Combination of Quantifier-free Uniform Interpolants using Beth Definability (Abridged Version)

Diego Calvanese ${ }^{1}$, Silvio Ghilardi ${ }^{2}$, Alessandro Gianola ${ }^{1}$, Marco Montali ${ }^{1}$, Andrey Rivkin ${ }^{1}$
${ }^{1}$ KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy
${ }^{2}$ Dipartimento di Matematica Università degli Studi di Milano, Italy

TACL 2022
June 22, 2022

Outline

(1) Motivation and Contribution
(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

44 The Convex Combined Algorithm
(5) The Non-Convex Case: a Counterexample
(6) Conclusions

Mos
KRDB

Outline

(1) Motivation and Contribution
(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm
(5) The Non-Convex Case: a Counterexample
(6) Conclusions
\xrightarrow{M}
KRDB

Aim of the Talk

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (Uls).

Aim of the Talk

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (Uls).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a uniform interpolant of ϕ (w.r.t. \underline{y}) is an L-formula $\phi^{\prime}(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:

Aim of the Talk

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (Uls).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a uniform interpolant of ϕ (w.r.t. \underline{y}) is an L-formula $\phi^{\prime}(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:

$$
\text { - } \phi(\underline{x}, \underline{y}) \vdash_{T} \phi^{\prime}(\underline{x}) ;
$$

Aim of the Talk

- Our general problem: studying combination of (quantifier-free) Uniform Interpolants (Uls).
- Let T be a logic or a theory and L a suitable fragment (propositional, first-order quantifier-free, etc.) of its language. Given an L-formula $\phi(\underline{x}, \underline{y})$, a uniform interpolant of ϕ (w.r.t. \underline{y}) is an L-formula $\phi^{\prime}(\underline{x})$ where only the \underline{x} occur, and that satisfies the following two properties:
- $\phi(\underline{x}, \underline{y}) \vdash_{T} \phi^{\prime}(\underline{x})$;
- for any further L-formula $\psi(\underline{x}, \underline{z})$ such that $\phi(\underline{x}, \underline{y}) \vdash_{T} \psi(\underline{x}, \underline{z})$, we have $\phi^{\prime}(\underline{x}) \vdash_{T} \psi(\underline{x}, \underline{z})$.

Motivation (I)

- Infinite-state model checking \Longrightarrow sets of (reachable) states and transitions represented symbolically.

Motivation (I)

- Infinite-state model checking \Longrightarrow sets of (reachable) states and transitions represented symbolically.
- Precise computations of the set of reachable states through quantifier elimination (QE).

Motivation (I)

- Infinite-state model checking \Longrightarrow sets of (reachable) states and transitions represented symbolically.
- Precise computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.

Motivation (I)

- Infinite-state model checking \Longrightarrow sets of (reachable) states and transitions represented symbolically.
- Precise computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.
- In contrast, methods for symbol elimination (e.g., predicate abstraction or ordinary interpolation), used to approximate states, are quite efficient. But the computation is not exact.

Motivation (I)

- Infinite-state model checking \Longrightarrow sets of (reachable) states and transitions represented symbolically.
- Precise computations of the set of reachable states through quantifier elimination (QE).
- Usually, QE is computationally intractable.
- In contrast, methods for symbol elimination (e.g., predicate abstraction or ordinary interpolation), used to approximate states, are quite efficient. But the computation is not exact.
- However, QE has strict relations with uniform interpolation (or, covers [GM08]), largely studied in non-classical logics since the nineties, and becomes tractable in significant cases [CGG $\left.{ }^{+} 19\right]$.

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?
- Example: Simple Artifact Systems (SAS) [CGG+19]

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?
- Example: Simple Artifact Systems (SAS) [CGG+19]
- States: $\phi(\underline{x})$ (quantifier-free)

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?
- Example: Simple Artifact Systems (SAS) [CGG+19]
- States: $\phi(\underline{x})$ (quantifier-free)
- Transitions: $\tau\left(\underline{x}, \underline{x}^{\prime}\right) \equiv \exists \underline{d}, \underline{i}\left(G(\underline{x}, \underline{d}, \underline{i}) \wedge U\left(\underline{x}, \underline{x}^{\prime}, \underline{d}, \underline{i}\right)\right)$ (existential)

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?
- Example: Simple Artifact Systems (SAS) [CGG+19]
- States: $\phi(\underline{x})$ (quantifier-free)
- Transitions: $\tau\left(\underline{x}, \underline{x}^{\prime}\right) \equiv \exists \underline{d}, \underline{i}\left(G(\underline{x}, \underline{d}, \underline{i}) \wedge U\left(\underline{x}, \underline{x}^{\prime}, \underline{d}, \underline{i}\right)\right)$ (existential)
- d: Persistent Data from DB;

Motivation (II)

- Modeling and verifying data-aware processes \Longrightarrow combination of different theories, e.g., (i) for the read-only data storage; (ii) for elements from value domains (like arithmetical values)
- Important question: is it possible (and, if so, under which conditions) to transfer Uls from two theories T_{1}, T_{2} to the combined theory $T_{1} \cup T_{2}$?
- Example: Simple Artifact Systems (SAS) [CGG+19]
- States: $\phi(\underline{x})$ (quantifier-free)
- Transitions: $\tau\left(\underline{x}, \underline{x}^{\prime}\right) \equiv \exists \underline{d}, \underline{i}\left(G(\underline{x}, \underline{d}, \underline{i}) \wedge U\left(\underline{x}, \underline{x}^{\prime}, \underline{d}, \underline{i}\right)\right)$ (existential)
- \underline{d} : Persistent Data from DB;
- \underline{i} : elements from arithmetical domains.

