^ or □: assign the same sign to its children.

¬: assign the opposite sign to its child (treat s → t as ¬s ∨ t).

Definition (Order type)
An order type is a map ϵ : {p1, . . . , pn} → {1, ∂}.
An ϵ-critical node is a leaf node +pi with ϵ(pi) = 1 or −pi with ϵ(pi) = ∂.

3 / 16

Analytic-inductive formulas (I)

Definition (Signed Generation Tree)

The signed generation tree of φ is defined by labelling the root of the syntax tree
of φ with + or −, and then propagating the labelling as follows:

∨, ∧, ^ or □: assign the same sign to its children.

¬: assign the opposite sign to its child (treat s → t as ¬s ∨ t).

Definition (Order type)
An order type is a map ϵ : {p1, . . . , pn} → {1, ∂}.
An ϵ-critical node is a leaf node +pi with ϵ(pi) = 1 or −pi with ϵ(pi) = ∂.

3 / 16

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)
For any order type ϵ, and any strict linear order <Ω on the variables, a formula is
analytic (Ω, ϵ)-inductive if:

every branch is a concatenation of two paths P1 and P2 from leaf to root,
such that P1 consists of PIA nodes, i.e. {−∧,+∨,−^,+□,+→,±¬}; and P2

consists of skeleton nodes, i.e. {−∨,+∧,+^,−□,− →,±¬}.

each subtree rooted in a binary PIA node contains at most one ϵ-critical
variable p and all the other variables q in the subtree are such that q <Ω p.

A formula φ→ ψ is an analytic-inductive if +φ, −ψ are analytic (Ω, ϵ)-inductive
for some ϵ, <Ω.

4 / 16

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)
For any order type ϵ, and any strict linear order <Ω on the variables, a formula is
analytic (Ω, ϵ)-inductive if:

every branch is a concatenation of two paths P1 and P2 from leaf to root,
such that P1 consists of PIA nodes, i.e. {−∧,+∨,−^,+□,+→,±¬}; and P2

consists of skeleton nodes, i.e. {−∨,+∧,+^,−□,− →,±¬}.

each subtree rooted in a binary PIA node contains at most one ϵ-critical
variable p and all the other variables q in the subtree are such that q <Ω p.

A formula φ→ ψ is an analytic-inductive if +φ, −ψ are analytic (Ω, ϵ)-inductive
for some ϵ, <Ω.

4 / 16

Analytic-inductive formulas (II)

Definition (Definite analytic-inductive formula)
For any order type ϵ, and any strict linear order <Ω on the variables, a formula is
analytic (Ω, ϵ)-inductive if:

every branch is a concatenation of two paths P1 and P2 from leaf to root,
such that P1 consists of PIA nodes, i.e. {−∧,+∨,−^,+□,+→,±¬}; and P2

consists of skeleton nodes, i.e. {−∨,+∧,+^,−□,− →,±¬}.

each subtree rooted in a binary PIA node contains at most one ϵ-critical
variable p and all the other variables q in the subtree are such that q <Ω p.

A formula φ→ ψ is an analytic-inductive if +φ, −ψ are analytic (Ω, ϵ)-inductive
for some ϵ, <Ω.

4 / 16

Example: analytic inductive formula

^□(p ∨ q)→ □^p ∨ □^q, with ϵ(p) = ϵ(q) = ∂ and p <Ω q.

+^

+□

+∨

+p +q

→ −∨

−□

−^

−p

−□

−^

−q

Not analytic-inductive:

A → □□^□^A

[□(^A → □B) ∧ (□C → A)]→ [^□C ∨ A ∨ (C → B)]

5 / 16

Example: analytic inductive formula

^□(p ∨ q)→ □^p ∨ □^q, with ϵ(p) = ϵ(q) = ∂ and p <Ω q.

