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Clones

‚ A clone is a set of finitary operations on a set A containing all projections
and closed under (many-sorted) composition

‚ Universal algebra: The set of all term operations of an algebra always
forms a clone and in fact every clone is of this form.

‚ First-order structures: The polymorphism clone of a first-order structure
A, consisting of all finitary functions f : An Ñ A which preserve the
structure, carries information about the structure that induces it.

‚ Theoretical computer science: Many computational problems can be
phrased as constraint satisfaction problems (CSPs).

– CSPpAq = the computational problem of deciding whether a conjunc-
tion of atomic formulas is satisfiable in a structure A.

– Jeavons has shown that, for a finite structure A, the complexity of
CSPpAq is completely determined by the polymorphism clone of A.



Clones into algebras

‚ Clones are many-sorted algebras: if f : An Ñ A and gi : Ak Ñ A, then
fpg1, . . . , gnq : Ak Ñ A is defined as follows:

fpg1, . . . , gnqpa1, . . . , akq “ fpg1pa1, . . . , akq, . . . , gnpa1, . . . , akqq.

‚ Abstract Clones equationally axiomatise clones as many-sorted algebras
through a family of many-sorted composition operators Cn

k :

Cn
k pf, g1, . . . , gnq “ fpg1, . . . , gnq

and projections πnk (1 ď k ď n). Every abstract clone is isomorphic to a
clone of finitary operations.

‚ We formalise clones as one-sorted algebras.



Clone algebras

‚ We give the same domain to all finitary operations

‚ A finitary operation f : An Ñ A becomes an infinitary operation fJ : Aω Ñ A
(called the top extension of f)

fJpsq “ fps1, . . . , snq, for every s P Aω

‚ The composition becomes an operator qn of arity n` 1 (for every n ě 0):

qA
ω

n pϕ,ψ1, . . . , ψnqpsq “ ϕpψ1psq, . . . , ψnpsq, sn`1, . . . q, for every s P Aω

for arbitrary ϕ,ψi : Aω Ñ A

‚ qA
ω

n pf
J, gJ1 , . . . , g

J
nqpsq “ fpg1, . . . , gnqps1, . . . , skq



The definition of clone algebras

Definition 1 A clone algebra of type τ (CAτ) is an algebra C “ pC, qCn, eCi , σCqně0,iě1,σPτ
satisfying the following conditions:

(C0) σC P C for every operator σ P τ ;

(C1) qnpei, x1, . . . , xnq “ xi p1 ď i ď nq;

(C2) qnpej, x1, . . . , xnq “ ej pj ą nq;

(C3) qnpx, e1, . . . , enq “ x pn ě 0q;

(C4) qnpx, y1, . . . , ynq “ qkpx, y1, . . . , yn, en`1, . . . , ekq (k ą n);

(C5) qnpqnpx, y1, . . . , ynq, z1, . . . , znq “ qnpx, qnpy1, z1, . . . , znq, . . . , qnpyn, z1, . . . , znqq.

‚ If C is a clone, then the set CJ “ tfJ : Aω Ñ A | f P Cu of all its top
extensions determines a clone algebra, called the top extension of C

‚ A free algebra over countable generators v1, . . . , vn, . . . is a clone algebra:

– ei “ vi

– qnpa, b1, . . . , bnq “ Epaq, where E is the unique endomorphism of the
free algebra mapping vi into bi (i “ 1, . . . , n)

– σC is the equivalence class of the term σpv1, . . . , vnq.



Functional clone algebras

‚ The most natural CAs are algebras of functions called functional clone
algebras (FCA).

‚ A FCAτ F with value domain A is determined by a set F of infinitary
operations f : Aω Ñ A, containing the projections, the basic infinitary
operations σF (σ P τ) and closed under the finitary composition qn (s P Aω):

– eA
ω

i psq “ si

– qA
ω

n pϕ,ψ1, . . . , ψnqpsq “ ϕpψ1psq, . . . , ψnpsq, sn`1, sn`2, . . . q

‚ Theorem: Clones ðñ Finite-dimensional clone algebras.

‚ Representation Theorem: CAτ “ I FCAτ . (Difficult proof)

‚ A solution to the lattice of equational theories problem by Birkhoff and
Maltsev (see also Newrly 1993 and Nurakunov 2008):

Theorem: A lattice L is isomorphic to a lattice of equational theories iff
L is isomorphic to the congruence lattice ConpCq of a finite-dimensional
clone algebra C.



Another representation of clone algebras

‚ Let C “ pC, qCn, eCi , σCq be a clone τ-algebra and let εC “ peC1, . . . , e
C
n, . . . q. We

define

rεCsω “ ts P C
ω : |ti : si ‰ eCi u| ă ωu.

‚ C is isomorphic to a clone algebra of functions ϕa : rεCsω Ñ C (a P C),
where

ϕapsq “ qCnpa, s1, . . . , snq, if s “ εCrs1, . . . , sns P rε
Csω.



Traces and revisiting FCAs

‚ Let A be a set. We define an equivalence relation ”ω on the set Aω:

r ”ω s iff |ti : ri ‰ siu| ă ω

rrsω is the equivalence class of r P Aω.

‚ A trace a on A a nonempty subset of Aω closed under ”ω.

‚ A t-operation is a function ϕ : aÑ A, whose domain is a trace a on A.

