Combination of Quantifier-free Uniform Interpolants using Beth Definability (Abridged Version)

Diego Calvanese¹, Silvio Ghilardi², **Alessandro Gianola**¹, Marco Montali¹, Andrey Rivkin¹

> ¹ KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

> > ² Dipartimento di Matematica Università degli Studi di Milano, Italy

TACL 2022

June 22, 2022

Outline

- 2 Formal Preliminaries
- 3 Equality Interpolating Condition and Beth Definability
- 4 The Convex Combined Algorithm
- 5 The Non-Convex Case: a Counterexample

Outline

- 2 Formal Preliminaries
- 3 Equality Interpolating Condition and Beth Definability
- 4 The Convex Combined Algorithm
- 5 The Non-Convex Case: a Counterexample

• Our general problem: studying combination of (quantifier-free) Uniform Interpolants (UIs).

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (UIs).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a *uniform interpolant* of ϕ (w.r.t. \underline{y}) is an L-formula $\phi'(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (UIs).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a *uniform interpolant* of ϕ (w.r.t. \underline{y}) is an L-formula $\phi'(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:
 - $\blacktriangleright \ \phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (UIs).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a *uniform interpolant* of ϕ (w.r.t. \underline{y}) is an L-formula $\phi'(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:
 - $\blacktriangleright \ \phi(\underline{x},\underline{y}) \vdash_T \phi'(\underline{x});$
 - ▶ for any further *L*-formula $\psi(\underline{x},\underline{z})$ such that $\phi(\underline{x},\underline{y}) \vdash_T \psi(\underline{x},\underline{z})$, we have $\phi'(\underline{x}) \vdash_T \psi(\underline{x},\underline{z})$.

 Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through quantifier elimination (QE).

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.
- In contrast, methods for *symbol elimination* (e.g., predicate abstraction or ordinary interpolation), used to **approximate** states, are quite *efficient*. But the computation is *not* exact.

- Infinite-state model checking ⇒ sets of (*reachable*) states and transitions represented symbolically.
- *Precise* computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.
- In contrast, methods for *symbol elimination* (e.g., predicate abstraction or ordinary interpolation), used to **approximate** states, are quite *efficient*. But the computation is *not* exact.
- However, QE has strict relations with uniform interpolation (or, covers [GM08]), largely studied in non-classical logics since the nineties, and becomes tractable in significant cases [CGG⁺19].

Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the combined theory T₁ ∪ T₂?

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the combined theory T₁ ∪ T₂?
- Example: Simple Artifact Systems (SAS) [CGG⁺19]

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer UIs from two theories T₁, T₂ to the combined theory T₁ ∪ T₂?
- Example: Simple Artifact Systems (SAS) [CGG⁺19]
 - States: $\phi(\underline{x})$ (quantifier-free)

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it **possible** (and, if so, **under which conditions**) to transfer UIs from two theories T_1 , T_2 to the combined theory $T_1 \cup T_2$?
- Example: Simple Artifact Systems (SAS) [CGG⁺19]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - Transitions: $\tau(\underline{x}, \underline{x}') \equiv \exists \underline{d}, \underline{i}(G(\underline{x}, \underline{d}, \underline{i}) \land U(\underline{x}, \underline{x}', \underline{d}, \underline{i}))$ (existential)

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it **possible** (and, if so, **under which conditions**) to transfer UIs from two theories T_1 , T_2 to the combined theory $T_1 \cup T_2$?
- Example: Simple Artifact Systems (SAS) [CGG⁺19]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - Transitions: $\tau(\underline{x}, \underline{x}') \equiv \exists \underline{d}, \underline{i}(G(\underline{x}, \underline{d}, \underline{i}) \land U(\underline{x}, \underline{x}', \underline{d}, \underline{i}))$ (existential)
 - <u>d</u>: Persistent Data from DB;

- Modeling and verifying data-aware processes ⇒ combination of different theories, e.g., (i) for the read-only data storage;
 (ii) for elements from value domains (like arithmetical values)
- Important question: is it **possible** (and, if so, **under which conditions**) to transfer UIs from two theories T_1 , T_2 to the combined theory $T_1 \cup T_2$?
- Example: Simple Artifact Systems (SAS) [CGG⁺19]
 - States: $\phi(\underline{x})$ (quantifier-free)
 - Transitions: $\tau(\underline{x}, \underline{x}') \equiv \exists \underline{d}, \underline{i}(G(\underline{x}, \underline{d}, \underline{i}) \land U(\underline{x}, \underline{x}', \underline{d}, \underline{i}))$ (existential)
 - <u>d</u>: Persistent Data from DB;
 - *i*: elements from *arithmetical domains*.

