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Torsion theories and coverings of preordered groups

The category PreOrdGrp

Preordered group

Definition

A preordered group (G ,≤) is a group (G ,+, 0) endowed with a
preorder relation ≤ on G which is compatible with +:

a ≤ c and b ≤ d ⇒ a + b ≤ c + d for a, b, c , d ∈ G .

Example

The group Z of integers with the usual order ≤: (Z,≤)
(Z,≤) is a partially ordered group.
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The category PreOrdGrp

Morphism of preordered groups

Definition

A morphism of preordered groups f : (G ,≤G )→ (H,≤H) is a
group morphism f : G → H which preserves the preorder:

a ≤G b ⇒ f (a) ≤H f (b).

All preordered groups and morphisms between them define a category
denoted by PreOrdGrp.
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The category PreOrdGrp

Alternative definition of PreOrdGrp

Proposition

The category PreOrdGrp is isomorphic to the following category:

objects: PG G with PG submonoid closed under
conjugation in G (PG = positive cone of G )
Notation: (G ,PG )

arrows: pairs (f , f̄ ) : (G ,PG )→ (H,PH) making the following
square commute:

PG PH

G H

f̄

f
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The category PreOrdGrp

Some interesting full subcategories

ParOrdGrp: objects are preordered groups (G ,≤) where ≤ is
antisymmetric.

Equivalently: PG G where PG is a reduced monoid.

Grp(PreOrd): objects are preordered groups (G ,≤) where ≤
is symmetric.
Equivalently: PG G where PG is a group.

Grp: objects are preordered groups (G ,≤) where ≤ is the
indiscrete relation.
Equivalently: G G .
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The category PreOrdGrp

Kernels, cokernels and short exact sequences

Proposition [M.M. Clementino, N. Martins-Ferreira, A. Montoli
(2019)]

Consider, in PreOrdGrp, a pair of composable arrows as in the
following diagram:

PA PB PC

(P)

A B C .

k̄ f̄

k f

Then:
(k , k̄) = ker(f , f̄ ) if and only if k = ker(f ) in Grp and (P) is a
pullback in Mon.
Equivalently: k = ker(f ) in Grp and k̄ = ker(f̄ ) in Mon;
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The category PreOrdGrp

Kernels, cokernels and short exact sequences

Proposition (second part)

PA PB PC

(P)

A B C

k̄ f̄

k f

(1)

(f , f̄ ) = coker(k, k̄) if and only if f = coker(k) in Grp and f̄ is
surjective;

(1) is a short exact sequence in PreOrdGrp if and only if

A B Ck f is a short exact sequence in Grp, (P)
is a pullback in Mon and f̄ is surjective.
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The category PreOrdGrp

Two properties

Proposition [M.M. Clementino, N. Martins-Ferreira, A. Montoli
(2019)]

In PreOrdGrp, effective descent morphism = regular
epimorphism = normal epimorphism.

The category PreOrdGrp is a normal category.

Reminder

A category C is normal [Z. Janelidze (2010)] when
it has a zero object 0;
it is regular;
any regular epimorphism is a normal epimorphism.
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A torsion theory in PreOrdGrp

Proposition

The pair of full (replete) subcategories (Grp,ParOrdGrp) of
PreOrdGrp is a torsion theory in the normal category PreOrdGrp.
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A torsion theory in PreOrdGrp

Proposition

The pair of full (replete) subcategories (Grp,ParOrdGrp) of
PreOrdGrp is a torsion theory in the normal category PreOrdGrp.

Reminder

A torsion theory in a normal category C is given by a pair
(T ,F ) of full (replete) subcategories of C such that

1 the only arrow from any T ∈ T to any F ∈ F is the zero
arrow;

2 for any object C ∈ C there exists a short exact sequence

0 T C F 0
εC ηC

with T ∈ T and F ∈ F .
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A torsion theory in PreOrdGrp

A torsion theory in PreOrdGrp: proof

Sketch of the proof

Let (G ,PG ) ∈ PreOrdGrp and define

NG = {n ∈ G | n ∈ PG and − n ∈ PG}.

NG is a normal subgroup of G so that the sequence

NG G G/NG
kG ηG

is a short exact sequence in Grp.
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A torsion theory in PreOrdGrp: proof

Sketch of the proof

NG PG ηG (PG )

NG G G/NG

k̄G η̄G

kG ηG

By construction this sequence is a short exact sequence in
PreOrdGrp.
It remains to prove:

(NG ,NG ) ∈ Grp;
(G/NG , ηG (PG )) ∈ ParOrdGrp.
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A torsion theory in PreOrdGrp

Consequence of the torsion theory

Reminder

Any torsion theory (T ,F ) in a normal category C induces two
functors:

F : C → F is a (normal epi)-reflector;
T : C → T is a (normal mono)-coreflector.
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A torsion theory in PreOrdGrp

Consequence of the torsion theory

Corollary

The category ParOrdGrp is reflective in PreOrdGrp

PreOrdGrp ⊥ ParOrdGrp
F

U

and each component of the unit η of the adjunction is a normal
epimorphism.

