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Clones

A clone is a set of finitary operations on a set A containing all projections
and closed under (many-sorted) composition

Universal algebra: The set of all term operations of an algebra always
forms a clone and in fact every clone is of this form.

First-order structures: The polymorphism clone of a first-order structure
A, consisting of all finitary functions f : A™ — A which preserve the
structure, carries information about the structure that induces it.

T heoretical computer science: Many computational problems can be
phrased as constraint satisfaction problems (CSPs).

— CSP(A) = the computational problem of deciding whether a conjunc-
tion of atomic formulas is satisfiable in a structure A.

— Jeavons has shown that, for a finite structure A, the complexity of
CSP(A) is completely determined by the polymorphism clone of A.



Clones into algebras

e Clones are many-sorted algebras: if f : A - A and g; : AF — A, then
f(g1,...,9n) : A¥ — A is defined as follows:

f(gl,---,gn)(al,---,ak;) - f(g]-(al?"'7a'k)7"'7gn(a'17"'7a’k))'

e Abstract Clones equationally axiomatise clones as many-sorted algebras
through a family of many-sorted composition operators C}:

Cr(fsg1,---59n) = flg1,---, 9n)

and projections 77 (1 <k <n). Every abstract clone is isomorphic to a
clone of finitary operations.

e We formalise clones as one-sorted algebras.



Clone algebras

We give the same domain to all finitary operations

A finitary operation f : A® — A becomes an infinitary operation f' : A¥ — A
(called the top extension of f)

fT(S) = f(81, .. .,sn), for every s e AY

The composition becomes an operator g, of arity n + 1 (for every n > 0):

(o, 01, . 0n)(8) = @(¥1(s), ..., (), Sni1,...), for every se A®
for arbitrary ¢,v; : AY - A

¢ (f1, 91, 92)(s) = (g1, gn) (51, -, 5k)



T he definition of clone algebras

Definition 1 A clone algebra of type T (CA;) is an algebra C = (C, ¢5, €, 0¢)n=0,i>1.0er
satisfying the following conditions:

(CO)
(C1)
(C2)
(C3)
(C4)
(C5)

o€ e C for every operator o € t;

(
qn(€j, T1,...,xn) =€ (j > n);
qn(z,e1,...,en) =x (n = 0);
(T, Y1, Yn) = qe(T, Y1, -+ -, Yn, €ntl,--- ) (K >n);
O (qn(Z, Y1y Yn)s 215+ -+, 2n) = (T, (Y1, 21, -+ -3 2n)y - - o s Gn(Yn, 21, - - - Zn)) -

If C is a clone, then the set C' = {f' : A¥ - A | f e C} of all its top
extensions determines a clone algebra, called the top extension of C

A free algebra over countable generators vi,...,v,,... IS @ clone algebra:

- & =1

— qn(a,b1,...,bp) = E(a), where E is the unique endomorphism of the
free algebra mapping v; into b; (i=1,...,n)

— oC is the equivalence class of the term o(v1,...,vn).



Functional clone algebras

The most natural CAs are algebras of functions called functional clone
algebras (FCA).

A FCA, F with value domain A is determined by a set F of infinitary
operations f . AY — A, containing the projections, the basic infinitary
operations o7 (o € 7) and closed under the finitary composition ¢, (s € A¥):

— ef'(s) = si
— Q;’?w(spa ¢1> SR 7¢n)(3> - ¢(¢1<S)7 e 7¢n<8)7 Sn+1y Sn+2, .. )

Theorem: Clones < Finite-dimensional clone algebras.
Representation Theorem: CA. =1 FCA,. (Difficult proof)
A solution to the lattice of equational theories problem by Birkhoff and

Maltsev (see also Newrly 1993 and Nurakunov 2008):

Theorem: A lattice L is isomorphic to a lattice of equational theories iff
L is isomorphic to the congruence lattice Con(C) of a finite-dimensional
clone algebra C.



Another representation of clone algebras

e Let C=(C,q5, €5, 0% be a clone T-algebra and let € = (ef,...,¢e5,...). We
define
[€€lo = {s€ C¥: |{i: si # )| < w).

e C is isomorphic to a clone algebra of functions ¢, : [e]. — C (a € C),
where
_C £ o _ C c
va(s) = q;(a,s1,...,8n), ifs=¢€"[s1,...,8n]€[€]w.



Traces and revisiting FCAs

Let A be a set. We define an equivalence relation =, on the set A¥:
r=ys iff [{i:7r; # s} <w

|7]. is the equivalence class of r e A¥,
A trace a on A a nonempty subset of A“ closed under =,,.
A t-operation is a function ¢ :a — A, whose domain is a trace a on A.