‚ A FCA with value domain A and trace a on A is a clone algebra of
t-operations from a into A



Universal clone algebra I

‚ The most part of clone algebras are not finite-dimensional (e.g. the FCA
of all infinitary operations).

‚ What are the algebraic structures that correspond to clone algebras in
full generality?

»

–

FinDimCA Clone Algebras
Algebras ?
Clones ?

fi

fl

‚ Algebras and clones are to Universal Algebra what
t-algebras and clone algebras are to Universal Clone Algebra.



Universal Clone Algebra II

‚ A t-algebra of type τ and trace a is a tuple A “ pA, a, σAqσPτ , where
σA : aÑ A is a t-operation for every σ P τ .

‚
»

–

FinDimCA Clone Algebras
Algebras t-Algebras
Clones FCAs

fi

fl

‚ We have two algebraic levels.
The lower degree of t-algebras and the higher degree of clone algebras.

‚ We move between these levels either individually or collectively.



Clone Algebras of Terms

‚ Let τ be a set of operator symbols. The set Tτ of the τ-terms is built up
by induction as follows:

1. e1, . . . , en, . . . are terms;

2. If t1, . . . , tn are terms and σ P τ , then σpt1, . . . , tn, en`1, en`2, . . . q is a
term, for every n ě 0.

‚ The clone τ-algebra of τ-terms Tτ “ pTτ , qTn , eTi , σT qσPτ is initial in the class
of clone τ-algebras.



Up from t-algebras to CAs

‚ The term clone τ-algebra AÒ over a t-algebra A “ pA, a, σAqσPτ is the
minimal FCA of trace a containing all the t-operations σA of A.

‚ For every s P a,

tApsq “

"

si if t ” ei
σAptA1 psq, . . . , t

A
n psq, sn`1, . . . q if t ” σpt1, . . . , tn, en`1, . . . q



Down from CAs to t-algebras

‚ Let C “ pC, qCn, eCi , σCq be a clone τ-algebra

‚ The t-algebra CÓ “ pC, rεCsω, σCÓ

qσPτ under a clone τ-algebra C is defined as
follows: σCÓ

: rεCsω Ñ C and

σCÓ

psq “ qCnpσ
C, s1, . . . , snq if s “ εCrs1, . . . , sns P rε

Csω

‚ If C is generated by the constants ei (i P ω) and σC (σ P τ) then CŒ “ C



t-Varieties and Et-varieties

‚ Let A “ pA, a, σAq be a t-algebra. The subalgebra As “ pAs, as, σAsq of A
generated by s P a is defined as follows:

– As “ ttApsq : t P Tτu and as “ rssAs
ω .

– σAs “ pσAq|as

‚ A class K of t-algebras of type τ

– is closed under expansion (K “ EtK) if p@s P a. As P Kq ñ A P K.

– is closed under full expansion (K “ FtK) if

pFor every minimal trace b Ď a. Aæb P Kq ñ A P K.

‚ A class K of t-algebras of type τ

– is a t-variety if it is closed under Ht, St and Pt.

– is an Ft-variety if it is a t-variety closed under Ft.

– is an Et-variety if it is a t-variety closed under Et.



Down of a class of clone algebras

‚ Let H be a class of CAτs.

– Hİ “ tA : there exists a FCAτ with value domain A belonging to Hu.

– HO “ tA : there exists a PFCAτ with value domain A belonging to Hu

We have HO Ď Hİ.

Theorem: If H is a variety of CAτs, then

‚ Hİ is an Et-variety of t-algebras.

‚ HO is a Ft-variety of t-algebras.



Up of a class of t-algebras

‚ K is a class of t-algebras of type τ .

‚ KM “ I tF : F is a FCAτ with value domain A P Ku

‚ Theorem If K is a t-variety, then KM is a variety of clone τ-algebras.



Generalised Birkhoff

Theorem (Birkhoff’s Theorem 1 for t-algebras) Let K be a class of t-algebras
of type τ . Then the following conditions are equivalent:

1. K is an Et-variety.

2. K “ ModpThKq.

3. KM is a variety of CAτs and K “ KMİ.

Theorem (Birkhoff’s Theorem 2 for t-algebras) Let K be a class of t-algebras
of type τ . Then the following conditions are equivalent:

(i) K is an Ft-variety.

(ii) K “ ModpThK,Xq for an infinite set X.

(iii) KM is a variety of clone τ-algebras and K “ KMO.



Classical Birkhoff for Algebras

Theorem (HSP Birkhoff)

‚ Let ρ “ pρn : n ě 0q be a finitary type and G be a class of ρ-algebras.

‚ Let ρ‹ “
Ť

ně0 ρn be the set of operator symbols (without arity).

‚ Let G‹ be the class of t-algebras of type ρ‹ obtained by gluing together
algebras in G.

Then the following conditions are equivalent:

(i) G is a variety of ρ-algebras

(ii) G is an equational class of ρ-algebras

(iii) G‹ is an Et-variety of t-algebras

(iv) pG‹qM is a variety of clone ρ‹-algebras and G‹ “ pG‹qMİ

(v) G‹ is an Ft-variety of t-algebras

(vi) pG‹qM is a variety of clone ρ‹-algebras and G‹ “ pG‹qMO;

(vii) G‹ is a t-variety of t-algebras.