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}(S^{(i)})$:

 $Pre(\tau,\phi) \equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \wedge \phi(\underline{x}'))$

Given a state formula ϕ for states $S^{(i)},$ we symbolically define $T^{-1}(S^{(i)})$:

$$Pre(\tau,\phi) \equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \land \phi(\underline{x}'))$$

Backward-Reachability ($S^{(0)} \equiv$ "bad states")

Safety Check	If $S^{(i)}$ contains an initial, return unsafe
Next States	Compute $S^{(i+1)} := S^{(i)} \cup T^{-1}(S^{(i)})$
Fix-Point Check	If $S^{(i+1)} \equiv S^{(i)}$, return safe

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}(S^{(i)})$:

$$Pre(\tau,\phi) \equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \land \phi(\underline{x}'))$$

 $S^{(0)}:\phi\implies S^{(1)}:Pre(\tau,\phi)\equiv \exists\underline{d},\underline{i},\underline{x}'(G(\underline{x},\underline{d},\underline{i})\wedge U(\underline{x},\underline{x}',\underline{d},\underline{i})\wedge\phi(\underline{x}'))$

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}(S^{(i)})$:

$$Pre(\tau,\phi) \equiv \exists \underline{x}'(\tau(\underline{x},\underline{x}') \land \phi(\underline{x}'))$$

 $S^{(0)}:\phi\implies S^{(1)}:Pre(\tau,\phi)\equiv \exists\underline{d},\underline{i},\underline{x}'(G(\underline{x},\underline{d},\underline{i})\wedge U(\underline{x},\underline{x}',\underline{d},\underline{i})\wedge\phi(\underline{x}'))$

 $S^{(1)}$ is **NOT** a state formula! The existential quantifiers can be 'eliminated' [CGG⁺19] by computing *combined* UIs!

• General algorithm for computing **combined UIs** in case of **convex** component theories.

- General algorithm for computing **combined UIs** in case of **convex** component theories.
- The **hypothesis** under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the **equality interpolating condition**.

- General algorithm for computing **combined UIs** in case of **convex** component theories.
- The **hypothesis** under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the **equality interpolating condition**.
- We prove that the equality interpolating condition is also necessary for transferring UIs.

- General algorithm for computing **combined UIs** in case of **convex** component theories.
- The **hypothesis** under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the **equality interpolating condition**.
- We prove that the equality interpolating condition is also **necessary** for transferring UIs.
- The algorithm relies on the extensive use of the **Beth definability property** for primitive fragments.

- General algorithm for computing **combined UIs** in case of **convex** component theories.
- The **hypothesis** under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the **equality interpolating condition**.
- We prove that the equality interpolating condition is also **necessary** for transferring UIs.
- The algorithm relies on the extensive use of the **Beth definability property** for primitive fragments.
- **Counterexample** showing **non-transfer** of UIs for non-convex theories in general, even in case combined quantifier-free interpolants do exist.

Outline

2 Formal Preliminaries

3 Equality Interpolating Condition and Beth Definability

- 4 The Convex Combined Algorithm
- The Non-Convex Case: a Counterexample

6 Conclusions

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y})$, $\beta(\underline{y}, \underline{z})$ such that $\vdash_T \alpha \to \beta$, a **quantifier-free** FO formula $\gamma(\underline{y})$ is a *T*-quantifier-free interpolant if $\vdash_T \alpha \to \gamma$ and $\vdash_T \gamma \to \beta$ hold.

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y})$, $\beta(\underline{y}, \underline{z})$ such that $\vdash_T \alpha \to \beta$, a **quantifier-free** FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_T \alpha \to \gamma$ and $\vdash_T \gamma \to \beta$ hold.

If every pair $\alpha(\underline{x},\underline{y}), \beta(\underline{y},\underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y})$, $\beta(\underline{y}, \underline{z})$ such that $\vdash_T \alpha \to \beta$, a **quantifier-free** FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_T \alpha \to \gamma$ and $\vdash_T \gamma \to \beta$ hold.

If every pair $\alpha(\underline{x},\underline{y}), \beta(\underline{y},\underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Definition

A theory T is *stably infinite* iff every T-satisfiable **constraint** is satisfiable in an **infinite** model of T.

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y})$, $\beta(\underline{y}, \underline{z})$ such that $\vdash_T \alpha \to \beta$, a **quantifier-free** FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_T \alpha \to \gamma$ and $\vdash_T \gamma \to \beta$ hold.

If every pair $\alpha(\underline{x},\underline{y}), \beta(\underline{y},\underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Definition

A theory T is *stably infinite* iff every T-satisfiable **constraint** is satisfiable in an **infinite** model of T.

Definition

A theory T is convex iff for every constraint δ , if $T \vdash \delta \rightarrow \bigvee_{i=1}^{n} x_i = y_i$ then $T \vdash \delta \rightarrow x_i = y_i$ holds for some $i \in \{1, ..., n\}$.

