Gödel-Mckinsey-Tarski translation for non-distributive logics TACL 2022

Krishna Manoorkar¹ Alessandra Palmigiano¹ Mattia Panettiere¹ Apostolos Tzimoulis¹

Vrije Universiteit, Amsterdam¹

1/17

Motivation

Gödel-Mckinsey-Tarski translation gives translation of modal logic to the S4 modal logics.

Theorem (GMT translation)

There exists a translation $\tau : \mathcal{L}_{IPC} \to \mathcal{L}_{S4}$ such that for any $\varphi \in \mathcal{L}_{IPC}$,

IPC $\models \varphi$ iff S4 $\models \varphi$

Motivation

The main idea behind GMT translation is to emulate intuitionistic logic inside the classical logic.

Applications

- Transfer theorems
- Blok-Esakia theorem

Theorem

The lattice of superintuitionistic logics is isomorphic to the lattice of normal expansions of Grzegorczyk modal logic.

Grz axiom - $\Box(\Box(p \rightarrow \Box p) \rightarrow p) \rightarrow p$

Motivation

The main idea behind GMT translation is to emulate intuitionistic logic inside the classical logic.

Applications

- Transfer theorems
- Blok-Esakia theorem

Theorem

The lattice of superintuitionistic logics is isomorphic to the lattice of normal expansions of Grzegorczyk modal logic.

Grz axiom - $\Box(\Box(p \rightarrow \Box p) \rightarrow p) \rightarrow p$

Can we try to model non-distributive logic (basic lattice logic) inside the classical logic in a similar manner?

Basic lattice logic

Language: $\mathcal{L} \ni \varphi ::= p \in Prop \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi$ **Lattice Logic:** Set of \mathcal{L} -sequents $\varphi \vdash \psi$

• containing:

 $p \vdash p \perp \vdash p p \vdash \top p \vdash p \lor q q \vdash p \lor q p \land q \vdash p \land q \vdash q$

closed under:

 $\frac{\varphi \vdash \chi \quad \chi \vdash \psi}{\varphi \vdash \psi} \quad \frac{\varphi \vdash \psi}{\varphi(\chi/p) \vdash \psi(\chi/p)} \quad \frac{\chi \vdash \varphi \quad \chi \vdash \psi}{\chi \vdash \varphi \land \psi} \quad \frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi}$

Semantics

- Polarity semantics
- Graph-based semantics

▲ 同 ▶ ▲ 三 ▶ ▲

Relational semantics for LE-logics, via duality

Polarities

Reflexive graphs

- A graph-based semantics is a frame $\mathbb{X} = (Z, E)$ such that *E* is reflexive.
 - The lattice corresponding to a graph-based frame \mathbb{X} is given by $(Z, Z, E^c)^+$.
 - For any lattice \mathbb{L} , the associated graph-based frame is $\mathbb{X} = (Z, E)$, where $Z = \{(F, I) \mid F \cap I = \emptyset\}$ and $(F_1, I_1)E(F_2, I_2)$ iff $F_1 \cap I_2 = \emptyset$.

< ロ > < 同 > < 回 > < 回 > 、 回 > 、 回

A valuation for graph-based semantics is a map $v : \text{Prop} \to \mathbb{F}^+$ such that $v(p) = (\llbracket p \rrbracket, \llbracket p \rrbracket)$.

A valuation provides information about both satisfaction and refutation of a variable.

The valuation extends naturally to the formulas.

•
$$V(\varphi \wedge \psi) = (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket)^{[1]}).$$

• $V(\varphi \lor \psi) = ((\llbracket \varphi \rrbracket) \cap \llbracket \psi \rrbracket)^{[0]}, \llbracket \varphi \rrbracket) \cap \llbracket \psi \rrbracket)$

Graph-based frames are just reflexive Kripke frames!

Can we define GMT like translation for non-distributive logic using reflexive Kripke frames?

イロト 不得 トイヨト イヨト 二日

A valuation for graph-based semantics is a map $v : \text{Prop} \to \mathbb{F}^+$ such that $v(p) = (\llbracket p \rrbracket, \llbracket p \rrbracket)$.

A valuation provides information about both satisfaction and refutation of a variable.

The valuation extends naturally to the formulas.

•
$$V(\varphi \wedge \psi) = (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket, (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket)^{[1]}).$$

• $V(\varphi \lor \psi) = ((\llbracket \varphi \rrbracket) \cap \llbracket \psi \rrbracket)^{[0]}, \llbracket \varphi \rrbracket) \cap \llbracket \psi \rrbracket)$

Graph-based frames are just reflexive Kripke frames!