+^

+□

+∨

+p +q

→ −∨

−□

−^

−p

−□

−^

−q

Not analytic-inductive:

A → □□^□^A

[□(^A → □B) ∧ (□C → A)]→ [^□C ∨ A ∨ (C → B)]

5 / 16

The labelled Gentzen calculus G3K

Propositional rules
Γ, x:A , x:B ⊢ ∆

∧L
Γ, x:A ∧ B ⊢ ∆

Γ ⊢ x:A ,∆ Γ ⊢ x:B ,∆
∧R

Γ ⊢ x:A ∧ B ,∆

Γ, x:A ⊢ ∆ Γ, x:B ⊢ ∆
∨L

Γ, x:A ∨ B ⊢ ∆

Γ ⊢ x:A , x:B ,∆
∨R

Γ ⊢ x:A ∨ B ,∆

Γ ⊢ x:A ,∆ Γ, x:B ⊢ ∆
→L

Γ, x:A → B ⊢ ∆

Γ, x:A ⊢ x:B ,∆
→R

Γ ⊢ x:A → B ,∆

Modal rules (side condition on y in □R and ^L)
xRy; Γ, x:□A , y:A ⊢ ∆

□L xRy; Γ, x:□A ⊢ ∆

xRy; Γ ⊢ y:A ,∆
□R

Γ ⊢ x:□A ,∆

xRy; Γ, y:A ⊢ ∆
^L

Γ, x:^A ⊢ ∆

xRy; Γ ⊢ y:A , x:^A ,∆
^RxRy; Γ ⊢ x:^A ,∆

6 / 16

Example: derivation in G3K

Idy:B xRy; y:B ⊢ y:B
Idy:AxRy; y:A ⊢ y:A

→L xRy; y:A → B , y:A ⊢ y:B
□L xRy; y:A → B , x:□A ⊢ y:B
□L

xRy; x:□(A → B), x:□A ⊢ y:B
□R

x:□(A → B), x:□A ⊢ x:□B
→R

x:□(A → B) ⊢ x:□A → □B
→R

⊢ x:□(A → B)→ (□A → □B)

7 / 16

The problem

Given a modal formula φ, we want to find a rule R such that G3K + R
captures the logic K + φ.

R should be an analytic rule, that is, we should be able to add it to the
calculus in a modular way (preserving cut elimination).

The shape of a geometric formula is shown below. They can always be
transformed into analytic rules.

∀x(P1 & ... & Pm → ∃y11 ...y1k M1 ∨ ... ∨ ∃yn1 ...ynk Mn)

8 / 16

The problem

Given a modal formula φ, we want to find a rule R such that G3K + R
captures the logic K + φ.

R should be an analytic rule, that is, we should be able to add it to the
calculus in a modular way (preserving cut elimination).

The shape of a geometric formula is shown below. They can always be
transformed into analytic rules.

∀x(P1 & ... & Pm → ∃y11 ...y1k M1 ∨ ... ∨ ∃yn1 ...ynk Mn)

8 / 16

The problem

Given a modal formula φ, we want to find a rule R such that G3K + R
captures the logic K + φ.

R should be an analytic rule, that is, we should be able to add it to the
calculus in a modular way (preserving cut elimination).

The shape of a geometric formula is shown below. They can always be
transformed into analytic rules.

∀x(P1 & ... & Pm → ∃y11 ...y1k M1 ∨ ... ∨ ∃yn1 ...ynk Mn)

8 / 16

The idea

Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that
makes Γ ⊢ φ derivable? The obvious choice is Γ = φ.

The plan: we derive x : φ ⊢ x : φ and eliminate the red assumptions cutting
on the atoms in the proof tree, preserving the relational information.

9 / 16

The idea

Let φ be not derivable in G3K. What is the minimal set of assumptions Γ that
makes Γ ⊢ φ derivable? The obvious choice is Γ = φ.

The plan: we derive x : φ ⊢ x : φ and eliminate the red assumptions cutting
on the atoms in the proof tree, preserving the relational information.

