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Aim of the Talk

• Our general problem: studying combination of (quantifier-free)
Uniform Interpolants (UIs).

• Let T be a logic or a theory and L a suitable fragment (propositional,
first-order quantifier-free, etc.) of its language. Given an L-formula
φ(x, y), a uniform interpolant of φ (w.r.t. y) is an L-formula φ′(x)
where only the x occur, and that satisfies the following two
properties:

I φ(x, y) `T φ′(x);
I for any further L-formula ψ(x, z) such that φ(x, y) `T ψ(x, z), we

have φ′(x) `T ψ(x, z).
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Motivation (I)

• Infinite-state model checking =⇒ sets of (reachable) states and
transitions represented symbolically.

• Precise computations of the set of reachable states through quantifier
elimination (QE).
• Usually, QE is computationally intractable.
• In contrast, methods for symbol elimination (e.g., predicate

abstraction or ordinary interpolation), used to approximate states,
are quite efficient. But the computation is not exact.
• However, QE has strict relations with uniform interpolation (or,

covers [GM08]), largely studied in non-classical logics since the
nineties, and becomes tractable in significant cases [CGG+19].
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Motivation (II)
• Modeling and verifying data-aware processes =⇒ combination of

different theories, e.g., (i) for the read-only data storage;
(ii) for elements from value domains (like arithmetical values)

• Important question: is it possible (and, if so, under which
conditions) to transfer UIs from two theories T1, T2 to the combined
theory T1 ∪ T2?
• Example: Simple Artifact Systems (SAS) [CGG+19]

I States: φ(x) (quantifier-free)
I Transitions: τ(x, x′) ≡ ∃d, i(G(x, d, i) ∧ U(x, x′, d, i)) (existential)
I d: Persistent Data from DB;
I i: elements from arithmetical domains.
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Motivation (III): Verification of SASs
Given a state formula φ for states S(i), we symbolically define T−1(S(i)):

Pre(τ, φ) ≡ ∃x′(τ(x, x′) ∧ φ(x′))

S(0) : φ =⇒ S(1) : Pre(τ, φ) ≡ ∃d, i, x′(G(x, d, i) ∧ U(x, x′, d, i) ∧ φ(x′))

S(1) is NOT a state formula! The existential quantifiers can be
‘eliminated’ [CGG+19] by computing combined UIs!
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Our contributions

• General algorithm for computing combined UIs in case of convex
component theories.

• The hypothesis under which this algorithm is correct is the same
needed to transfer quantifier-free interpolation: the equality
interpolating condition.

• We prove that the equality interpolating condition is also necessary
for transferring UIs.

• The algorithm relies on the extensive use of the Beth definability
property for primitive fragments.

• Counterexample showing non-transfer of UIs for non-convex
theories in general, even in case combined quantifier-free
interpolants do exist.
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Preliminaries
Definition
Given a FO theory T and two quantifier-free FO formulae α(x, y), β(y, z)
such that `T α→ β, a quantifier-free FO formula γ(y) is a
T -quantifier-free interpolant if `T α→ γ and `T γ → β hold.

If every pair α(x, y), β(y, z) has a quantifier-free interpolant, then T
enjoys the quantifier-free interpolation property.

Definition
A theory T is stably infinite iff every T -satisfiable constraint is satisfiable
in an infinite model of T .
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Definition
A theory T is convex iff for every constraint δ, if T ` δ →
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i=1 xi = yi
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Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula ∃e φ(e, y).
• A quantifier-free (qf) formula ψ(y) is a T -uniform (qf) interpolant

(or, T -cover) of ∃e φ(e, y) iff

(i) ψ(y) ∈ Res(∃e φ) := {θ(y, z) | T |= φ(e, y)→ θ(y, z)},
(ii) ψ(y) implies (modulo T ) all the formulae in Res(∃e φ).

We say that a theory T has uniform (qf) interpolation iff every
existential formula ∃e φ(e, y) has a T -uniform (qf) interpolant.

• A T -cover is a T -quantifier-free interpolant and is, intuitively, the
strongest formula implied by ∃e φ(e, y).
• In the cover ψ(y), the variables e have been ’eliminated’, in some

sense.
• But, in general, ψ(y) does not imply ∃e φ(e, y). Hence, usually
ψ(y) and ∃e φ(e, y) are not T -equivalent.
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UIs and Model Completions

A universal Σ-theory T has a model completion iff there is a stronger
theory T ∗ ⊇ T (in the same signature Σ) such that (i) every Σ-constraint
that is satisfiable in a model of T is satisfiable in a model of T ∗; (ii) T ∗
eliminates quantifiers.

Theorem (UIs and QE [CGG+19])

Suppose that T is a universal theory. Then, T has a model completion T ∗
iff T has uniform quantifier-free interpolation. If this happens, T ∗ is
axiomatized by the infinitely many sentences ∀y (ψ(y)→ ∃e φ(e, y)),
where ∃e φ(e, y) is a primitive formula and ψ is a UI of it.