Can we define GMT like translation for non-distributive logic using reflexive Kripke frames?

Yes.

イロト 不得 トイヨト イヨト 二日

In graph-based semantics we have different satisfaction and refutation sets for propositions.

A B + A B +

In graph-based semantics we have different satisfaction and refutation sets for propositions.

Therefore, we need to define **two different translations for satisfaction and refutation**.

In graph-based semantics we have different satisfaction and refutation sets for propositions.

Therefore, we need to define **two different translations for satisfaction and refutation**.

How can we define such translations?

In graph-based semantics we have different satisfaction and refutation sets for propositions.

Therefore, we need to define **two different translations for satisfaction and refutation**.

How can we define such translations?

Observations

- Every graph-based frame valuation is a classical valuation.
- For every classical valuation U the valuation $U^{[10]}$ is a graph-based frame valuation.

・ロト・日本・ キョン・ ヨ

We want to build maps τ_1 and τ_2 corresponding to satisfaction and refutation.

Semantic desiderata for translation

For every classical assignment U and graph-based frame assignment V,

$$\left[\!\!\left[\varphi\right]\!\!\right]_V = \left[\!\!\left[\tau_1(\varphi)\right]\!\!\right]_V;$$

- $([\varphi])_V = \llbracket \tau_2(\varphi) \rrbracket_V^c;$
- $([\tau_2(\varphi)]]_U^c = ([\varphi])_{U^{[01]}} .$

These conditions are satisfied by setting

$$\tau_1(\top) \coloneqq \top \qquad \tau_1(\bot) \coloneqq \rhd \blacktriangleright \bot \qquad \tau_1(p) \coloneqq \rhd \triangleright p,$$

and

$$\tau_2(\top) \coloneqq \neg \blacktriangleright \top \qquad \tau_2(\bot) \coloneqq \bot \qquad \tau_2(p) \coloneqq \neg \blacktriangleright p, \quad$$

글 🕨 🖌 글 🕨

10/17

Extending to meets and joins

$$\llbracket \tau_1(\varphi \lor \psi) \rrbracket_V = \llbracket \varphi \lor \psi \rrbracket_V = (\llbracket \tau_1(\varphi) \rrbracket_V^{[1]} \cap \llbracket \tau_1(\psi) \rrbracket_V^{[1]})^{[0]}$$
$$\llbracket \tau_1(\varphi \land \psi) \rrbracket_V = \llbracket \varphi \rrbracket_V \cap \llbracket \psi \rrbracket_V = \llbracket \tau_1(\varphi) \rrbracket_V \cap \llbracket \tau_1(\psi) \rrbracket_V.$$

Dually,

$$\llbracket \tau_2(\varphi \lor \psi) \rrbracket_V^c = \llbracket \varphi \lor \psi \rrbracket_V = \llbracket \tau_2(\varphi) \rrbracket_V^c \cap \llbracket \tau_2(\psi) \rrbracket_V^c.$$
$$[\tau_2(\varphi \land \psi) \rrbracket_V^c = \llbracket \varphi \land \psi \rrbracket_V = ((\llbracket \tau_2(\varphi) \rrbracket_V^c)^{[0]} \cap (\llbracket \tau_2(\psi) \rrbracket_V^c)^{[0]})^{[1]}.$$

《口》《聞》《臣》《臣》

Extending to meets and joins

$$\llbracket \tau_1(\varphi \lor \psi) \rrbracket_V = \llbracket \varphi \lor \psi \rrbracket_V = (\llbracket \tau_1(\varphi) \rrbracket_V^{[1]} \cap \llbracket \tau_1(\psi) \rrbracket_V^{[1]})^{[0]}$$
$$\llbracket \tau_1(\varphi \land \psi) \rrbracket_V = \llbracket \varphi \rrbracket_V \cap \llbracket \psi \rrbracket_V = \llbracket \tau_1(\varphi) \rrbracket_V \cap \llbracket \tau_1(\psi) \rrbracket_V.$$