If X denotes the class of all morphisms in PreOrdGrp, then

Γ = (PreOrdGrp,ParOrdGrp,F ,U,X )

forms a Galois structure.
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Coverings in PreOrdGrp

Semi-left-exact reflector

Reminder [C. Cassidy, M. Hébert, G.M. Kelly (1985)]

A reflector F : C → F is said to be semi-left-exact when it
preserves all pullbacks of the form

P U(C )

B UF (B)

U(f )

ηB

where ηB : B → UF (B) is the B-component of the unit of the
reflection F a U and f : C → F (B) is in the subcategory F .
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Coverings in PreOrdGrp

Semi-left-exact reflector

Proposition

The reflector F : PreOrdGrp→ ParOrdGrp in the adjunction

PreOrdGrp ⊥ ParOrdGrp
F

U

is semi-left-exact.
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Coverings in PreOrdGrp

Link with the admissibility

Reminder [G. Janelidze (1990)]

Let Γ = (C ,F ,F ,U,X ) be a Galois structure (where F a U is a
full reflection).
Then F : C → F is semi-left-exact if and only if Γ is admissible
in the sense of categorical Galois theory.
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Coverings in PreOrdGrp

Induced factorization system
Reminder [C. Cassidy, M. Hébert, G.M. Kelly (1985)]

If a category C has a full reflective subcategory F

C ⊥ F
F

U

such that the reflector F is semi-left-exact, we then naturally get
a factorization system (E ,M ) defined as follows:

E = {f ∈ C | F (f ) is an isomorphism};
M = {f ∈ C | the square below is a pullback}:

A UF (A)

B UF (B)

f

ηA

UF (f )

ηB

In this context M is the class of trivial coverings.
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Coverings in PreOrdGrp

Consequences

Corollary

The Galois structure Γ = (PreOrdGrp,ParOrdGrp,F ,U,X ) is
admissible.
We naturally get a factorization system (E ,M ).
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Coverings in PreOrdGrp

The classes E ′ and M ∗

Given the above mentioned semi-left-exact reflection and the in-
duced factorization system (E ,M ), we now consider the following
two classes of morphisms in C :

E ′ = {f ∈ C | g∗(f ) ∈ E ∀g ∈ C }
M ∗ = {f ∈ C | ∃ an effective descent morphism p ∈ C

such that p∗(f ) ∈M }

In this context M ∗ is the class of coverings.

Reminder [A. Carboni, G. Janelidze, G.M. Kelly, R. Paré (1997)]

A factorization system is said to be monotone-light when it is of
the form (E ′,M ∗) for some factorization system (E ,M ).
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Coverings in PreOrdGrp

Characterization of E ′ and M ∗ in PreOrdGrp

Theorem

In PreOrdGrp, the pair (E ′,M ∗) is a monotone-light factorization
system, and

E ′ = {normal epis (f , f̄ ) ∈ PreOrdGrp | Ker(f , f̄ ) ∈ Grp}
M ∗ = {(f , f̄ ) ∈ PreOrdGrp | Ker(f , f̄ ) ∈ ParOrdGrp}.
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Coverings in PreOrdGrp

Characterization of E ′ and M ∗ in PreOrdGrp: proof

Proof

Proof of 2 Propositions (Condition (N) + Condition (C))
+ application of 1 Theorem [T. Everaert, M. Gran (2013)]
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Coverings in PreOrdGrp

Theorem

Theorem [T. Everaert, M. Gran (2013)]

Let (T ,F ) be a torsion theory in a normal category C and
(E ,M ) the factorization system associated with the
(semi-left-exact) reflector F : C → F .

Assume that the following two conditions hold:
(N) for any normal monomorphism k : K → A, the monomorphism

k · εK : T (K )→ A is normal, where εK : T (K )→ K is the
K -component of the counit ε of the coreflection T : C → T ;

(C) for any object C in C there is an effective descent morphism
p : X → C with X ∈ F .

Then (E ′,M ∗) is a monotone-light factorization system, and
E ′ = {f ∈ C | f is a normal epimorphism, and Ker(f ) ∈ T };
M ∗ = {f ∈ C | Ker(f ) ∈ F}.
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(C) for any object C in C there is an effective descent morphism
p : X → C with X ∈ F .

Then (E ′,M ∗) is a monotone-light factorization system, and
E ′ = {f ∈ C | f is a normal epimorphism, and Ker(f ) ∈ T };
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Theorem

In PreOrdGrp, the pair (E ′,M ∗) is a monotone-light factorization
system, and

E ′ = {normal epis (f , f̄ ) ∈ PreOrdGrp | Ker(f , f̄ ) ∈ Grp}
M ∗ = {(f , f̄ ) ∈ PreOrdGrp | Ker(f , f̄ ) ∈ ParOrdGrp}.

Corollary

The coverings with respect to the adjunction

PreOrdGrp ⊥ ParOrdGrp
F

U

are the morphisms (f , f̄ ) : (G ,PG )→ (H,PH) in PreOrdGrp such
that Ker(f , f̄ ) ∈ ParOrdGrp.
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Final remarks

Besides the torsion theory mentioned above there is also in
PreOrdGrp a pretorsion theory (in the sense of A. Facchini
and C. Finocchiaro) given by the pair

(Grp(PreOrd),ParOrdGrp).

The coverings described above can be classified in terms of
internal actions of a Galois groupoid.

The results presented in the setting of preordered groups can
be generalized to V-groups for V a suitable quantale (e.g.
Lawvere metric groups, Lawvere ultrametric groups,
probabilistic metric groups, etc.).
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