Hence, computing UIs in a theory T
is equivalent to

eliminating quantifiers in its model completion T ∗.
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Equality Interpolating Condition
Definition ([YM05])
A convex universal theory T is equality interpolating iff for every pair y1, y2
of variables and for every pair of constraints δ1(x, z1, y1), δ2(x, z2, y2)
such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = y2, there exists a term
t(x) such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = t(x) ∧ y2 = t(x).

Theorem ([BGR14])

A universal theory T has the strong amalgamation property iff it is
equality interpolating.

Examples of universal quantifier-free interpolating and equality
interpolating theories:

• EUF(Σ), given a signature Σ;
• recursive data theories;
• linear arithmetics.
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Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T1 and T2 be two universal, convex, stably infinite theories over
disjoint signatures Σ1 and Σ2. If both T1 and T2 are equality interpolating
and have quantifier-free interpolation property, then so does T1 ∪ T2.

There is a converse [BGR14] of the previous result, in the sense that the
equality interpolating property is already required for transferring
quantifier-free interpolation in the minimal combinations with signatures
adding uninterpreted symbols (EUF(Σ)).
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Beth Definability and Equality Interpolating Condition
Equality interpolating can be characterized using Beth definability.

Given a primitive formula ∃zφ(x, z, y), we say that:

• ∃z φ(x, z, y) implicitly defines y in T iff the following formula is
T -valid: ∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′)→ y = y′);
• ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x) such that

the formula is T -valid: ∀y (∃zφ(x, z, y)→ y = t(x));
• a theory T has the Beth definability property for primitive formulae

iff whenever a primitive formula ∃z φ(x, z, y) implicitly defines the
variable y then it also explicitly defines it.
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• ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x) such that

the formula is T -valid: ∀y (∃zφ(x, z, y)→ y = t(x));
• a theory T has the Beth definability property for primitive formulae

iff whenever a primitive formula ∃z φ(x, z, y) implicitly defines the
variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is equality
interpolating iff it has the Beth definability property for primitive
formulae.
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Convex Theories
• Every Σi-theory Ti from now on is convex, stably infinite, equality

interpolating, universal and admitting a model completion T ∗i .

• For i = 1, . . . , n, we let the formula ImplDefTφ,yi
(x) be the

quantifier-free formula equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i)

where the y′ are renamed copies of the y.
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Convex Theories
• Every Σi-theory Ti from now on is convex, stably infinite, equality

interpolating, universal and admitting a model completion T ∗i .
• For i = 1, . . . , n, we let the formula ImplDefTφ,yi

(x) be the
quantifier-free formula equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i)

where the y′ are renamed copies of the y.
The following Lemma supplies terms used as ingredients in the combined
covers algorithm:

Lemma (Useful Terms)
Let Li1(x) ∨ · · · ∨ Liki

(x) be the disjunctive normal form (DNF) of
ImplDefTφ,yi

(x). Then, for every j = 1, . . . , ki, there is a Σ(x)-term tij(x)
such that T ` Lij(x) ∧ φ(x, y)→ yi = tij

The terms tij are obtained thanks to the Beth definability property, that
holds because of the Key Theorem.
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Computing Combined UIs
• Given a Σ1-theory T1 and a Σ2-theory T2, we want to compute a
T1 ∪ T2-cover for ∃e φ(x, e) (Initial Formula).

• By applying rewriting purification steps, we can assume that φ is of the kind
φ1 ∧ φ2, where φi is a Σi-formula (i = 1, 2).

• Assume that φ1 and φ2 contain ei 6= ej (for i 6= j): guess a partition of the e
and replace each ei with the representative element of its equivalence class.

• The algorithm employs acyclic explicit definitions ExplDef(z, x)∧m
i=1 zi = ti(z1, . . . , zi−1, x) where the term ti is pure.

• A working formula is ∃z (ExplDef(z, x) ∧ ∃e (ψ1(x, z, e) ∧ ψ2(x, z, e))),
where ψi is a Σi-formula (i = 1, 2) and x are called parameters, z defined
variables and e (truly) existential variables. ψ1, ψ2 always contain the literals
ei 6= ej (for distinct ei, ej from e) as a conjunct.

• A working formula is terminal iff for every ei ∈ e
T1 ` ψ1 → ¬ImplDefT1

ψ1,ei
(x, z) and T2 ` ψ2 → ¬ImplDefT2

ψ2,ei
(x, z)
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Combined UIs Algorithm
Lemma (Main Lemma)
Every working formula is equivalent (modulo T1 ∪ T2) to a disjunction of
terminal working formulae.

Start from an Initial Formula. The non-deterministic procedure to compute
the terminal working formulae applies one of the following alternatives:

(1) Add to ψ1 a disjunct from the DNF of∧
ei∈e ¬ImplDefT1

ψ1,ei
(x, z) and to ψ2 a disjunct from the

DNF of
∧
ei∈e ¬ImplDefT2

ψ2,ei
(x, z);

(2.i) Select ei ∈ e and h ∈ {1, 2}; then add to ψh a disjunct Lij
from the DNF of ImplDefTh

ψh,ei
(x, z); add ei = tij (where tij

is the term mentioned in Useful Terms Lemma) to
ExplDef(z, x); the variable ei becomes defined.