A convex theory is 'almost' stably infinite (for constraints satisfiable in models with at least two elements)

Alessandro Gianola

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \ \phi(\underline{e},\underline{y}).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u> φ(<u>e</u>, <u>y</u>) iff

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, y).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u>φ(<u>e</u>, <u>y</u>) iff

 $\text{(i)} \hspace{0.2cm} \psi(\underline{y}) \in Res(\exists \underline{e} \hspace{0.1cm} \phi) := \{ \theta(\underline{y},\underline{z}) \mid T \models \phi(\underline{e},\underline{y}) \rightarrow \theta(\underline{y},\underline{z}) \},$

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, y).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u> φ(<u>e</u>, <u>y</u>) iff

> (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$ (ii) $\psi(\underline{y})$ implies (modulo T) all the formulae in $Res(\exists \underline{e} \phi)$.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e},\underline{y}).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u>φ(<u>e</u>, <u>y</u>) iff

> (i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$ (ii) $\psi(\overline{y})$ implies (modulo T) all the formulae in $Res(\exists \underline{e} \phi)$.

We say that a theory T has uniform (qf) interpolation iff every existential formula $\exists e \phi(\underline{e}, y)$ has a T-uniform (qf) interpolant.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u> φ(<u>e</u>, <u>y</u>) iff

(i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$ (ii) $\psi(\underline{y})$ implies (modulo T) all the formulae in $Res(\exists \underline{e} \phi)$. We say that a theory T has *uniform* (*qf*) *interpolation* iff every existential formula $\exists \underline{e} \phi(\underline{e}, y)$ has a T-uniform (*qf*) interpolant.

 A *T*-cover is a *T*-quantifier-free interpolant and is, intuitively, the strongest formula implied by ∃<u>e</u> φ(<u>e</u>, <u>y</u>).

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u> φ(<u>e</u>, <u>y</u>) iff

(i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$ (ii) $\psi(\underline{y})$ implies (modulo T) all the formulae in $Res(\exists \underline{e} \phi)$. We say that a theory T has *uniform* (*qf*) *interpolation* iff every existential formula $\exists \underline{e} \phi(\underline{e}, y)$ has a T-uniform (*qf*) interpolant.

- A *T*-cover is a *T*-quantifier-free interpolant and is, intuitively, the strongest formula implied by ∃<u>e</u> φ(<u>e</u>, <u>y</u>).
- In the cover $\psi(\underline{y}),$ the variables \underline{e} have been 'eliminated', in some sense.

Fix a theory T and an existential formula $\exists \underline{e} \, \phi(\underline{e}, \underline{y}).$

 A quantifier-free (qf) formula ψ(<u>y</u>) is a *T*-uniform (qf) interpolant (or, *T*-cover) of ∃<u>e</u> φ(<u>e</u>, <u>y</u>) iff

(i) $\psi(\underline{y}) \in Res(\exists \underline{e} \phi) := \{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\},\$ (ii) $\psi(\underline{y})$ implies (modulo T) all the formulae in $Res(\exists \underline{e} \phi)$. We say that a theory T has *uniform* (*qf*) *interpolation* iff every existential formula $\exists \underline{e} \phi(\underline{e}, y)$ has a T-uniform (*qf*) interpolant.

- A *T*-cover is a *T*-quantifier-free interpolant and is, intuitively, the strongest formula implied by ∃<u>e</u> φ(<u>e</u>, <u>y</u>).
- In the cover $\psi(\underline{y}),$ the variables \underline{e} have been 'eliminated', in some sense.
- But, in general, $\psi(\underline{y})$ does *not* imply $\exists \underline{e} \phi(\underline{e}, \underline{y})$. Hence, usually $\psi(\underline{y})$ and $\exists \underline{e} \phi(\underline{e}, \underline{y})$ are not *T*-equivalent.

Uls and Model Completions

A universal Σ -theory T has a **model completion** iff there is a stronger theory $T^* \supseteq T$ (in the same signature Σ) such that (i) every Σ -constraint that is satisfiable in a model of T is satisfiable in a model of T^* ; (ii) T^* eliminates quantifiers.

Uls and Model Completions

A universal Σ -theory T has a **model completion** iff there is a stronger theory $T^* \supseteq T$ (in the same signature Σ) such that (i) every Σ -constraint that is satisfiable in a model of T is satisfiable in a model of T^* ; (ii) T^* eliminates quantifiers.

Theorem (UIs and QE [CGG⁺19])

Suppose that T is a universal theory. Then, T has a model completion T^* iff T has uniform quantifier-free interpolation. If this happens, T^* is axiomatized by the infinitely many sentences $\forall \underline{y} (\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, y)$ is a primitive formula and ψ is a **UI** of it.

Uls and Model Completions

A universal Σ -theory T has a **model completion** iff there is a stronger theory $T^* \supseteq T$ (in the same signature Σ) such that (i) every Σ -constraint that is satisfiable in a model of T is satisfiable in a model of T^* ; (ii) T^* eliminates quantifiers.