Motivation (III): Verification of SASs

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}\left(S^{(i)}\right)$:

$$
\operatorname{Pr} e(\tau, \phi) \equiv \exists \underline{x}^{\prime}\left(\tau\left(\underline{x}, \underline{x}^{\prime}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)
$$

Motivation (III): Verification of SASs

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}\left(S^{(i)}\right)$:

$$
\operatorname{Pre}(\tau, \phi) \equiv \exists \underline{x}^{\prime}\left(\tau\left(\underline{x}, \underline{x}^{\prime}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)
$$

Backward-Reachability $\left(S^{(0)} \equiv\right.$ "bad states")
Safety Check If $S^{(i)}$ contains an initial, return unsafe Next States Compute $S^{(i+1)}:=S^{(i)} \cup T^{-1}\left(S^{(i)}\right)$ Fix-Point Check If $S^{(i+1)} \equiv S^{(i)}$, return safe

Motivation (III): Verification of SASs

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}\left(S^{(i)}\right)$:

$$
\operatorname{Pr} e(\tau, \phi) \equiv \exists \underline{x}^{\prime}\left(\tau\left(\underline{x}, \underline{x}^{\prime}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)
$$

Backward-Reachability $\left(S^{(0)} \equiv\right.$ "bad states")
Safety Check If $S^{(i)}$ contains an initial, return unsafe Next States Compute $S^{(i+1)}:=S^{(i)} \cup T^{-1}\left(S^{(i)}\right)$ Fix-Point Check If $S^{(i+1)} \equiv S^{(i)}$, return safe

$S^{(0)}: \phi \Longrightarrow S^{(1)}: \operatorname{Pre}(\tau, \phi) \equiv \exists \underline{d}, \underline{i}, \underline{x}^{\prime}\left(G(\underline{x}, \underline{d}, \underline{i}) \wedge U\left(\underline{x}, \underline{x}^{\prime}, \underline{d}, \underline{i}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)$

Motivation (III): Verification of SASs

Given a state formula ϕ for states $S^{(i)}$, we symbolically define $T^{-1}\left(S^{(i)}\right)$:

$$
\operatorname{Pr} e(\tau, \phi) \equiv \exists \underline{x}^{\prime}\left(\tau\left(\underline{x}, \underline{x}^{\prime}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)
$$

$$
S^{(0)}: \phi \Longrightarrow S^{(1)}: \operatorname{Pre}(\tau, \phi) \equiv \exists \underline{d}, \underline{i}, \underline{x}^{\prime}\left(G(\underline{x}, \underline{d}, \underline{i}) \wedge U\left(\underline{x}, \underline{x}^{\prime}, \underline{d}, \underline{i}\right) \wedge \phi\left(\underline{x}^{\prime}\right)\right)
$$

$S^{(1)}$ is NOT a state formula! The existential quantifiers can be 'eliminated' [CGG ${ }^{+}$19] by computing combined Uls!

Our contributions

- General algorithm for computing combined Uls in case of convex component theories.

Our contributions

- General algorithm for computing combined Uls in case of convex component theories.
- The hypothesis under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the equality interpolating condition.

Our contributions

- General algorithm for computing combined Uls in case of convex component theories.
- The hypothesis under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the equality interpolating condition.
- We prove that the equality interpolating condition is also necessary for transferring Uls.

Our contributions

- General algorithm for computing combined Uls in case of convex component theories.
- The hypothesis under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the equality interpolating condition.
- We prove that the equality interpolating condition is also necessary for transferring Uls.
- The algorithm relies on the extensive use of the Beth definability property for primitive fragments.

Our contributions

- General algorithm for computing combined Uls in case of convex component theories.
- The hypothesis under which this algorithm is correct is the same needed to transfer quantifier-free interpolation: the equality interpolating condition.
- We prove that the equality interpolating condition is also necessary for transferring Uls.
- The algorithm relies on the extensive use of the Beth definability property for primitive fragments.
- Counterexample showing non-transfer of Uls for non-convex theories in general, even in case combined quantifier-free interpolants do exist.

Outline

(1) Motivation and Contribution

(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm

(5) The Non-Convex Case: a Counterexample

(6) Conclusions
\xrightarrow{M}

Preliminaries

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ such that $\vdash_{T} \alpha \rightarrow \beta$, a quantifier-free FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_{T} \alpha \rightarrow \gamma$ and $\vdash_{T} \gamma \rightarrow \beta$ hold.

Preliminaries

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ such that $\vdash_{T} \alpha \rightarrow \beta$, a quantifier-free FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_{T} \alpha \rightarrow \gamma$ and $\vdash_{T} \gamma \rightarrow \beta$ hold.

If every pair $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Preliminaries

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ such that $\vdash_{T} \alpha \rightarrow \beta$, a quantifier-free FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_{T} \alpha \rightarrow \gamma$ and $\vdash_{T} \gamma \rightarrow \beta$ hold.

If every pair $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Definition

A theory T is stably infinite iff every T-satisfiable constraint is satisfiable in an infinite model of T.

Preliminaries

Definition

Given a FO theory T and two quantifier-free FO formulae $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ such that $\vdash_{T} \alpha \rightarrow \beta$, a quantifier-free FO formula $\gamma(\underline{y})$ is a T-quantifier-free interpolant if $\vdash_{T} \alpha \rightarrow \gamma$ and $\vdash_{T} \gamma \rightarrow \beta$ hold.

If every pair $\alpha(\underline{x}, \underline{y}), \beta(\underline{y}, \underline{z})$ has a quantifier-free interpolant, then T enjoys the quantifier-free interpolation property.

Definition

A theory T is stably infinite iff every T-satisfiable constraint is satisfiable in an infinite model of T.

Definition

A theory T is convex iff for every constraint δ, if $T \vdash \delta \rightarrow \bigvee_{i=1}^{n} x_{i}=y_{i}$ then $T \vdash \delta \rightarrow x_{i}=y_{i}$ holds for some $i \in\{1, \ldots, n\}$.

A convex theory is 'almost' stably infinite (for constraints satisfiable in models with at least two elements)

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,
(ii) $\psi(\underline{y})$ implies (modulo $T)$ all the formulae $\overline{\text { in }} \operatorname{Res}(\exists \underline{e} \phi)$.

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,
(ii) $\psi(\underline{y})$ implies (modulo $T)$ all the formulae in $\operatorname{Res}(\exists \underline{e} \phi)$.

We say that a theory T has uniform (qf) interpolation iff every existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$ has a T-uniform (qf) interpolant.

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,
(ii) $\psi(\underline{y})$ implies (modulo $T)$ all the formulae in $\operatorname{Res}(\exists \underline{e} \phi)$.