9 / 16

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free πφ proof of the sequent
x : φ ⊢ x : φ and propagate the colours to formulas following the rules.

Idt:A
[1] xRy, yRt ; t :A ⊢ t :A

□L
xRy, yRt ; y:□A ⊢ t :A

□R
xRy; y:□A ⊢ y:□A

^RxRy; y:□A ⊢ x:^□A
^L x:^□A ⊢ x:^□A

Idw:A
[2] xRz, zRw; w:A ⊢ w:A

^RxRz, zRw; w:A ⊢ z:^A
^L xRz; z:^A ⊢ z:^A
□L

xRz; x:□^A ⊢ z:^A
□R

x:□^A ⊢ x:□^A
→L

x:^□A , x:^□A → □^A ⊢ x:□^A
→R

x:^□A → □^A ⊢ x:^□A → □^A

Now all the information is stored in the leaves.
Note that we can always do this in an obvious way.

10 / 16

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free πφ proof of the sequent
x : φ ⊢ x : φ and propagate the colours to formulas following the rules.

Idt:A
[1] xRy, yRt ; t :A ⊢ t :A

□L
xRy, yRt ; y:□A ⊢ t :A

□R
xRy; y:□A ⊢ y:□A

^RxRy; y:□A ⊢ x:^□A
^L x:^□A ⊢ x:^□A

Idw:A
[2] xRz, zRw; w:A ⊢ w:A

^RxRz, zRw; w:A ⊢ z:^A
^L xRz; z:^A ⊢ z:^A
□L

xRz; x:□^A ⊢ z:^A
□R

x:□^A ⊢ x:□^A
→L

x:^□A , x:^□A → □^A ⊢ x:□^A
→R

x:^□A → □^A ⊢ x:^□A → □^A

Now all the information is stored in the leaves.
Note that we can always do this in an obvious way.

10 / 16

The algorithm (I)

Step I. Given the modal formula φ, construct a cut-free πφ proof of the sequent
x : φ ⊢ x : φ and propagate the colours to formulas following the rules.

Idt:A
[1] xRy, yRt ; t :A ⊢ t :A

□L
xRy, yRt ; y:□A ⊢ t :A

□R
xRy; y:□A ⊢ y:□A

^RxRy; y:□A ⊢ x:^□A
^L x:^□A ⊢ x:^□A

Idw:A
[2] xRz, zRw; w:A ⊢ w:A

^RxRz, zRw; w:A ⊢ z:^A
^L xRz; z:^A ⊢ z:^A
□L

xRz; x:□^A ⊢ z:^A
□R

x:□^A ⊢ x:□^A
→L

x:^□A , x:^□A → □^A ⊢ x:□^A
→R

x:^□A → □^A ⊢ x:^□A → □^A

Now all the information is stored in the leaves.
Note that we can always do this in an obvious way.

10 / 16

The algorithm (II)

Step II. Consider the leaves of πφ and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal ⊢ x : φ. Collect all the attempts π i

φ.

[1] xRy, yRt ; t : A ⊢ t : A [2] xRz, zRw;w : A ⊢ w : A
CutxRy, yRt , xRz, zRw, t=w; t : A ⊢ w : A

xRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A

The process always terminates because <Ω is well founded.

11 / 16

The algorithm (II)

Step II. Consider the leaves of πφ and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal ⊢ x : φ. Collect all the attempts π i

φ.

[1] xRy, yRt ; t : A ⊢ t : A [2] xRz, zRw;w : A ⊢ w : A
CutxRy, yRt , xRz, zRw, t=w; t : A ⊢ w : A

xRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A

The process always terminates because <Ω is well founded.

11 / 16

The algorithm (II)

Step II. Consider the leaves of πφ and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal ⊢ x : φ. Collect all the attempts π i

φ.

[1] xRy, yRt ; t : A ⊢ t : A [2] xRz, zRw;w : A ⊢ w : A
CutxRy, yRt , xRz, zRw, t=w; t : A ⊢ w : A

xRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A

The process always terminates because <Ω is well founded.