The output is the disjunction of all possible outcomes.
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Transfer of UIs
Proposition

A UI of a terminal working formula can be obtained by unravelling the
explicit definitions of the variables z from
∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the Proposition and the ‘UIs and QE’ Theorem:
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∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the Proposition and the ‘UIs and QE’ Theorem:

Theorem
Let T1, T2 be convex, stably infinite, equality interpolating, universal
theories over disjoint signatures admitting a model completion.
Then T1 ∪ T2 admits a model completion too. UIs in T1 ∪ T2 can be
effectively computed as shown above.

Alessandro Gianola Combination of UI using Beth Definability TACL 2022 22 / 28



Transfer of UIs
Proposition

A UI of a terminal working formula can be obtained by unravelling the
explicit definitions of the variables z from
∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the Proposition and the ‘UIs and QE’ Theorem:

Theorem
Let T1, T2 be convex, stably infinite, equality interpolating, universal
theories over disjoint signatures admitting a model completion.
Then T1 ∪ T2 admits a model completion too. UIs in T1 ∪ T2 can be
effectively computed as shown above.

In [CGG+22], it is also shown that equality interpolating is a necessary
condition for obtaining UI transfer: already required for minimal
combinations with signatures adding uninterpreted symbols.
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Non-transfer of UIs in the Non-convex case

Convexity hypothesis cannot be eliminated.

Consider the UI transfer for T1 ∪ T2, where:
• T1 := integer difference logic IDL (integer numbers with successor

and predecessor, 0 and the strict order <): it is not convex, but it
satisfies the equality interpolating condition for non-convex theories.
• T2:= EUF(Σf ), where Σf has only one unary free function symbol f

(not belonging to the signature of T1).

Proposition
Let T1, T2 be as above; the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does
not have a UI in T1 ∪ T2.

The counterexample still applies when replacing integer difference
logic with linear integer arithmetics.
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Conclusions

• Problem of combined UIs.

• Sufficient and necessary conditions for transferring UIs to
combinations in the convex case.

• General method and algorithm for computing combined UIs for
convex theories, based on the use of Beth definability.

• Non-transfer of UIs in the non-convex case, in general.
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Further Directions
• Investigate UI transfer for ‘tame’ theory combinations (codomain

sorts are shared) [CGG+22];
• UI transfer properties for non-disjoint signatures combinations;
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Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+19].
Consider the formula:

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3


Applying exhaustively Step (1) and Step (2.i), we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]
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Artifact-Centric Systems
Artifact-Centric Systems: process-centric paradigm + data
(artifact = lifecycle + information model).

They can be formalized using three components:
• a read-only database (DB);
• an artifact working memory (e.g., artifact variables + artifact

relations);
• actions (also called services).

Artifact-Centric Systems =⇒ Array-based Systems =⇒
SMT-based tool Model Checker Modulo Theories (MCMT)
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DB schemas
DB schemas: read-only DB of Artifact-Centric Systems, incorporating
primary keys and foreign keys dependencies

Definition
A DB schema is a pair (Σ, T ), where:
• Σ is a DB signature, that is, a finite multi-sorted signature with

equality, unary functions, n-ary relations and constants;
• T is a DB theory, that is, a set of universal Σ-sentences.

In a basic DB schema, T is empty. G(Σ): characteristic graph capturing
the dependencies induced by functions over sorts.
Example:
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Array-based Artifact-Centric Systems: a simplified version
A SAS (Simple Artifact Systems) is a tuple
S = 〈Σ, T, x, ι(x), τ(x, x′)〉, where:
• (Σ, T ) is a DB schema;
• x are individual FO variables representing the current state;
• ι is a Σ-formula representing the initialization;
• τ(x, x′) is a Σ-formula representing the transitions from the current

state x to the new state x′.
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A simple example

Job Hiring Process:

ι := (Applicant = undef ∧ JobPos = undef)

τ := ∃UserID, JobID
(

UserID 6= undef ∧ JobID 6= undef ∧ Applicant = undef∧
JobPos = undef ∧ Applicant′ := UserID ∧ JobPos′ := JobID

)
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Verification of safety in a SAS S

A safety formula for S: generic quantifier-free formula υ(x) =⇒
undesired states of S.

S is safe wrt υ iff in no model M of (Σ, T ), for no k ≥ 0 and for no
assignment in M to x0, . . . , xk (1) is true (xi are renamed copies of x):

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (1)

Safety problem for S: given υ, decide if S is safe wrt υ.

Theorem (Soundness and Completeness)
Backward search is effective, correct and complete (the last one w.r.t.
detecting unsafety) for the safety problems for SASs. If G(Σ) is acyclic,
backward search always terminates and it is a full decision procedure.
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