We say that a theory T has uniform (qf) interpolation iff every existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$ has a T-uniform (qf) interpolant.

- A T-cover is a T-quantifier-free interpolant and is, intuitively, the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,
(ii) $\psi(\underline{y})$ implies (modulo $T)$ all the formulae in $\operatorname{Res}(\exists \underline{e} \phi)$.

We say that a theory T has uniform (qf) interpolation iff every existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$ has a T-uniform (qf) interpolant.

- A T-cover is a T-quantifier-free interpolant and is, intuitively, the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.
- In the cover $\psi(\underline{y})$, the variables \underline{e} have been 'eliminated', in some sense.

Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$.

- A quantifier-free (qf) formula $\psi(\underline{y})$ is a T-uniform (qf) interpolant (or, T-cover) of $\exists \underline{e} \phi(\underline{e}, \underline{y})$ iff
(i) $\psi(\underline{y}) \in \operatorname{Res}(\exists \underline{e} \phi):=\{\theta(\underline{y}, \underline{z}) \mid T \models \phi(\underline{e}, \underline{y}) \rightarrow \theta(\underline{y}, \underline{z})\}$,
(ii) $\psi(\underline{y})$ implies (modulo $T)$ all the formulae in $\operatorname{Res}(\exists \underline{e} \phi)$.

We say that a theory T has uniform (qf) interpolation iff every existential formula $\exists \underline{e} \phi(\underline{e}, \underline{y})$ has a T-uniform (qf) interpolant.

- A T-cover is a T-quantifier-free interpolant and is, intuitively, the strongest formula implied by $\exists \underline{e} \phi(\underline{e}, \underline{y})$.
- In the cover $\psi(\underline{y})$, the variables \underline{e} have been 'eliminated', in some sense.
- But, in general, $\psi(\underline{y})$ does not imply $\exists \underline{e} \phi(\underline{e}, \underline{y})$. Hence, usually $\psi(\underline{y})$ and $\exists \underline{e} \phi(\underline{e}, \underline{y})$ are not T-equivalent.

Uls and Model Completions

A universal Σ-theory T has a model completion iff there is a stronger theory $T^{*} \supseteq T$ (in the same signature Σ) such that (i) every Σ-constraint that is satisfiable in a model of T is satisfiable in a model of T^{*}; (ii) T^{*} eliminates quantifiers.

Uls and Model Completions

A universal Σ-theory T has a model completion iff there is a stronger theory $T^{*} \supseteq T$ (in the same signature Σ) such that (i) every Σ-constraint that is satisfiable in a model of T is satisfiable in a model of T^{*}; (ii) T^{*} eliminates quantifiers.

Theorem (Uls and QE [CGG $\left.{ }^{+} 19\right]$)

Suppose that T is a universal theory. Then, T has a model completion T^{*} iff T has uniform quantifier-free interpolation. If this happens, T^{*} is axiomatized by the infinitely many sentences $\forall \underline{y}(\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, \underline{y})$ is a primitive formula and ψ is a UI of it.

Uls and Model Completions

A universal Σ-theory T has a model completion iff there is a stronger theory $T^{*} \supseteq T$ (in the same signature Σ) such that (i) every Σ-constraint that is satisfiable in a model of T is satisfiable in a model of T^{*}; (ii) T^{*} eliminates quantifiers.

Theorem (Uls and QE [CGG $\left.{ }^{+} 19\right]$)

Suppose that T is a universal theory. Then, T has a model completion T^{*} iff T has uniform quantifier-free interpolation. If this happens, T^{*} is axiomatized by the infinitely many sentences $\forall \underline{y}(\psi(\underline{y}) \rightarrow \exists \underline{e} \phi(\underline{e}, \underline{y}))$, where $\exists \underline{e} \phi(\underline{e}, \underline{y})$ is a primitive formula and ψ is a UI of it.

Hence, computing Uls in a theory T is equivalent to eliminating quantifiers in its model completion T^{*}.

Outline

(1) Motivation and Contribution

(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm
(5) The Non-Convex Case: a Counterexample
(6) Conclusions

Mon

Equality Interpolating Condition

Definition ([YM05])

A convex universal theory T is equality interpolating iff for every pair y_{1}, y_{2} of variables and for every pair of constraints $\delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right), \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right)$ such that $T \vdash \delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right) \rightarrow y_{1}=y_{2}$, there exists a term $t(\underline{x})$ such that $T \vdash \delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right) \rightarrow y_{1}=t(\underline{x}) \wedge y_{2}=t(\underline{x})$.

Theorem ([BGR14])

A universal theory T has the strong amalgamation property iff it is equality interpolating.

Equality Interpolating Condition

Definition ([YM05])

A convex universal theory T is equality interpolating iff for every pair y_{1}, y_{2} of variables and for every pair of constraints $\delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right), \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right)$ such that $T \vdash \delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right) \rightarrow y_{1}=y_{2}$, there exists a term $t(\underline{x})$ such that $T \vdash \delta_{1}\left(\underline{x}, \underline{z}_{1}, y_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, y_{2}\right) \rightarrow y_{1}=t(\underline{x}) \wedge y_{2}=t(\underline{x})$.

Theorem ([BGR14])

A universal theory T has the strong amalgamation property iff it is equality interpolating.

Examples of universal quantifier-free interpolating and equality interpolating theories:

- $\mathcal{E U F}(\Sigma)$, given a signature Σ;
- recursive data theories;
- linear arithmetics.

Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T_{1} and T_{2} be two universal, convex, stably infinite theories over disjoint signatures Σ_{1} and Σ_{2}. If both T_{1} and T_{2} are equality interpolating and have quantifier-free interpolation property, then so does $T_{1} \cup T_{2}$.

Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T_{1} and T_{2} be two universal, convex, stably infinite theories over disjoint signatures Σ_{1} and Σ_{2}. If both T_{1} and T_{2} are equality interpolating and have quantifier-free interpolation property, then so does $T_{1} \cup T_{2}$.

There is a converse [BGR14] of the previous result, in the sense that the equality interpolating property is already required for transferring quantifier-free interpolation in the minimal combinations with signatures adding uninterpreted symbols $(\mathcal{E U F}(\Sigma))$.