11 / 16

The algorithm (II)

Step II. Consider the leaves of πφ and perform all possible cuts on atomic red
formulas. Collect all the conclusions and use them as leaves in a forward-chaining
proof search with goal ⊢ x : φ. Collect all the attempts π i

φ.

[1] xRy, yRt ; t : A ⊢ t : A [2] xRz, zRw;w : A ⊢ w : A
CutxRy, yRt , xRz, zRw, t=w; t : A ⊢ w : A

xRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A

The process always terminates because <Ω is well founded.

11 / 16

The algorithm (III)

Step III. Consider ⊢ x : φ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.

xRz, xRy ; y:□A ⊢ z:^A
^L xRz ; x:^□A ⊢ z:^A

□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

Due to the nature of the G3K rules, this step can always be done, also you can not
proceed further.

12 / 16

The algorithm (III)

Step III. Consider ⊢ x : φ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.

xRz, xRy ; y:□A ⊢ z:^A
^L xRz ; x:^□A ⊢ z:^A

□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

Due to the nature of the G3K rules, this step can always be done, also you can not
proceed further.

12 / 16

The algorithm (III)

Step III. Consider ⊢ x : φ and derive it using a backward-chaining proof search
until you reach a sequent containing only the maximal PIA nodes.

xRz, xRy ; y:□A ⊢ z:^A
^L xRz ; x:^□A ⊢ z:^A

□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

Due to the nature of the G3K rules, this step can always be done, also you can not
proceed further.

12 / 16

The algorithm (IV)

Step IV. Merge each π i
φ with the lower portion of the proof.

Idw:AxRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A
Con xRz, xRy ; y:□A ⊢ z:^A

^L xRz ; x:^□A ⊢ z:^A
□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.

Con ≡ ∀xyz (xRy & xRz ⇒ ∃wt (yRt & zRw & t = w)) ≡

≡ ∀xyz (xRy & xRz ⇒ ∃w (yRw & zRw))

13 / 16

The algorithm (IV)

Step IV. Merge each π i
φ with the lower portion of the proof.

Idw:AxRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A
Con xRz, xRy ; y:□A ⊢ z:^A

^L xRz ; x:^□A ⊢ z:^A
□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.

Con ≡ ∀xyz (xRy & xRz ⇒ ∃wt (yRt & zRw & t = w)) ≡

≡ ∀xyz (xRy & xRz ⇒ ∃w (yRw & zRw))

13 / 16

The algorithm (IV)

Step IV. Merge each π i
φ with the lower portion of the proof.

Idw:AxRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A
Con xRz, xRy ; y:□A ⊢ z:^A

^L xRz ; x:^□A ⊢ z:^A
□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.

Con ≡ ∀xyz (xRy & xRz ⇒ ∃wt (yRt & zRw & t = w)) ≡

≡ ∀xyz (xRy & xRz ⇒ ∃w (yRw & zRw))

13 / 16

The algorithm (IV)

Step IV. Merge each π i
φ with the lower portion of the proof.

Idw:AxRy, yRt , xRz, zRw, t=w; t :A ⊢ w:A
^RxRy, yRt , xRz, zRw, t=w; t :A ⊢ z:^A

□L xRy, yRt , xRz, zRw, t=w; y:□A ⊢ z:^A
Con xRz, xRy ; y:□A ⊢ z:^A

^L xRz ; x:^□A ⊢ z:^A
□Rx:^□A ⊢ x:□^A
→R

⊢ x:^□A → □^A

The definition of analytic-inductive formulas guarantees that the “merging point” is
well-defined.

Con ≡ ∀xyz (xRy & xRz ⇒ ∃wt (yRt & zRw & t = w)) ≡

≡ ∀xyz (xRy & xRz ⇒ ∃w (yRw & zRw))

13 / 16

Conclusion and future work (I)

We introduced an algorithm that associates analytic-inductive formulas
with both their corresponding analytic rules and their first-order
correspondents, using only the machinery of the G3K calculus...