Theorem (UIs and QE [CGG⁺19])

Suppose that T is a universal theory. Then, T has a model completion T^* iff T has uniform quantifier-free interpolation. If this happens, T^* is axiomatized by the infinitely many sentences $\forall \underline{y} (\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, y)$ is a primitive formula and ψ is a **UI** of it.

Hence, **computing UIs** in a theory *T* is **equivalent** to

eliminating quantifiers in its model completion T^* .

Outline

2 Formal Preliminaries

3 Equality Interpolating Condition and Beth Definability

- 4 The Convex Combined Algorithm
- 5 The Non-Convex Case: a Counterexample

Equality Interpolating Condition

Definition ([YM05])

A convex universal theory T is *equality interpolating* iff for every pair y_1, y_2 of variables and for every pair of *constraints* $\delta_1(\underline{x}, \underline{z}_1, y_1)$, $\delta_2(\underline{x}, \underline{z}_2, y_2)$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = y_2$, **there exists** a term $t(\underline{x})$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = t(\underline{x}) \land y_2 = t(\underline{x})$.

Theorem ([BGR14])

A universal theory T has the strong amalgamation property iff it is equality interpolating.

Equality Interpolating Condition

Definition ([YM05])

A convex universal theory T is *equality interpolating* iff for every pair y_1, y_2 of variables and for every pair of *constraints* $\delta_1(\underline{x}, \underline{z}_1, y_1)$, $\delta_2(\underline{x}, \underline{z}_2, y_2)$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = y_2$, **there exists** a term $t(\underline{x})$ such that $T \vdash \delta_1(\underline{x}, \underline{z}_1, y_1) \land \delta_2(\underline{x}, \underline{z}_2, y_2) \rightarrow y_1 = t(\underline{x}) \land y_2 = t(\underline{x})$.

Theorem ([BGR14])

A universal theory T has the strong amalgamation property iff it is equality interpolating.

Examples of universal **quantifier-free interpolating** and **equality interpolating** theories:

- $\mathcal{EUF}(\Sigma)$, given a signature Σ ;
- recursive data theories;
- linear arithmetics.

Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T_1 and T_2 be two universal, convex, stably infinite theories over disjoint signatures Σ_1 and Σ_2 . If both T_1 and T_2 are equality interpolating and have quantifier-free interpolation property, then so does $T_1 \cup T_2$.

Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T_1 and T_2 be two universal, convex, stably infinite theories over disjoint signatures Σ_1 and Σ_2 . If both T_1 and T_2 are equality interpolating and have quantifier-free interpolation property, then so does $T_1 \cup T_2$.

There is a **converse** [BGR14] of the previous result, in the sense that the **equality interpolating property** is already required for transferring *quantifier-free interpolation* in the **minimal combinations** with signatures adding uninterpreted symbols ($\mathcal{EUF}(\Sigma)$).

Equality interpolating can be characterized using Beth definability.

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

• $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z}\phi(\underline{x},\underline{z},y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z}\phi(\underline{x},\underline{z},y) \rightarrow y = t(\underline{x}));$

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z}\phi(\underline{x},\underline{z},y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z}\phi(\underline{x},\underline{z},y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z}\phi(\underline{x},\underline{z},y) \rightarrow y = t(\underline{x}));$
- a theory T has the Beth definability property for primitive formulae iff whenever a primitive formula ∃<u>z</u> φ(<u>x</u>, <u>z</u>, y) implicitly defines the variable y then it also explicitly defines it.

Equality interpolating can be characterized using Beth definability.

Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ *implicitly defines* y in T iff the following formula is T-valid: $\forall y \forall y' (\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \land \exists \underline{z} \phi(\underline{x}, \underline{z}, y') \rightarrow y = y')$;
- $\exists \underline{z}\phi(\underline{x},\underline{z},y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y \ (\exists \underline{z}\phi(\underline{x},\underline{z},y) \rightarrow y = t(\underline{x}));$
- a theory T has the Beth definability property for primitive formulae iff whenever a primitive formula ∃<u>z</u> φ(<u>x</u>, <u>z</u>, y) implicitly defines the variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is **equality interpolating iff** it has the **Beth definability property** for primitive formulae.

Outline

Motivation and Contribution

2 Formal Preliminaries

3 Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm

The Non-Convex Case: a Counterexample

6 Conclusions

Convex Theories

 Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.

Convex Theories

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- For i = 1, ..., n, we let the formula $\text{ImplDef}_{\phi, y_i}^T(\underline{x})$ be the quantifier-free formula equivalent in T^* to the formula

$$\forall \underline{y} \,\forall \underline{y}'(\phi(\underline{x},\underline{y}) \land \phi(\underline{x},\underline{y}') \to y_i = y'_i)$$

where the y' are renamed copies of the y.

Convex Theories

- Every Σ_i-theory T_i from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_i^{*}.
- For i = 1, ..., n, we let the formula $\operatorname{ImplDef}_{\phi, y_i}^T(\underline{x})$ be the quantifier-free formula equivalent in T^* to the formula

$$\forall \underline{y} \,\forall \underline{y}'(\phi(\underline{x},\underline{y}) \land \phi(\underline{x},\underline{y}') \to y_i = y'_i)$$

where the y' are renamed copies of the y.