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.
Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.
Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines y in T iff the following formula is T-valid: $\forall y \forall y^{\prime}\left(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \wedge \exists \underline{z} \phi\left(\underline{x}, \underline{z}, y^{\prime}\right) \rightarrow y=y^{\prime}\right)$;

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.
Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines y in T iff the following formula is T-valid: $\forall y \forall y^{\prime}\left(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \wedge \exists \underline{z} \phi\left(\underline{x}, \underline{z}, y^{\prime}\right) \rightarrow y=y^{\prime}\right)$;
- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \rightarrow y=t(\underline{x}))$;

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.
Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines y in T iff the following formula is T-valid: $\forall y \forall y^{\prime}\left(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \wedge \exists \underline{z} \phi\left(\underline{x}, \underline{z}, y^{\prime}\right) \rightarrow y=y^{\prime}\right)$;
- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \rightarrow y=t(\underline{x}))$;
- a theory T has the Beth definability property for primitive formulae iff whenever a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines the variable y then it also explicitly defines it.

Beth Definability and Equality Interpolating Condition

Equality interpolating can be characterized using Beth definability.
Given a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$, we say that:

- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines y in T iff the following formula is T-valid: $\forall y \forall y^{\prime}\left(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \wedge \exists \underline{z} \phi\left(\underline{x}, \underline{z}, y^{\prime}\right) \rightarrow y=y^{\prime}\right)$;
- $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ explicitly defines y in T iff there is a term $t(\underline{x})$ such that the formula is T-valid: $\forall y(\exists \underline{z} \phi(\underline{x}, \underline{z}, y) \rightarrow y=t(\underline{x}))$;
- a theory T has the Beth definability property for primitive formulae iff whenever a primitive formula $\exists \underline{z} \phi(\underline{x}, \underline{z}, y)$ implicitly defines the variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is equality interpolating iff it has the Beth definability property for primitive formulae.

Outline

(1) Motivation and Contribution

(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

44 The Convex Combined Algorithm

(5) The Non-Convex Case: a Counterexample

(6) Conclusions
\xrightarrow{M}

Convex Theories

- Every Σ_{i}-theory T_{i} from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_{i}^{*}.

Convex Theories

- Every Σ_{i}-theory T_{i} from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_{i}^{*}.
- For $i=1, \ldots, n$, we let the formula $\operatorname{ImplDef}{ }_{\phi, y_{i}}^{T}(\underline{x})$ be the quantifier-free formula equivalent in T^{*} to the formula

$$
\forall \underline{y} \forall \underline{y}^{\prime}\left(\phi(\underline{x}, \underline{y}) \wedge \phi\left(\underline{x}, \underline{y}^{\prime}\right) \rightarrow y_{i}=y_{i}^{\prime}\right)
$$

where the $\underline{y^{\prime}}$ are renamed copies of the \underline{y}.

Convex Theories

- Every Σ_{i}-theory T_{i} from now on is convex, stably infinite, equality interpolating, universal and admitting a model completion T_{i}^{*}.
- For $i=1, \ldots, n$, we let the formula $\operatorname{ImplDef}{ }_{\phi, y_{i}}^{T}(\underline{x})$ be the quantifier-free formula equivalent in T^{*} to the formula

$$
\forall \underline{y} \forall \underline{y}^{\prime}\left(\phi(\underline{x}, \underline{y}) \wedge \phi\left(\underline{x}, \underline{y}^{\prime}\right) \rightarrow y_{i}=y_{i}^{\prime}\right)
$$

where the \underline{y}^{\prime} are renamed copies of the \underline{y}.
The following Lemma supplies terms used as ingredients in the combined covers algorithm:

Lemma (Useful Terms)

Let $L_{i 1}(\underline{x}) \vee \cdots \vee L_{i k_{i}}(\underline{x})$ be the disjunctive normal form (DNF) of
$\operatorname{ImplDef}{ }_{\phi, y_{i}}^{T}(\underline{x})$. Then, for every $j=1, \ldots, k_{i}$, there is a $\Sigma(\underline{x})$-term $t_{i j}(\underline{x})$ such that $T \vdash L_{i j}(\underline{x}) \wedge \phi(\underline{x}, \underline{y}) \rightarrow y_{i}=t_{i j}$

The terms $t_{i j}$ are obtained thanks to the Beth definability property, that holds because of the Key Theorem.

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_{1} \wedge \phi_{2}$, where ϕ_{i} is a Σ_{i}-formula $(i=1,2)$.

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_{1} \wedge \phi_{2}$, where ϕ_{i} is a Σ_{i}-formula $(i=1,2)$.
- Assume that ϕ_{1} and ϕ_{2} contain $e_{i} \neq e_{j}($ for $i \neq j)$: guess a partition of the \underline{e} and replace each e_{i} with the representative element of its equivalence class.

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_{1} \wedge \phi_{2}$, where ϕ_{i} is a Σ_{i}-formula $(i=1,2)$.
- Assume that ϕ_{1} and ϕ_{2} contain $e_{i} \neq e_{j}($ for $i \neq j)$: guess a partition of the \underline{e} and replace each e_{i} with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\operatorname{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_{i}=t_{i}\left(z_{1}, \ldots, z_{i-1}, \underline{x}\right)$ where the term t_{i} is pure.

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_{1} \wedge \phi_{2}$, where ϕ_{i} is a Σ_{i}-formula $(i=1,2)$.
- Assume that ϕ_{1} and ϕ_{2} contain $e_{i} \neq e_{j}($ for $i \neq j)$: guess a partition of the \underline{e} and replace each e_{i} with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\operatorname{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_{i}=t_{i}\left(z_{1}, \ldots, z_{i-1}, \underline{x}\right)$ where the term t_{i} is pure.
- A working formula is $\exists \underline{z}\left(\operatorname{ExplDef}(\underline{z}, \underline{x}) \wedge \exists \underline{e}\left(\psi_{1}(\underline{x}, \underline{z}, \underline{e}) \wedge \psi_{2}(\underline{x}, \underline{z}, \underline{e})\right)\right)$, where ψ_{i} is a Σ_{i}-formula $(i=1,2)$ and \underline{x} are called parameters, \underline{z} defined variables and \underline{e} (truly) existential variables. ψ_{1}, ψ_{2} always contain the literals $e_{i} \neq e_{j}$ (for distinct e_{i}, e_{j} from \underline{e}) as a conjunct.

