Modality in worlds with different logics

Alfredo Roque Freire

Universidade de Aveiro CIDMA

20 de June, 2022

Intro ●00		

Problem

This is a joint work with Manuel António Martins - CIDMA University of Aveiro

In this presentation we would like to consider

- non-trivial modal structures where worlds can operate in different logics.
- 2 the thesis that:
 - (NAW) necessity means 'true in all accessed worlds' or the similar version.
 - 2 (PAW) possibility means 'true in some accessed world'.
- 3 modal structures where NAW and PAW fails.
- 4 and frames that study the dynamic between logic systems.

∃ → < ∃</p>

Intro			References
		0000	

Quine's Charge

Can we change logic and still preserve meaning? "change of logic, change of subject" [Qui86, p. 80]

Alfredo Roque Freire

Kripke-Barcan Rigid designation

Even though Newton discovered the theory of universal gravitation, the phrase

- 1 'It is possible that Newton died in infancy'
- 2 'It is possible that the one who discovered the theory of universal gravitation died in infancy.'

Have different truth values...

- ₹ ∃ ►

Many logic modal logic		
000000		

Lattice semantics

Most studied logic systems have a semantics where **conjunction** and **disjunction** are **meet** and **join** in the lattice of truth values (with the appropriate designated values).

- **1** Classical: boolean algebras.
- 2 Intuitionism: Heytin algebras.
- **3** Logic of Paradox: glut lattice.

Many logic modal logic		
000000		

Base lattice L

Definition

A world *w* over *L* is a pair $\langle A, i \rangle$ such that

- A is a complete sublattice of L and it is closed under -(x) operation.
- 2 and *i* is a name for the world.

Note that *L* need not be complete.

Definition

A model *M* over *L* is a tuple $\langle W, R, v \rangle$ where *W* is a collection of worlds over *L*, *R* is a relation in $W \times W$ and *v* is a valuation for propositional values (i.e. $v : Var \longrightarrow A_w$).

Intro	Many logic modal logic		
000	000000		

Valuation - in world

Definition

The valuation v_w of formulas in a world $w = \langle A, v \rangle$ is such that

1
$$v_w(\neg \varphi) = -v_w(\varphi).$$

2 $v_w(\varphi \lor \psi) = v_w(\varphi) + v_w(\psi).$
3 $v_w(\varphi \land \psi) = v_w(\varphi).v_w(\psi).$
4 $v_w(\varphi \rightarrow \psi) = v_w(\varphi) \supset v_w(\psi)$

An important alternative for implication:

$$v_w(\varphi \to \psi) = \begin{cases} \bigcup A, \text{ if } v_w(\varphi) \le v_w(\psi) \\ v_w(\psi), \text{ otherwise} \end{cases}$$

Many logic modal logic		References
000000		

Valuation - modal

Definition

In a base lattice L, a value $a \in L$ is interpreted in a sublattice L' as:

- **1** Down-interpretation $a^{L'} = \bigcup_{L'} \{x \in L' \mid x \le a\}.$
- **2** Up-interpretation $a^{L'} = \bigcap_{L'} \{x \in L' \mid x \ge a\}.$

Definition

The valuation v_w of formulas in a world $w = \langle A, v \rangle$ is such that

$$v_w(\Box\varphi) = \bigcap_A \{v_{w'}(\varphi)^A \mid wRw'\}$$

Many logic modal logic		
0000000		

Truth in a world

Definition

For a filter *F* over *L*, we define the relation \vDash_F for a world *w*:

 $w \vDash_F \varphi$ if, and only if, $v_w(\varphi) \in F$

Definition

For a filter *F* over *L*, we define the relation \vDash_F for a model *M*:

 $M \vDash_F \varphi$ if, and only if, $v_w(\varphi) \in F$ for all $w \in W_M$

Many logic modal logic		References

Axiom K

Theorem

Let *M* be a many-algebra modal model over *L*. Then any *F*-implicative world of *M* satisfies (under \vDash_F) $(\Box \varphi \lor \Box \psi) \rightarrow \Box (\varphi \lor \psi)$.

Theorem

Let *M* be a many-algebra modal model over *L* and *F* a filter. Let $w \in M$ be a *F*-implicative world such that A_w preserves order under -, and A_w has down-distribution over constants. Then w satisfies (\vDash_F) the axiom *K*, i.e. $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$.

Intro	Many logic modal logic		
000	000000		

Necessitation

Theorem

Let *L* be a lattice and *F* a filter over *L*, then all *L*-models satisfy (\vDash_K) necessitation if, and only if, *F* is complete-closed and sublattice-uniform in *L*.

Notation

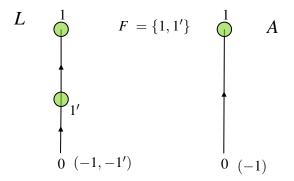
Let L be a lattice and F a filter in L, then we write L_{cu}^F for the set of all complete sublattices X of L such that F is complete-closed in X and F is X-uniform.