The following Lemma supplies terms used as ingredients in the combined covers algorithm:

Lemma (Useful Terms)

Let $L_{i1}(\underline{x}) \lor \cdots \lor L_{ik_i}(\underline{x})$ be the disjunctive normal form (DNF) of $\operatorname{ImplDef}_{\phi,y_i}^T(\underline{x})$. Then, for every $j = 1, \ldots, k_i$, there is a $\Sigma(\underline{x})$ -term $t_{ij}(\underline{x})$ such that $T \vdash L_{ij}(\underline{x}) \land \phi(\underline{x}, \underline{y}) \to y_i = t_{ij}$

The terms t_{ij} are obtained thanks to the Beth definability property, that holds because of the Key Theorem.

Alessandro Gianola

Combination of UI using Beth Definability

• Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).

- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_1 \wedge \phi_2$, where ϕ_i is a Σ_i -formula (i = 1, 2).

- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_1 \wedge \phi_2$, where ϕ_i is a Σ_i -formula (i = 1, 2).
- Assume that φ₁ and φ₂ contain e_i ≠ e_j (for i ≠ j): guess a partition of the e and replace each e_i with the representative element of its equivalence class.

- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_1 \wedge \phi_2$, where ϕ_i is a Σ_i -formula (i = 1, 2).
- Assume that ϕ_1 and ϕ_2 contain $e_i \neq e_j$ (for $i \neq j$): guess a partition of the <u>e</u> and replace each e_i with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\texttt{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ where the term t_i is pure.

- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_1 \wedge \phi_2$, where ϕ_i is a Σ_i -formula (i = 1, 2).
- Assume that φ₁ and φ₂ contain e_i ≠ e_j (for i ≠ j): guess a partition of the e and replace each e_i with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\texttt{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ where the term t_i is pure.
- A working formula is $\exists \underline{z} (\text{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e})))$, where ψ_i is a Σ_i -formula (i = 1, 2) and \underline{x} are called *parameters*, \underline{z} *defined* variables and \underline{e} (truly) existential variables. ψ_1, ψ_2 always contain the literals $e_i \neq e_j$ (for distinct e_i, e_j from \underline{e}) as a conjunct.

- Given a Σ_1 -theory T_1 and a Σ_2 -theory T_2 , we want to compute a $T_1 \cup T_2$ -cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_1 \wedge \phi_2$, where ϕ_i is a Σ_i -formula (i = 1, 2).
- Assume that φ₁ and φ₂ contain e_i ≠ e_j (for i ≠ j): guess a partition of the e and replace each e_i with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\texttt{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_i = t_i(z_1, \dots, z_{i-1}, \underline{x})$ where the term t_i is pure.
- A working formula is $\exists \underline{z} (\text{ExplDef}(\underline{z}, \underline{x}) \land \exists \underline{e} (\psi_1(\underline{x}, \underline{z}, \underline{e}) \land \psi_2(\underline{x}, \underline{z}, \underline{e})))$, where ψ_i is a Σ_i -formula (i = 1, 2) and \underline{x} are called *parameters*, \underline{z} *defined variables* and \underline{e} (*truly*) *existential variables*. ψ_1, ψ_2 always contain the literals $e_i \neq e_j$ (for distinct e_i, e_j from \underline{e}) as a conjunct.
- A working formula is *terminal* iff for every $e_i \in \underline{e}$

 $T_1 \vdash \psi_1 \to \neg \texttt{ImplDef}_{\psi_1, e_i}^{T_1}(\underline{x}, \underline{z}) \text{ and } T_2 \vdash \psi_2 \to \neg \texttt{ImplDef}_{\psi_2, e_i}^{T_2}(\underline{x}, \underline{z})$

Combined UIs Algorithm

Lemma (Main Lemma)

Every working formula is equivalent (modulo $T_1 \cup T_2$) to a disjunction of terminal working formulae.

Combined UIs Algorithm

Lemma (Main Lemma)

Every working formula is equivalent (modulo $T_1 \cup T_2$) to a disjunction of **terminal working formulae**.

Start from an Initial Formula. The non-deterministic procedure to compute the terminal working formulae applies one of the following **alternatives**:

- (1) Add to ψ_1 a disjunct from the DNF of $\bigwedge_{e_i \in \underline{e}} \neg \texttt{ImplDef}_{\psi_1, e_i}^{T_1}(\underline{x}, \underline{z})$ and to ψ_2 a disjunct from the DNF of $\bigwedge_{e_i \in \underline{e}} \neg \texttt{ImplDef}_{\psi_2, e_i}^{T_2}(\underline{x}, \underline{z})$;
- (2.i) Select $e_i \in \underline{e}$ and $h \in \{1, 2\}$; then add to ψ_h a disjunct L_{ij} from the DNF of $\text{ImplDef}_{\psi_h, e_i}^{T_h}(\underline{x}, \underline{z})$; add $e_i = t_{ij}$ (where t_{ij} is the term mentioned in **Useful Terms Lemma**) to $\text{ExplDef}(\underline{z}, \underline{x})$; the variable e_i becomes defined.