Computing Combined Uls

- Given a Σ_{1}-theory T_{1} and a Σ_{2}-theory T_{2}, we want to compute a $T_{1} \cup T_{2}$-cover for $\exists \underline{e} \phi(\underline{x}, \underline{e})$ (Initial Formula).
- By applying rewriting purification steps, we can assume that ϕ is of the kind $\phi_{1} \wedge \phi_{2}$, where ϕ_{i} is a Σ_{i}-formula $(i=1,2)$.
- Assume that ϕ_{1} and ϕ_{2} contain $e_{i} \neq e_{j}($ for $i \neq j)$: guess a partition of the \underline{e} and replace each e_{i} with the representative element of its equivalence class.
- The algorithm employs acyclic explicit definitions $\operatorname{ExplDef}(\underline{z}, \underline{x})$ $\bigwedge_{i=1}^{m} z_{i}=t_{i}\left(z_{1}, \ldots, z_{i-1}, \underline{x}\right)$ where the term t_{i} is pure.
- A working formula is $\exists \underline{z}\left(\operatorname{ExplDef}(\underline{z}, \underline{x}) \wedge \exists \underline{e}\left(\psi_{1}(\underline{x}, \underline{z}, \underline{e}) \wedge \psi_{2}(\underline{x}, \underline{z}, \underline{e})\right)\right)$, where ψ_{i} is a Σ_{i}-formula $(i=1,2)$ and \underline{x} are called parameters, \underline{z} defined variables and \underline{e} (truly) existential variables. ψ_{1}, ψ_{2} always contain the literals $e_{i} \neq e_{j}$ (for distinct e_{i}, e_{j} from \underline{e}) as a conjunct.
- A working formula is terminal iff for every $e_{i} \in \underline{e}$

$$
T_{1} \vdash \psi_{1} \rightarrow \neg \operatorname{ImplDef}{ }_{\psi_{1}, e_{i}}^{T_{1}}(\underline{x}, \underline{z}) \text { and } T_{2} \vdash \psi_{2} \rightarrow \neg \operatorname{ImplDef}_{\psi_{2}, e_{i}}^{T_{2}}(\underline{x}, \underline{z})
$$

Combined Uls Algorithm

Lemma (Main Lemma)
Every working formula is equivalent (modulo $T_{1} \cup T_{2}$) to a disjunction of terminal working formulae.

Combined Uls Algorithm

Lemma (Main Lemma)

Every working formula is equivalent (modulo $T_{1} \cup T_{2}$) to a disjunction of terminal working formulae.

Start from an Initial Formula. The non-deterministic procedure to compute the terminal working formulae applies one of the following alternatives:
(1) Add to ψ_{1} a disjunct from the DNF of $\bigwedge_{e_{i} \in \underline{e}} \neg \operatorname{ImplDef}{ }_{\psi_{1}, e_{i}}^{T_{1}}(\underline{x}, \underline{z})$ and to ψ_{2} a disjunct from the DNF of $\bigwedge_{e_{i} \in e} \neg \operatorname{ImplDef} \psi_{\psi_{2}, e_{i}}^{T_{2}}(\underline{x}, \underline{z})$;
(2.i) Select $e_{i} \in \underline{e}$ and $h \in\{1,2\}$; then add to ψ_{h} a disjunct $L_{i j}$ from the DNF of $\operatorname{ImplDef}{\underset{\psi}{h},}_{T_{h}}^{T_{i}}(\underline{x}, \underline{z})$; add $e_{i}=t_{i j}$ (where $t_{i j}$ is the term mentioned in Useful Terms Lemma) to $\operatorname{Expl\operatorname {Def}}(\underline{z}, \underline{x})$; the variable e_{i} becomes defined.

Combined Uls Algorithm

Lemma (Main Lemma)

Every working formula is equivalent (modulo $T_{1} \cup T_{2}$) to a disjunction of terminal working formulae.

Start from an Initial Formula. The non-deterministic procedure to compute the terminal working formulae applies one of the following alternatives:
(1) Add to ψ_{1} a disjunct from the DNF of $\bigwedge_{e_{i} \in \underline{e}} \neg \operatorname{ImplDef}{ }_{\psi_{1}, e_{i}}^{T_{1}}(\underline{x}, \underline{z})$ and to ψ_{2} a disjunct from the DNF of $\bigwedge_{e_{i} \in \underline{e}} \neg \operatorname{ImplDef} \psi_{\psi_{2}, e_{i}}^{T_{2}}(\underline{x}, \underline{z})$;
(2.i) Select $e_{i} \in \underline{e}$ and $h \in\{1,2\}$; then add to ψ_{h} a disjunct $L_{i j}$ from the DNF of $\operatorname{ImplDef}{\underset{\psi}{h},}_{T_{h}}^{T_{i}}(\underline{x}, \underline{z})$; add $e_{i}=t_{i j}$ (where $t_{i j}$ is the term mentioned in Useful Terms Lemma) to $\operatorname{Expl\operatorname {Def}}(\underline{z}, \underline{x})$; the variable e_{i} becomes defined.

The output is the disjunction of all possible outcomes.

Transfer of Uls

Proposition

A UI of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from
$\exists \underline{z}\left(\operatorname{Expl} \operatorname{Def}(\underline{z}, \underline{x}) \wedge \theta_{1}(\underline{x}, \underline{z}) \wedge \theta_{2}(\underline{x}, \underline{z})\right)$, where $\theta_{1}(\underline{x}, \underline{z})$ is the T_{1}-cover of $\exists \underline{e} \psi_{1}(\underline{x}, \underline{z}, \underline{e})$ and $\theta_{2}(\underline{x}, \underline{z})$ is the T_{2}-cover of $\exists \underline{e} \psi_{2}(\underline{x}, \underline{z}, \underline{e})$.