A FCA with value domain A and trace a on A is a clone algebra of
t-operations from a into A



Universal clone algebra I

e The most part of clone algebras are not finite-dimensional (e.g. the FCA
of all infinitary operations).

e \What are the algebraic structures that correspond to clone algebras in
full generality?

FinDim CA Clone Algebras
Algebras ?
Clones ?

e Algebras and clones are to Universal Algebra what
t-algebras and clone algebras are to Universal Clone Algebra.



Universal Clone Algebra 11

A t-algebra of type 7 and trace a is a tuple A = (A,a,0%),er, Where
oA :a— A is a t-operation for every o € .

FinDim CA Clone Algebras
Algebras t-Algebras
Clones FCAs

We have two algebraic levels.
The lower degree of t-algebras and the higher degree of clone algebras.

We move between these levels either individually or collectively.



Clone Algebras of Terms

e Let 7 be a set of operator symbols. The set T, of the r7-terms is built up
by induction as follows:

l. e1,...,en,... are terms;
2. If t1,...,t, are terms and o € 7, then o(t1,...,tn,€n+1,€n42,...) iS a
term, for every n > 0.

e The clone 7-algebra of r-terms 7; = (T+,q, ,e] , 07 )oer is initial in the class
of clone r-algebras.



Up from t-algebras to CAs

e The term clone r-algebra A' over a t-algebra A = (A, a, %), is the
minimal FCA of trace a containing all the t-operations o® of A.

e FoOr every s e€ a,

tA(S>— S; iftEei
oA (t2(s), ..., t2(s), snt1,--.) ift=o(t1,. .., th,ent1,...)



Down from CAs to t-algebras

e Let C=(C,q5, €, 0% be a clone t-algebra

e The t-algebra C! = (C, [°]., 0 )ser under a clone T-algebra C is defined as
follows: ¢ : [¢¢], — C and

% (s) = ¢€(c%, s1,...,8n) if s = [s1,...,5n] € [“]n

e If C is generated by the constants e; (i € w) and o€ (o e€7) then CY1 =C



t-Varieties and Et-varieties

e Let A =(A,a,0%) be a t-algebra. The subalgebra A; = (As,as, o) of A
generated by s € a is defined as follows:

— Ay = {tA(s)  te T} and a, = [s]A.

A

— ot = (o

2

e A class K of t-algebras of type 7
— is closed under expansion (K = E.K) if (Vsea. A;e K) = A€ K.
— is closed under full expansion (K = F.K) if

(For every minimal trace bca. Aj,e K) = Ae K.

e A class K of t-algebras of type 7
— is a t-variety if it is closed under H;, S; and Ps.
— is an Ft-variety if it is a t-variety closed under [F;.

— is an Et-variety if it is a t-variety closed under E;.



Down of a class of clone algebras

e Let H be a class of CA;s.
— HY = {A : there exists a FCA; with value domain A belonging to H}.
— HY = {A : there exists a PFCA; with value domain A belonging to H}
We have HY < HY.
Theorem: If H is a variety of CA;s, then

e HY is an Et-variety of t-algebras.

e HV is a Ft-variety of t-algebras.



Up of a class of t-algebras

e K is a class of t-algebras of type 7.
e K4 =1{F: Fis a FCA; with value domain A € K}

e Theorem If K is a t-variety, then K* is a variety of clone r-algebras.



Generalised Birkhoff

Theorem (Birkhoff's Theorem 1 for t-algebras) Let K be a class of t-algebras
of type 7. Then the following conditions are equivalent:

1. K is an Et-variety.
2. K =Mod(Thg).
3. K% is a variety of CA;s and K = K2V.

Theorem (Birkhoff's Theorem 2 for t-algebras) Let K be a class of t-algebras
of type 7. Then the following conditions are equivalent:

(i) K is an Ft-variety.
(i) K = Mod(Thg x) for an infinite set X.

(iii) K* is a variety of clone r-algebras and K = K2V,



Classical Birkhoff for Algebras
Theorem (HSP Birkhoff)
e Let p=(p,:n > 0) be a finitary type and G be a class of p-algebras.
o Let p* =[J,.opn be the set of operator symbols (without arity).

e Let G* be the class of t-algebras of type p* obtained by gluing together
algebras in G.

Then the following conditions are equivalent:
(i) G is a variety of p-algebras
(ii) G is an equational class of p-algebras
(iii) G* is an Et-variety of t-algebras
(iv) (G*)% is a variety of clone p*-algebras and G* = (G*)%"
(v) G* is an Ft-variety of t-algebras
(vi) (G*)® is a variety of clone p*-algebras and G* = (G*)%V;

(vii) G* is a t-variety of t-algebras.