Combined UIs Algorithm

Lemma (Main Lemma)

Every working formula is equivalent (modulo $T_1 \cup T_2$) to a disjunction of **terminal working formulae**.

Start from an Initial Formula. The non-deterministic procedure to compute the terminal working formulae applies one of the following **alternatives**:

(1) Add to
$$\psi_1$$
 a disjunct from the DNF of $\bigwedge_{e_i \in \underline{e}} \neg \texttt{ImplDef}_{\psi_1, e_i}^{T_1}(\underline{x}, \underline{z})$ and to ψ_2 a disjunct from the DNF of $\bigwedge_{e_i \in \underline{e}} \neg \texttt{ImplDef}_{\psi_2, e_i}^{T_2}(\underline{x}, \underline{z})$;

(2.i) Select $e_i \in \underline{e}$ and $h \in \{1, 2\}$; then add to ψ_h a disjunct L_{ij} from the DNF of ImplDef $_{\psi_h, e_i}^{T_h}(\underline{x}, \underline{z})$; add $e_i = t_{ij}$ (where t_{ij} is the term mentioned in **Useful Terms Lemma**) to ExplDef $(\underline{z}, \underline{x})$; the variable e_i becomes *defined*.

The output is the disjunction of all possible outcomes.

Proposition

A **UI** of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from $\exists \underline{z} \; (\texttt{ExplDef}(\underline{z},\underline{x}) \land \theta_1(\underline{x},\underline{z}) \land \theta_2(\underline{x},\underline{z}))$, where $\theta_1(\underline{x},\underline{z})$ is the T_1 -cover of $\exists \underline{e}\psi_1(\underline{x},\underline{z},\underline{e})$ and $\theta_2(\underline{x},\underline{z})$ is the T_2 -cover of $\exists \underline{e}\psi_2(\underline{x},\underline{z},\underline{e})$.

Proposition

A **UI** of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from $\exists \underline{z} \; (\texttt{ExplDef}(\underline{z},\underline{x}) \land \theta_1(\underline{x},\underline{z}) \land \theta_2(\underline{x},\underline{z}))$, where $\theta_1(\underline{x},\underline{z})$ is the T_1 -cover of $\exists \underline{e}\psi_1(\underline{x},\underline{z},\underline{e})$ and $\theta_2(\underline{x},\underline{z})$ is the T_2 -cover of $\exists \underline{e}\psi_2(\underline{x},\underline{z},\underline{e})$.

From the Main Lemma, the Proposition and the 'UIs and QE' Theorem:

Proposition

A **UI** of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from $\exists \underline{z} \; (\texttt{ExplDef}(\underline{z},\underline{x}) \land \theta_1(\underline{x},\underline{z}) \land \theta_2(\underline{x},\underline{z}))$, where $\theta_1(\underline{x},\underline{z})$ is the T_1 -cover of $\exists \underline{e}\psi_1(\underline{x},\underline{z},\underline{e})$ and $\theta_2(\underline{x},\underline{z})$ is the T_2 -cover of $\exists \underline{e}\psi_2(\underline{x},\underline{z},\underline{e})$.

From the Main Lemma, the Proposition and the 'UIs and QE' Theorem:

Theorem

Let T_1, T_2 be convex, stably infinite, equality interpolating, universal theories over disjoint signatures admitting a model completion. Then $T_1 \cup T_2$ admits a model completion too. Uls in $T_1 \cup T_2$ can be effectively computed as shown above.

Proposition

A **UI** of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from $\exists \underline{z} \; (\texttt{ExplDef}(\underline{z},\underline{x}) \land \theta_1(\underline{x},\underline{z}) \land \theta_2(\underline{x},\underline{z}))$, where $\theta_1(\underline{x},\underline{z})$ is the T_1 -cover of $\exists \underline{e}\psi_1(\underline{x},\underline{z},\underline{e})$ and $\theta_2(\underline{x},\underline{z})$ is the T_2 -cover of $\exists \underline{e}\psi_2(\underline{x},\underline{z},\underline{e})$.

From the Main Lemma, the Proposition and the 'UIs and QE' Theorem:

Theorem

Let T_1, T_2 be convex, stably infinite, equality interpolating, universal theories over disjoint signatures admitting a model completion. Then $T_1 \cup T_2$ admits a model completion too. Uls in $T_1 \cup T_2$ can be effectively computed as shown above.

In [CGG⁺22], it is also shown that equality interpolating is a **necessary condition** for obtaining UI transfer: already required for **minimal combinations** with signatures adding **uninterpreted** symbols.