Transfer of Uls

Proposition

A UI of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from
$\exists \underline{z}\left(\operatorname{Expl} \operatorname{Def}(\underline{z}, \underline{x}) \wedge \theta_{1}(\underline{x}, \underline{z}) \wedge \theta_{2}(\underline{x}, \underline{z})\right)$, where $\theta_{1}(\underline{x}, \underline{z})$ is the T_{1}-cover of $\exists \underline{e} \psi_{1}(\underline{x}, \underline{z}, \underline{e})$ and $\theta_{2}(\underline{x}, \underline{z})$ is the T_{2}-cover of $\exists \underline{e} \psi_{2}(\underline{x}, \underline{z}, \underline{e})$.

From the Main Lemma, the Proposition and the 'Uls and QE' Theorem:

Transfer of Uls

Proposition

A UI of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from
$\exists \underline{z}\left(\operatorname{ExplDef}(\underline{z}, \underline{x}) \wedge \theta_{1}(\underline{x}, \underline{z}) \wedge \theta_{2}(\underline{x}, \underline{z})\right)$, where $\theta_{1}(\underline{x}, \underline{z})$ is the T_{1}-cover of $\exists \underline{e} \psi_{1}(\underline{x}, \underline{z}, \underline{e})$ and $\theta_{2}(\underline{x}, \underline{z})$ is the T_{2}-cover of $\exists \underline{e} \psi_{2}(\underline{x}, \underline{z}, \underline{e})$.

From the Main Lemma, the Proposition and the 'Uls and QE' Theorem:

Theorem

Let T_{1}, T_{2} be convex, stably infinite, equality interpolating, universal theories over disjoint signatures admitting a model completion. Then $T_{1} \cup T_{2}$ admits a model completion too. Uls in $T_{1} \cup T_{2}$ can be effectively computed as shown above.

Transfer of Uls

Proposition

A UI of a terminal working formula can be obtained by unravelling the explicit definitions of the variables \underline{z} from
$\exists \underline{z}\left(\operatorname{ExplDef}(\underline{z}, \underline{x}) \wedge \theta_{1}(\underline{x}, \underline{z}) \wedge \theta_{2}(\underline{x}, \underline{z})\right)$, where $\theta_{1}(\underline{x}, \underline{z})$ is the T_{1}-cover of $\exists \underline{e} \psi_{1}(\underline{x}, \underline{z}, \underline{e})$ and $\theta_{2}(\underline{x}, \underline{z})$ is the T_{2}-cover of $\exists \underline{e} \psi_{2}(\underline{x}, \underline{z}, \underline{e})$.

From the Main Lemma, the Proposition and the 'Uls and QE' Theorem:

Theorem

Let T_{1}, T_{2} be convex, stably infinite, equality interpolating, universal theories over disjoint signatures admitting a model completion. Then $T_{1} \cup T_{2}$ admits a model completion too. Uls in $T_{1} \cup T_{2}$ can be effectively computed as shown above.

In [CGG ${ }^{+} 22$], it is also shown that equality interpolating is a necessary condition for obtaining UI transfer: already required for minimal combinations with signatures adding uninterpreted symbols.

Outline

(1) Motivation and Contribution

(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm
(5) The Non-Convex Case: a Counterexample

(6) Conclusions

Non-transfer of Uls in the Non-convex case

Convexity hypothesis cannot be eliminated.

Non-transfer of Uls in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the UI transfer for $T_{1} \cup T_{2}$, where:

- $T_{1}:=$ integer difference logic $\mathcal{I D} \mathcal{L}$ (integer numbers with successor and predecessor, 0 and the strict order $<$): it is not convex, but it satisfies the equality interpolating condition for non-convex theories.
- $T_{2}:=\mathcal{E U \mathcal { F }}\left(\Sigma_{f}\right)$, where Σ_{f} has only one unary free function symbol f (not belonging to the signature of T_{1}).

Non-transfer of Uls in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the UI transfer for $T_{1} \cup T_{2}$, where:

- $T_{1}:=$ integer difference logic $\mathcal{I D} \mathcal{L}$ (integer numbers with successor and predecessor, 0 and the strict order $<$): it is not convex, but it satisfies the equality interpolating condition for non-convex theories.
- $T_{2}:=\mathcal{E U \mathcal { Z }}\left(\Sigma_{f}\right)$, where Σ_{f} has only one unary free function symbol f (not belonging to the signature of T_{1}).

Proposition

Let T_{1}, T_{2} be as above; the formula $\exists e(0<e \wedge e<x \wedge f(e)=0)$ does not have a UI in $T_{1} \cup T_{2}$.

Non-transfer of Uls in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the UI transfer for $T_{1} \cup T_{2}$, where:

- $T_{1}:=$ integer difference logic $\mathcal{I D} \mathcal{L}$ (integer numbers with successor and predecessor, 0 and the strict order $<$): it is not convex, but it satisfies the equality interpolating condition for non-convex theories.
- $T_{2}:=\mathcal{E U \mathcal { Z }}\left(\Sigma_{f}\right)$, where Σ_{f} has only one unary free function symbol f (not belonging to the signature of T_{1}).

Proposition

Let T_{1}, T_{2} be as above; the formula $\exists e(0<e \wedge e<x \wedge f(e)=0)$ does not have a UI in $T_{1} \cup T_{2}$.

The counterexample still applies when replacing integer difference logic with linear integer arithmetics.

Outline

(1) Motivation and Contribution

(2) Formal Preliminaries
(3) Equality Interpolating Condition and Beth Definability

4 The Convex Combined Algorithm
(5) The Non-Convex Case: a Counterexample
(6) Conclusions
\rightarrow
KRDB

Conclusions

- Problem of combined Uls.

Conclusions

- Problem of combined Uls.
- Sufficient and necessary conditions for transferring Uls to combinations in the convex case.

Conclusions

- Problem of combined Uls.
- Sufficient and necessary conditions for transferring Uls to combinations in the convex case.
- General method and algorithm for computing combined Uls for convex theories, based on the use of Beth definability.

Conclusions

- Problem of combined Uls.
- Sufficient and necessary conditions for transferring Uls to combinations in the convex case.
- General method and algorithm for computing combined Uls for convex theories, based on the use of Beth definability.
- Non-transfer of Uls in the non-convex case, in general.