Dually,

$$\llbracket \tau_2(\varphi \lor \psi) \rrbracket_V^c = \llbracket \varphi \lor \psi \rrbracket_V = \llbracket \tau_2(\varphi) \rrbracket_V^c \cap \llbracket \tau_2(\psi) \rrbracket_V^c.$$
$$\llbracket \tau_2(\varphi \land \psi) \rrbracket_V^c = \llbracket \varphi \land \psi \rrbracket_V = ((\llbracket \tau_2(\varphi) \rrbracket_V^c)^{[0]} \cap (\llbracket \tau_2(\psi) \rrbracket_V^c)^{[0]})^{[1]}$$

These conditions are satisfied by letting

$$\tau_1(\varphi \land \psi) := \tau_1(\varphi) \land \tau(\psi) \qquad \tau_1(\varphi \lor \psi) := \rhd(\blacktriangleright \tau_1(\varphi) \land \blacktriangleright \tau_1(\psi)),$$

and

$$\tau_2(\varphi \lor \psi) := \tau_2(\varphi) \lor \tau_2(\psi) \qquad \tau_2(\varphi \land \psi) := \neg \blacktriangleright (\rhd \neg \tau_2(\varphi) \land \rhd \neg \tau_2(\psi)).$$

(* (B)) * (B))

Summing up, GMT translations $\tau_1, \tau_2 \colon \mathcal{L}_{LL} \to \mathcal{L}_T$ by the following recursion:

$$\begin{array}{rcl} \tau_1(p) &= & \triangleright \triangleright p & \tau_2(p) &= & \neg \triangleright p \\ \tau_1(\bot) &= & \triangleright \triangleright \bot & \tau_2(\bot) &= & \bot \\ \tau_1(\top) &= & \top & \tau_2(\top) &= & \neg \triangleright \top \\ \tau_1(\varphi \land \psi) &= & \tau_1(\varphi) \land \tau_1(\psi) & \tau_2(\varphi \land \psi) &= & \neg \triangleright (\triangleright \neg \tau_2(\varphi) \land \triangleright \neg \tau_2(\psi)) \\ \tau_1(\varphi \lor \psi) &= & \triangleright (\triangleright \tau_1(\varphi) \land \triangleright \tau_1(\psi)) & \tau_2(\varphi \lor \psi) &= & \tau_2(\varphi) \lor \tau_2(\psi) \,. \end{array}$$

Theorem (GMT translation for lattice logic)

For every \mathcal{L}_{LL} -formula φ , and every reflexive graph $\mathbb{X} = (Z, E)$,

$$\begin{array}{ll} \mathbb{X} \Vdash \varphi & iff \quad \mathbb{X} \Vdash^* \tau_1(\varphi), \\ \mathbb{X} \succ \varphi & iff \quad \mathbb{X} \nvDash^* \tau_2(\varphi). \end{array}$$

э

イロト イポト イヨト イヨト

We can now translate non-distributive modal logic into tense modal logic on reflexive frames.

We can now translate non-distributive modal logic into tense modal logic on reflexive frames.

Or is it?

We can now translate non-distributive modal logic into tense modal logic on reflexive frames.

Or is it?

What about algebraic side?

- Transfer theorems

We can now translate non-distributive modal logic into tense modal logic on reflexive frames.

Or is it?

What about algebraic side?

- Transfer theorems
- It's more complicated.

- イロト (部) (注) (注) (注) (の)()

Clearly these frames do not give BAO belonging to the same variety. The **Booleanization** of a lattice is not clear.

For any lattice $\mathbb{L},$ let $\Phi(\mathbb{L})$ denote the set of tense modal algebras corresponding to it.

- Φ commutes with taking products.
- Φ does not commute with taking homomorphic images.
- Φ does not commute with taking subalgebras.
- Can we still work out some transfer theorems?

For any lattice $\mathbb{L},$ let $\Phi(\mathbb{L})$ denote the set of tense modal algebras corresponding to it.

- Φ commutes with taking products.
- Φ does not commute with taking homomorphic images.
- Φ does not commute with taking subalgebras.
- Can we still work out some transfer theorems? We don't know.

For any lattice $\mathbb{L},$ let $\Phi(\mathbb{L})$ denote the set of tense modal algebras corresponding to it.

- Φ commutes with taking products.
- Φ does not commute with taking homomorphic images.
- Φ does not commute with taking subalgebras.
- Can we still work out some transfer theorems? We don't know.

Conclusions and future directions

Conclusions

- Lattice logic can be translated into tense modal logic via GMT like translation.
- Translation has different satisfaction and refutation part.
- Algebraic side of translation is more complicated than in the case of Heyting algebras.

Future directions

- Restricting to special classes of lattices or graphs.
- Expanding the signature.
- Transfer theorems.