Alessandro Gianola

Combination of UI using Beth Definability

Outline

Motivation and Contribution

2 Formal Preliminaries

3 Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm

5 The Non-Convex Case: a Counterexample

6 Conclusions

Convexity hypothesis cannot be eliminated.

Convexity hypothesis cannot be eliminated. Consider the **UI transfer** for $T_1 \cup T_2$, where:

- $T_1 :=$ integer difference logic IDL (integer numbers with successor and predecessor, 0 and the strict order <): it is *not* convex, but it satisfies the equality interpolating condition for non-convex theories.
- T₂:= *εUF*(Σ_f), where Σ_f has only one unary free function symbol f (not belonging to the signature of T₁).

Convexity hypothesis cannot be eliminated. Consider the **UI transfer** for $T_1 \cup T_2$, where:

- $T_1 :=$ integer difference logic \mathcal{IDL} (integer numbers with successor and predecessor, 0 and the strict order <): it is *not* convex, but it satisfies the equality interpolating condition for non-convex theories.
- $T_2 := \mathcal{EUF}(\Sigma_f)$, where Σ_f has only one unary free function symbol f (not belonging to the signature of T_1).

Proposition

Let T_1, T_2 be as above; the formula $\exists e \ (0 < e \land e < x \land f(e) = 0)$ does not have a UI in $T_1 \cup T_2$.

Convexity hypothesis cannot be eliminated. Consider the **UI transfer** for $T_1 \cup T_2$, where:

- $T_1 :=$ integer difference logic \mathcal{IDL} (integer numbers with successor and predecessor, 0 and the strict order <): it is *not* convex, but it satisfies the equality interpolating condition for non-convex theories.
- $T_2 := \mathcal{EUF}(\Sigma_f)$, where Σ_f has only one unary free function symbol f (not belonging to the signature of T_1).

Proposition

Let T_1, T_2 be as above; the formula $\exists e \ (0 < e \land e < x \land f(e) = 0)$ does not have a UI in $T_1 \cup T_2$.

The counterexample still applies when replacing integer difference logic with *linear integer arithmetics*.

Outline

Motivation and Contribution

2 Formal Preliminaries

3 Equality Interpolating Condition and Beth Definability

- 4 The Convex Combined Algorithm
- The Non-Convex Case: a Counterexample

• Problem of **combined Uls.**

- Problem of **combined Uls**.
- Sufficient and necessary conditions for transferring UIs to **combinations** in the *convex* case.

- Problem of **combined Uls**.
- Sufficient and necessary conditions for transferring UIs to combinations in the *convex* case.
- General method and algorithm for computing **combined UIs** for *convex* theories, based on the use of Beth definability.

- Problem of **combined Uls**.
- Sufficient and necessary conditions for transferring UIs to combinations in the *convex* case.
- General method and algorithm for computing **combined UIs** for *convex* theories, based on the use of Beth definability.
- Non-transfer of UIs in the *non-convex* case, in general.

Further Directions

- Investigate UI transfer for 'tame' theory combinations (codomain sorts are shared) [CGG⁺22];
- UI transfer properties for non-disjoint signatures combinations;

References

- R. Bruttomesso, S. Ghilardi, and S. Ranise. Quantifier-free interpolation in combinations of equality interpolating theories. *ACM Trans. Comput. Log.*, 15(1):5:1–5:34, 2014.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Model completeness, covers and superposition. In *Proc. of CADE*, volume 11716 of *LNCS*. Springer, 2019.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Combination of uniform interpolants via Beth definability. *J. Autom. Reason.*, 2022.

S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In *Proc. of ESOP, Held as Part of ETAPS*, pages 193–207, 2008.

G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In *Proc. of CADE-20*, LNCS, pages 353–368. 2005.

THANKS FOR YOUR ATTENTION!

Alessandro Gianola

Combination of UI using Beth Definability

TACL 2022 28 / 28

Combined Algorithm: an Example Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺19].

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺19].

Consider the formula:

$$\exists e_1 \cdots \exists e_4 \quad \begin{pmatrix} e_1 = f(x_1) \land e_2 = f(x_2) \land \\ \land f(e_3) = e_3 \land f(e_4) = x_1 \land \\ \land x_1 + e_1 \le e_3 \land e_3 \le x_2 + e_2 \land e_4 = x_2 + e_3 \end{pmatrix}$$

Combined Algorithm: an Example

Let T_1 be $\mathcal{EUF}(\Sigma)$ and T_2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{EUF}(\Sigma)$ one can apply the superposition-based algorithm from [CGG⁺19].