Can we do better?

14 / 16

Conclusion and future work (I)

We introduced an algorithm that associates analytic-inductive formulas
with both their corresponding analytic rules and their first-order
correspondents, using only the machinery of the G3K calculus...

Can we do better?

14 / 16

Conclusion and future work (II)

... We can extend the approach from G3K to every LE-logic
(nondistributive-lattice with finite-arity normal operators)...

Γ,h ≤ A ,B ≤ n ⊢ j ≤ g(n,h),∆
gR

Γ ⊢ j ≤ g(B ,A),∆

Γ,h ≤ A ,B ≤ n ⊢ f(h,n) ≤ m,∆
fL

Γ ⊢ f(A ,B) ≤ m,∆(
Γ ⊢ hj ≤ Aj ,∆

)
j

(
Γ ⊢ Bi ≤ ni ,∆

)
i gL

Γ, j ≤ g(B ,A) ⊢ j ≤ g(n,h),∆

(
Γ ⊢ hi ≤ Ai ,∆

)
i

(
Γ ⊢ Bj ≤ nj ,∆

)
j

fR
Γ, f(A ,B) ≤ m ⊢ f(h,n) ≤ m,∆

(of course I need the appropriate labelled calculus)

15 / 16

Conclusion and future work (II)

... We can extend the approach from G3K to every LE-logic
(nondistributive-lattice with finite-arity normal operators)...

Γ,h ≤ A ,B ≤ n ⊢ j ≤ g(n,h),∆
gR

Γ ⊢ j ≤ g(B ,A),∆

Γ,h ≤ A ,B ≤ n ⊢ f(h,n) ≤ m,∆
fL

Γ ⊢ f(A ,B) ≤ m,∆(
Γ ⊢ hj ≤ Aj ,∆

)
j

(
Γ ⊢ Bi ≤ ni ,∆

)
i gL

Γ, j ≤ g(B ,A) ⊢ j ≤ g(n,h),∆

(
Γ ⊢ hi ≤ Ai ,∆

)
i

(
Γ ⊢ Bj ≤ nj ,∆

)
j

fR
Γ, f(A ,B) ≤ m ⊢ f(h,n) ≤ m,∆

(of course I need the appropriate labelled calculus)

15 / 16

Conclusion and future work (III)

... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GA0 B ∀x(
∧

Pi → ∃y1

∧
M1 ∨ ... ∨ ∃ym

∧
Mm)

GAn+1 B ∀x(
∧

Pi → ∃y1

∧
GAk1 ∨ ... ∨ ∃ym

∧
GAkm)

For example:

A → □□^□^A

[□(^A → □B) ∧ (□C → A)]→ [^□C ∨ A ∨ (C → B)]

Thanks!

16 / 16

Conclusion and future work (III)

... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GA0 B ∀x(
∧

Pi → ∃y1

∧
M1 ∨ ... ∨ ∃ym

∧
Mm)

GAn+1 B ∀x(
∧

Pi → ∃y1

∧
GAk1 ∨ ... ∨ ∃ym

∧
GAkm)

For example:

A → □□^□^A

[□(^A → □B) ∧ (□C → A)]→ [^□C ∨ A ∨ (C → B)]

Thanks!

16 / 16

Conclusion and future work (III)

... We will also consider a larger class of formulas, inductive formulas, that
correspond to systems of rules and generalized geometric formulas.

GA0 B ∀x(
∧

Pi → ∃y1

∧
M1 ∨ ... ∨ ∃ym

∧
Mm)

GAn+1 B ∀x(
∧

Pi → ∃y1

∧
GAk1 ∨ ... ∨ ∃ym

∧
GAkm)

For example:

A → □□^□^A

[□(^A → □B) ∧ (□C → A)]→ [^□C ∨ A ∨ (C → B)]

Thanks!

16 / 16