Theorem

Let *L* be a lattice and *F* a filter over *L*, then all *L*-models satisfy (\vDash_F) L_{cu}^F -necessitation.

	Failure of NAW and PAW	References
	00000	

Consider the lattices:



3

(日)

	Failure of NAW and PAW 0●000	References

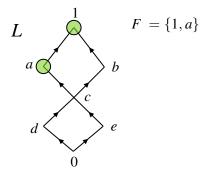
Consider $w = \langle 1, A \rangle$ and $w' = \langle 2, L \rangle$ as in the figure. And take a valuation *s* such that $v_w(\alpha) = 1$ and $v_{w'}(\alpha) = 1'$ for a propositional variable α .

$$w = \langle 1, A \rangle \qquad w' = \langle 2, L \rangle$$

Now we observe that $w \vDash \alpha$, $w \nvDash \neg \alpha$, $w' \vDash \alpha$, $w' \nvDash \neg \alpha$. And we have $w \nvDash \Box \alpha$, for $v_w(\Box \alpha) = \bigcap_A \{1, 1'\} = 1 \cap 0 = 0$.

	Failure of NAW and PAW	References
	00000	

Now consider the lattice:

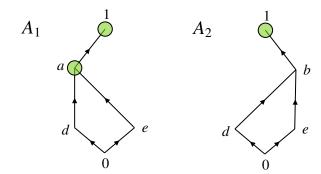


< Ξ

Image: A matrix and a matrix

	Failure of NAW and PAW	References
	00000	

And the sublattices:



문 ▶ ★ 문

• • • • • • • • • •

	Failure of NAW and PAW 0000●	References

Consider the following frame:

$$w = \langle 1, A_1 \rangle \qquad w' = \langle 2, A_2 \rangle$$

And $v_w(\alpha) = 1$ and $v_{w'}(\alpha) = b$, for a propositional variable α . In this case we have $w \models \alpha$ and $w' \nvDash \alpha$. Moreover, $w \models \Box \alpha$, since $v_w(\Box \alpha) = a$.

Extended notion of frame

We should now differentiate frames and graphs.

- **1** frame: including the lattice structure and world.
- 2 graph: only the structure for the accessibility relation.

< Ξ

	Final remarks	

We can now obtain interesting frames:

- classically increasing frame: access worlds with sublattices where $a +_{w'} b \ge a +_{w} b$ and $a_{w'} b \le a_{w} b$.
- 2 classically decreasing frame: $a +_{w'} b \le a +_{w} b$ and $a_{w'} b \ge a_{w} b$.
- 3 dialectic frame (mix of logic and accessibility relation): two less classical worlds w_1 and w_2 accessible to w have a common accessible w' which is more classical than w.

	Final remarks	References
	0000	

Further discussion

- 1 up/down interpretations for negation.
- **2** recovering traditional approaches.
- **3** characterization of frames.
- **4** general properties that imply Finite Model Property.

	Final remarks	
	0000	

Thank you. Alfredo Roque Freire Universidade de Aveiro

Alfredo Roque Freire

		References

References I

Francesco Berto and Mark Jago. *Impossible worlds*. Oxford University Press, 2019.

Luís S. Barbosa, Manuel A. Martins, and Marta Carreteiro. "A Hilbert-style axiomatisation for equational hybrid logic". English. In: *J. Logic Lang. Inf.* 23.1 (2014), pp. 31–52. ISSN: 0925-8531. DOI: 10.1007/s10849-013-9184-6.

		References

References II

Petr Cintula, Z Weber, and S Ju. "Editors' introduction: Special issue on non-classical modal and predicate logics". In: *Logic Journal of the IGPL* 27.4 (May 2019), pp. 385–386. ISSN: 1367-0751. DOI: 10.1093/jigpal/jzz010.eprint: https: //academic.oup.com/jigpal/articlepdf/27/4/385/29102789/jzz010.pdf. URL: https://doi.org/10.1093/jigpal/jzz010.

Răzvan Diaconescu and Petros Stefaneas. "Ultraproducts and possible worlds semantics in institutions". English. In: *Theor. Comput. Sci.* 379.1-2 (2007), pp. 210–230. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2007.02.068.

		References

References III

1

- Saul Kripke. "Semantical considerations of the modal logic". In: *Acta Philosophica Fennica* 16 (1963), 83–94.
 - Manuel A. Martins, Alexandre Madeira, and Luís S. Barbosa. "On infinitary equational hybrid logic". English. In: *Aftermath of the logical paradise*. Campinas: Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História de Ciência, 2018, pp. 173–202. ISBN: 978-85-86497-36-0.
 - Graham Priest. An introduction to non-classical logic: From if to is. Cambridge University Press, 2008.
 - Willard V Quine. *Philosophy of logic*. Harvard University Press, 1986.