Consider the formula:

$$\exists e_1 \cdots \exists e_4 \quad \begin{pmatrix} e_1 = f(x_1) \land e_2 = f(x_2) \land \\ \land f(e_3) = e_3 \land f(e_4) = x_1 \land \\ \land x_1 + e_1 \le e_3 \land e_3 \le x_2 + e_2 \land e_4 = x_2 + e_3 \end{pmatrix}$$

Applying exhaustively Step (1) and Step (2.i), we get:

$$[x_{2} = 0 \land f(x_{1}) = x_{1} \land x_{1} \leq 0 \land x_{1} \leq f(0)] \lor$$

$$\lor [x_{1} + f(x_{1}) < x_{2} + f(x_{2}) \land x_{2} \neq 0] \lor$$

$$\lor \left[x_{2} \neq 0 \land x_{1} + f(x_{1}) = x_{2} + f(x_{2}) \land f(2x_{2} + f(x_{2})) = x_{1} \land \right] \land f(x_{1} + f(x_{1})) = x_{1} + f(x_{1})$$

Artifact-Centric Systems: process-centric paradigm + data (artifact = *lifecycle* + *information model*).

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

• a read-only database (DB);

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems: process-centric paradigm + data (artifact = lifecycle + information model). They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems \implies Array-based Systems \implies SMT-based tool Model Checker Modulo Theories (MCMT)

Alessandro Gianola

Combination of UI using Beth Definability

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ -sentences.

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ -sentences.

In a *basic DB schema*, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts.

DB schemas: *read-only DB* of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T) , where:

- Σ is a *DB signature*, that is, a finite multi-sorted signature with equality, unary functions, *n*-ary relations and constants;
- T is a DB theory, that is, a set of universal Σ-sentences.

In a *basic DB schema*, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts. **Example:**

Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} \;=\; \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, where:
 - (Σ, T) is a DB schema;
 - \underline{x} are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .

Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} = \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, where:
 - (Σ, T) is a DB schema;
 - \underline{x} are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .

Individual variables \underline{x}

Artifact Variables (Working Memory)

Array-based Artifact-Centric Systems: a simplified version

A SAS (Simple Artifact Systems) is a tuple

- $\mathcal{S} \;=\; \langle \Sigma, T, \underline{x}, \iota(\underline{x}), \tau(\underline{x}, \underline{x}') \rangle$, where:
 - (Σ, T) is a DB schema;
 - <u>x</u> are individual FO variables representing the current state;
 - ι is a Σ -formula representing the initialization;
 - $\tau(\underline{x}, \underline{x}')$ is a Σ -formula representing the transitions from the current state \underline{x} to the new state \underline{x}' .

Individual variables \underline{x}

Artifact Variables (Working Memory)

Individual variables change their value over the time, according to the *transitions* formula!

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{ser}\mathsf{ID}, \mathsf{Job}\mathsf{ID} \left(\begin{matrix} \mathsf{U}\mathsf{ser}\mathsf{ID} \neq undef \land \mathsf{Job}\mathsf{ID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{Job}\mathsf{Pos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{ser}\mathsf{ID} \land \mathsf{Job}\mathsf{Pos}' := \mathsf{Job}\mathsf{ID} \end{matrix} \right)$$

Alessandro Gianola

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{serID}, \mathsf{JobID} \left(\begin{matrix} \mathsf{U}\mathsf{serID} \neq undef \land \mathsf{JobID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{JobPos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{serID} \land \mathsf{JobPos}' := \mathsf{JobID} \end{matrix} \right)$$

A simple example

Job Hiring Process:

$$\iota := (\mathsf{Applicant} = undef \land \mathsf{JobPos} = undef)$$

$$\tau := \exists \mathsf{U}\mathsf{serID}, \mathsf{JobID} \left(\begin{matrix} \mathsf{U}\mathsf{serID} \neq undef \land \mathsf{JobID} \neq undef \land \mathsf{Applicant} = undef \land \\ \mathsf{JobPos} = undef \land \mathsf{Applicant}' := \mathsf{U}\mathsf{serID} \land \mathsf{JobPos}' := \mathsf{JobID} \end{matrix} \right)$$

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

 \mathcal{S} is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

S is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

Safety problem for S: given v, decide if S is safe wrt v.

A *safety* formula for S: *generic* quantifier-free formula $v(\underline{x}) \implies$ *undesired states* of S.

 \mathcal{S} is safe wrt v iff in no model \mathcal{M} of (Σ, T) , for no $k \ge 0$ and for no assignment in \mathcal{M} to $\underline{x}^0, \ldots, \underline{x}^k$ (1) is true (\underline{x}^i are renamed copies of \underline{x}):

$$\iota(\underline{x}^{0}) \wedge \tau(\underline{x}^{0}, \underline{x}^{1}) \wedge \dots \wedge \tau(\underline{x}^{k-1}, \underline{x}^{k}) \wedge \upsilon(\underline{x}^{k})$$
(1)

Safety problem for S: given v, decide if S is safe wrt v.

Theorem (Soundness and Completeness)

Backward search is effective, correct and complete (the last one w.r.t. detecting unsafety) for the safety problems for SASs. If $G(\Sigma)$ is acyclic, backward search always terminates and it is a full decision procedure.