Further Directions

- Investigate UI transfer for 'tame' theory combinations (codomain sorts are shared) [CGG ${ }^{+} 22$];
- UI transfer properties for non-disjoint signatures combinations;

References

R. Bruttomesso, S. Ghilardi, and S. Ranise.

Quantifier-free interpolation in combinations of equality interpolating theories.
ACM Trans. Comput. Log., 15(1):5:1-5:34, 2014.
(R. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin.

Model completeness, covers and superposition.
In Proc. of CADE, volume 11716 of LNCS. Springer, 2019.

D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Combination of uniform interpolants via Beth definability.
J. Autom. Reason., 2022.

曷
S. Gulwani and M. Musuvathi.

Cover algorithms and their combination.
In Proc. of ESOP, Held as Part of ETAPS, pages 193-207, 2008.
R
G. Yorsh and M. Musuvathi.

A combination method for generating interpolants.
In Proc. of CADE-20, LNCS, pages 353-368. 2005.

THANKS FOR YOUR ATTENTION!

Combined Algorithm: an Example

Let T_{1} be $\mathcal{E U} \mathcal{F}(\Sigma)$ and T_{2} be linear real arithmetic.

Combined Algorithm: an Example

Let T_{1} be $\mathcal{E U \mathcal { F }}(\Sigma)$ and T_{2} be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{E U \mathcal { F }}(\Sigma)$ one can apply the superposition-based algorithm from [CGG $\left.{ }^{+} 19\right]$.

Combined Algorithm: an Example

Let T_{1} be $\mathcal{E U \mathcal { F }}(\Sigma)$ and T_{2} be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{E U \mathcal { F }}(\Sigma)$ one can apply the superposition-based algorithm from $\left[\mathrm{CGG}^{+} 19\right]$.
Consider the formula:

$$
\exists e_{1} \cdots \exists e_{4}\left(\begin{array}{l}
e_{1}=f\left(x_{1}\right) \wedge e_{2}=f\left(x_{2}\right) \wedge \\
\wedge f\left(e_{3}\right)=e_{3} \wedge f\left(e_{4}\right)=x_{1} \wedge \\
\wedge x_{1}+e_{1} \leq e_{3} \wedge e_{3} \leq x_{2}+e_{2} \wedge e_{4}=x_{2}+e_{3}
\end{array}\right)
$$

Combined Algorithm: an Example

Let T_{1} be $\mathcal{E U \mathcal { F }}(\Sigma)$ and T_{2} be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination, whereas for $\mathcal{E U \mathcal { F }}(\Sigma)$ one can apply the superposition-based algorithm from [CGG $\left.{ }^{+} 19\right]$.
Consider the formula:

$$
\exists e_{1} \cdots \exists e_{4}\left(\begin{array}{l}
e_{1}=f\left(x_{1}\right) \wedge e_{2}=f\left(x_{2}\right) \wedge \\
\wedge f\left(e_{3}\right)=e_{3} \wedge f\left(e_{4}\right)=x_{1} \wedge \\
\wedge x_{1}+e_{1} \leq e_{3} \wedge e_{3} \leq x_{2}+e_{2} \wedge e_{4}=x_{2}+e_{3}
\end{array}\right)
$$

Applying exhaustively Step (1) and Step (2.i), we get:

$$
\begin{aligned}
& {\left[x_{2}=0 \wedge f\left(x_{1}\right)=x_{1} \wedge x_{1} \leq 0 \wedge x_{1} \leq f(0)\right] \vee} \\
& \vee\left[x_{1}+f\left(x_{1}\right)<x_{2}+f\left(x_{2}\right) \wedge x_{2} \neq 0\right] \vee
\end{aligned}
$$

$\overbrace{\text { KRDB }}^{\mathbb{N}^{\prime}} \vee\left[\begin{array}{c}x_{2} \neq 0 \wedge x_{1}+f\left(x_{1}\right)=x_{2}+f\left(x_{2}\right) \wedge f\left(2 x_{2}+f\left(x_{2}\right)\right)=x_{1} \wedge \\ \wedge f\left(x_{1}+f\left(x_{1}\right)\right)=x_{1}+f\left(x_{1}\right)\end{array}\right]$

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

- a read-only database (DB);

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems

Artifact-Centric Systems: process-centric paradigm + data (artifact $=$ lifecycle + information model).
They can be formalized using three components:

- a read-only database (DB);
- an artifact working memory (e.g., artifact variables + artifact relations);
- actions (also called services).

Artifact-Centric Systems \Longrightarrow Array-based Systems \Longrightarrow SMT-based tool Model Checker Modulo Theories (MCMT)

DB schemas

DB schemas: read-only DB of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

DB schemas

DB schemas: read-only DB of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T), where:

- Σ is a $D B$ signature, that is, a finite multi-sorted signature with equality, unary functions, n-ary relations and constants;
- T is a $D B$ theory, that is, a set of universal Σ-sentences.

DB schemas

DB schemas: read-only DB of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T), where:

- Σ is a $D B$ signature, that is, a finite multi-sorted signature with equality, unary functions, n-ary relations and constants;
- T is a $D B$ theory, that is, a set of universal Σ-sentences.

In a basic $D B$ schema, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts.

DB schemas

DB schemas: read-only DB of Artifact-Centric Systems, incorporating primary keys and foreign keys dependencies

Definition

A DB schema is a pair (Σ, T), where:

- Σ is a $D B$ signature, that is, a finite multi-sorted signature with equality, unary functions, n-ary relations and constants;
- T is a $D B$ theory, that is, a set of universal Σ-sentences.

In a basic $D B$ schema, T is empty. $G(\Sigma)$: characteristic graph capturing the dependencies induced by functions over sorts.

Example:

Array-based Artifact-Centric Systems: a simplified version A SAS (Simple Artifact Systems) is a tuple
$\mathcal{S}=\left\langle\Sigma, T, \underline{x}, \iota(\underline{x}), \tau\left(\underline{x}, \underline{x}^{\prime}\right)\right\rangle$, where:

- (Σ, T) is a DB schema;
- \underline{x} are individual FO variables representing the current state;
- ι is a Σ-formula representing the initialization;
- $\tau\left(\underline{x}, \underline{x}^{\prime}\right)$ is a Σ-formula representing the transitions from the current state \underline{x} to the new state \underline{x}^{\prime}.

