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N
Motivation

Godel-Mckinsey-Tarski translation gives translation of modal logic to the
S4 modal logics.

Theorem (GMT translation)

There exists a translation T : Lipc — Ls4 such that for any ¢ € Lipc,

IPCE=¢ iff S4kE=¢

S4 Kripke frames Intuitionistic frames
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N
Motivation

The main idea behind GMT translation is to emulate intuitionistic logic
inside the classical logic.
Applications

@ Transfer theorems
@ Blok-Esakia theorem

Theorem

The lattice of superintuitionistic logics is isomorphic to the lattice of normal
expansions of Grzegorczyk modal logic.

Grz axiom - O(O(p — Op) —» p) = p
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Motivation

The main idea behind GMT translation is to emulate intuitionistic logic
inside the classical logic.
Applications

@ Transfer theorems
@ Blok-Esakia theorem

Theorem

The lattice of superintuitionistic logics is isomorphic to the lattice of normal
expansions of Grzegorczyk modal logic.

Grz axiom - O(O(p — Op) —» p) = p
Can we try to model non-distributive logic (basic lattice logic) inside the
classical logic in a similar manner?
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|
Basic lattice logic

Language: Lop::=peProp | T|L|eAg|lpVe
Lattice Logic: Set of L-sequents ¢ + i
@ containing:
prp Ltp prT pFPVQg qrpVqg pAqQ-P PAQEQ
@ closed under:

Py xry pry Xre Xt by Yty
ey elx/p)ry(x/p) XHOAY PViky
Semantics

@ Polarity semantics
@ Graph-based semantics
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Relational semantics for LE-logics, via duality

Polarities
(abcd, @)
X y z (ab, x cd, z)
X
I W w
A2 B ¢ 3 (b.xy c.yz)
(2.xy2)
Reflexive graphs
(uvw, @)
Zu v w (vw,u
Q—)Q—)Q AAD IECK AND
u v w z (U,W)
u v w (w, uv
(2, uvw)
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|
Graph-based semantics

A graph-based semantics is a frame X = (Z, E) such that E is reflexive.

@ The lattice corresponding to a graph-based frame X is given by
(Z,Z,E®)*.

@ For any lattice L, the associated graph-based frame is X = (Z, E),
where Z = {(F,I) | Fn 1= 0} and (Fy, l{)E(F2, Ip) iff Fy 0 I = 0.
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Graph-based models

A valuation for graph-based semantics is a map v : Prop — F* such that

v(p) = ([r]. (p])-

A valuation provides information about both satisfaction and refutation of a
variable.
The valuation extends naturally to the formulas.

o V(e Ay) = ([el 0 [¥]. (Tel N IwD)™).
o V(evy) = (([eD N WD), () N (D)

Graph-based frames are just reflexive Kripke frames!
Can we define GMT like translation for non-distributive logic using reflexive
Kripke frames?
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Graph-based frames are just reflexive Kripke frames!

Can we define GMT like translation for non-distributive logic using reflexive
Kripke frames?

Yes.
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GMT translation for non-distributive (lattice) logic

In graph-based semantics we have different satisfaction and refutation sets
for propositions.
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GMT translation for non-distributive (lattice) logic

In graph-based semantics we have different satisfaction and refutation sets

for propositions.
Therefore, we need to define two different translations for satisfaction

and refutation.
How can we define such translations?

Observations
@ Every graph-based frame valuation is a classical valuation.

@ For every classical valuation U the valuation Ul'% is a graph-based
frame valuation.
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GMT translation for non-distributive (lattice) logic

We want to build maps 74 and 12 corresponding to satisfaction and
refutation.

Semantic desiderata for translation
For every classical assignment U and graph-based frame assignment V,

Q [¢]y = [m1(o)1v;
Q [r1(o)ly = [Pl -
Q (¢Dv = 21V
Q [r2(9)17 = (@D yon -
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GMT translation for non-distributive (lattice) logic

These conditions are satisfied by setting
(T)=T 71(L):=>rL 74(p):=>Pp,

and
(T)==-»T 12(L)=1L 712(p)=-»p,.
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GMT translation for non-distributive (lattice) logic

Extending to meets and joins

It v )y = [e v by = ([n @I 0 [e)I5H.
I (e A0)y = [ely N [y = Ir1 @)y 0 [7 @)1

Dually,
[r2(e v IV = (¢ vV ¥)v = [r2()Ty N [r2()1V-

[r2(¢ A TG = (e A vDv = (Tr2(9)D5) N ([r2()19) ).

GMT 11/17
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GMT translation for non-distributive (lattice) logic

Summing up, GMT translations 71, 72: L11. — Lt by the following
recursion:

Ti(p) = >ep T2(p) = -»p

T1(L) = DL TQ(J_) = 1

7(T) = T (T) = =»T
Ti(eAy) = Ti(e) ATi(y) (e AY) = »(>aTa(p) A>oT2(Y))
ti(pVvy) = ri(e) ArTi(y) TAeVy) = T2(p) VTaA(Y) .

Theorem (GMT translation for lattice logic)
For every L1y -formula ¢, and every reflexive graph X = (Z, E),

Xire iff X 11(p),
X>¢ iff X¥ 12(0).
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Algebraic side of translation

We can now translate non-distributive modal logic into tense modal logic
on reflexive frames.
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Algebraic side of translation

We can now translate non-distributive modal logic into tense modal logic
on reflexive frames.

Orisit?

What about algebraic side?
- Transfer theorems
It's more complicated.
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Algebraic side of translation

X . AT

@z)  (bx)  (xy) (Y

Krishna Manoorkar, Alessandra Palmigiano , GMT 14/17



Algebraic side of translation

Clearly these frames do not give BAO belonging to the same variety.
The Booleanization of a lattice is not clear.
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Algebraic side of translation

For any lattice L, let (L) denote the set of tense modal algebras
corresponding to it.

@ & commutes with taking products.
@ ® does not commute with taking homomorphic images.
@ & does not commute with taking subalgebras.

Can we still work out some transfer theorems?
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Conclusions and future directions

Conclusions

@ Lattice logic can be translated into tense modal logic via GMT like
translation.

@ Translation has different satisfaction and refutation part.

@ Algebraic side of translation is more complicated than in the case of
Heyting algebras.

Future directions
@ Restricting to special classes of lattices or graphs.
@ Expanding the signature.
@ Transfer theorems.
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