Array-based Artifact-Centric Systems: a simplified version

 A SAS (Simple Artifact Systems) is a tuple$\mathcal{S}=\left\langle\Sigma, T, \underline{x}, \iota(\underline{x}), \tau\left(\underline{x}, \underline{x}^{\prime}\right)\right\rangle$, where:

- (Σ, T) is a DB schema;
- \underline{x} are individual FO variables representing the current state;
- ι is a Σ-formula representing the initialization;
- $\tau\left(\underline{x}, \underline{x}^{\prime}\right)$ is a Σ-formula representing the transitions from the current state \underline{x} to the new state \underline{x}^{\prime}.

Individual variables \underline{x}

Array-based Artifact-Centric Systems: a simplified version

 A SAS (Simple Artifact Systems) is a tuple $\mathcal{S}=\left\langle\Sigma, T, \underline{x}, \iota(\underline{x}), \tau\left(\underline{x}, \underline{x}^{\prime}\right)\right\rangle$, where:- (Σ, T) is a DB schema;
- \underline{x} are individual FO variables representing the current state;
- ι is a Σ-formula representing the initialization;
- $\tau\left(\underline{x}, \underline{x}^{\prime}\right)$ is a Σ-formula representing the transitions from the current state \underline{x} to the new state \underline{x}^{\prime}.

Individual variables \underline{x}

Individual variables change their value over the time, according to the transitions formula!

A simple example

Job Hiring Process:

$$
\iota:=(\text { Applicant }=\text { undef } \wedge \text { JobPos }=\text { undef })
$$

$\tau:=\exists$ UserID, JobID $\binom{$ UserID \neq undef \wedge JobID \neq undef \wedge Applicant $=$ undef $\wedge}{$ JobPos $=$ undef \wedge Applicant }

A simple example

Job Hiring Process:

$$
\iota:=(\text { Applicant }=\text { undef } \wedge \text { JobPos }=\text { undef })
$$

$\tau:=\exists$ UserID, JobID $\binom{$ UserID \neq undef \wedge JobID \neq undef \wedge Applicant $=$ undef $\wedge}{$ JobPos $=$ undef \wedge Applicant }

A simple example

Job Hiring Process:

$$
\iota:=(\text { Applicant }=\text { undef } \wedge \text { JobPos }=\text { undef })
$$

$\tau:=\exists$ UserID, JobID $\binom{$ UserID \neq undef \wedge JobID \neq undef \wedge Applicant $=$ undef $\wedge}{$ JobPos $=$ undef \wedge Applicant }

Verification of safety in a SAS \mathcal{S}

A safety formula for \mathcal{S} : generic quantifier-free formula $v(\underline{x}) \Longrightarrow$ undesired states of \mathcal{S}.

Verification of safety in a SAS \mathcal{S}

A safety formula for \mathcal{S} : generic quantifier-free formula $v(\underline{x}) \Longrightarrow$ undesired states of \mathcal{S}.
\mathcal{S} is safe wrt v iff in no model \mathcal{M} of (Σ, T), for no $k \geq 0$ and for no assignment in \mathcal{M} to $\underline{x}^{0}, \ldots, \underline{x}^{k}(1)$ is true $\left(\underline{x}^{i}\right.$ are renamed copies of $\left.\underline{x}\right)$:

$$
\begin{equation*}
\iota\left(\underline{x}^{0}\right) \wedge \tau\left(\underline{x}^{0}, \underline{x}^{1}\right) \wedge \cdots \wedge \tau\left(\underline{x}^{k-1}, \underline{x}^{k}\right) \wedge v\left(\underline{x}^{k}\right) \tag{1}
\end{equation*}
$$

Verification of safety in a SAS \mathcal{S}

A safety formula for \mathcal{S} : generic quantifier-free formula $v(\underline{x}) \Longrightarrow$ undesired states of \mathcal{S}.
\mathcal{S} is safe wrt v iff in no model \mathcal{M} of (Σ, T), for no $k \geq 0$ and for no assignment in \mathcal{M} to $\underline{x}^{0}, \ldots, \underline{x}^{k}(1)$ is true $\left(\underline{x}^{i}\right.$ are renamed copies of $\left.\underline{x}\right)$:

$$
\begin{equation*}
\iota\left(\underline{x}^{0}\right) \wedge \tau\left(\underline{x}^{0}, \underline{x}^{1}\right) \wedge \cdots \wedge \tau\left(\underline{x}^{k-1}, \underline{x}^{k}\right) \wedge v\left(\underline{x}^{k}\right) \tag{1}
\end{equation*}
$$

Safety problem for \mathcal{S} : given v, decide if \mathcal{S} is safe wrt v.

Verification of safety in a SAS \mathcal{S}

A safety formula for \mathcal{S} : generic quantifier-free formula $v(\underline{x}) \Longrightarrow$ undesired states of \mathcal{S}.
\mathcal{S} is safe wrt v iff in no model \mathcal{M} of (Σ, T), for no $k \geq 0$ and for no assignment in \mathcal{M} to $\underline{x}^{0}, \ldots, \underline{x}^{k}(1)$ is true $\left(\underline{x}^{i}\right.$ are renamed copies of $\left.\underline{x}\right)$:

$$
\begin{equation*}
\iota\left(\underline{x}^{0}\right) \wedge \tau\left(\underline{x}^{0}, \underline{x}^{1}\right) \wedge \cdots \wedge \tau\left(\underline{x}^{k-1}, \underline{x}^{k}\right) \wedge v\left(\underline{x}^{k}\right) \tag{1}
\end{equation*}
$$

Safety problem for \mathcal{S} : given v, decide if \mathcal{S} is safe wrt v.

Theorem (Soundness and Completeness)

Backward search is effective, correct and complete (the last one w.r.t. detecting unsafety) for the safety problems for SASs. If $G(\Sigma)$ is acyclic, backward search always terminates and it is a full decision procedure.

