Difference–restriction algebras of partial functions with operators: discrete duality

Brett McLean

Department of Mathematics: Analysis, Logic and Discrete Mathematics

brett.mclean@ugent.be

(with Célia Borlido)

- is relative complement: $f - g := \{(x, y) \mid (x, y) \in f \text{ and } (x, y) \notin g\}.$

 \triangleright is domain restriction: $f \triangleright g := \{(x, y) \mid x \in \text{dom}(f) \text{ and } (x, y) \in g\}.$

- is relative complement: $f - g := \{(x, y) | (x, y) \in f \text{ and } (x, y) \notin g\}$. ▷ is domain restriction: $f \triangleright g := \{(x, y) | x \in \text{dom}(f) \text{ and } (x, y) \in g\}$.

A **representation** of an algebra \mathfrak{A} of the signature $\{-, \triangleright\}$ is an embedding

$$\theta \colon \mathfrak{A} \to \mathcal{PF}(X),$$

where $\mathcal{PF}(X)$ is the algebra of partial functions on X equipped with relative complement and domain restriction.

- is relative complement: $f - g := \{(x, y) | (x, y) \in f \text{ and } (x, y) \notin g\}$. ▷ is domain restriction: $f \triangleright g := \{(x, y) | x \in \text{dom}(f) \text{ and } (x, y) \in g\}$.

A **representation** of an algebra \mathfrak{A} of the signature $\{-, \triangleright\}$ is an embedding

$$\theta \colon \mathfrak{A} \to \mathcal{PF}(X),$$

where $\mathcal{PF}(X)$ is the algebra of partial functions on X equipped with relative complement and domain restriction.

The representation θ is **complete** if for every $S \subseteq \mathfrak{A}$ such that $\sum S$ exists

$$\theta(\sum S) = \bigcup \theta[S].$$

- is relative complement: $f - g := \{(x, y) | (x, y) \in f \text{ and } (x, y) \notin g\}$. ▷ is domain restriction: $f \triangleright g := \{(x, y) | x \in \text{dom}(f) \text{ and } (x, y) \in g\}$.

A **representation** of an algebra \mathfrak{A} of the signature $\{-, \triangleright\}$ is an embedding

$$\theta \colon \mathfrak{A} \to \mathcal{PF}(X),$$

where $\mathcal{PF}(X)$ is the algebra of partial functions on X equipped with relative complement and domain restriction.

The representation θ is **complete** if for every $S \subseteq \mathfrak{A}$ such that $\sum S$ exists

$$\theta(\sum S) = \bigcup \theta[S].$$

The representable algebras form a finitely based variety and the *completely representable* algebras are the subclass of *atomic* representable algebras.

This talk

Think of:

- 'Discrete' duality between complete atomic Boolean algebras and sets
- Extension to <u>complete atomic Boolean algebras with completely additive operators</u> <u>and relational structures</u> (Kripke frames)

This talk

Think of:

- 'Discrete' duality between complete atomic Boolean algebras and sets
- Extension to <u>complete atomic Boolean algebras with completely additive operators</u> <u>and relational structures</u> (Kripke frames)
- Discrete duality
- Extension with additional operators

Duality between CABA and Set is restriction to complete algebras of an adjunction between ABA and $\mathbf{Set}^{\mathrm{op}}$

Duality between CABA and Set is restriction to complete algebras of an adjunction between ABA and \mathbf{Set}^op

```
• F: AtRepAlg \dashv Set<sub>q</sub><sup>op</sup> : G
```

Duality between CABA and Set is restriction to complete algebras of an adjunction between ABA and \mathbf{Set}^op

• F: AtRepAlg \dashv Set_q^{op} : G

The category **AtRepAlg**:

- *objects*: atomic and representable algebras of the signature $\{-, \triangleright\}$,
- *morphisms*: complete homomorphisms of $\{-, \triangleright\}$ -algebras.

(complete homomorphism: $\sum S$ exists then $\theta(\sum S) = \sum \theta[S]$.)

Duality between CABA and Set is restriction to complete algebras of an adjunction between ABA and \mathbf{Set}^op

• F: AtRepAlg \dashv Set_q^{op} : G

The category **AtRepAlg**:

- ▶ objects: atomic and representable algebras of the signature {-, ▷},
- *morphisms*: complete homomorphisms of $\{-, \triangleright\}$ -algebras.

(complete homomorphism: $\sum S$ exists then $\theta(\sum S) = \sum \theta[S]$.)

- Compatibly complete, compatible completion, duality
- Extension of results to algebras equipped with additional operators

objects: set quotients (surjective functions between sets) $\pi: X \twoheadrightarrow X_0$,

objects: set quotients (surjective functions between sets) $\pi: X \twoheadrightarrow X_0$, *morphism:* from $\pi: X \twoheadrightarrow X_0$ to $\rho: Y \twoheadrightarrow Y_0$ is a partial function $\varphi: X \rightharpoonup Y$ satisfying the following conditions:

() φ preserves equivalence: if both $\varphi(x)$ and $\varphi(x')$ are defined, then

$$\pi(x) = \pi(x') \implies \rho(\varphi(x)) = \rho(\varphi(x')).$$

In particular, φ induces a partial function $\widetilde{\varphi} \colon X_0 \rightharpoonup Y_0$ given by

$$\widetilde{\varphi} \coloneqq \{(\pi(x), \rho(\varphi(x))) \mid x \in \mathsf{dom}(\varphi)\}.$$

objects: set quotients (surjective functions between sets) $\pi: X \twoheadrightarrow X_0$, *morphism:* from $\pi: X \twoheadrightarrow X_0$ to $\rho: Y \twoheadrightarrow Y_0$ is a partial function $\varphi: X \rightharpoonup Y$ satisfying the following conditions:

() φ preserves equivalence: if both $\varphi(x)$ and $\varphi(x')$ are defined, then

$$\pi(x) = \pi(x') \implies \rho(\varphi(x)) = \rho(\varphi(x')).$$

In particular, φ induces a partial function $\widetilde{\varphi} \colon X_0 \rightharpoonup Y_0$ given by

$$\widetilde{\varphi} \coloneqq \{(\pi(x), \rho(\varphi(x))) \mid x \in \mathsf{dom}(\varphi)\}.$$

② φ is fibrewise injective: for every (x₀, y₀) ∈ φ̃, the restriction and co-restriction of φ induces an injective partial map

$$\varphi_{(x_0,y_0)} \colon \pi^{-1}(x_0) \rightharpoonup \rho^{-1}(y_0),$$

objects: set quotients (surjective functions between sets) $\pi: X \twoheadrightarrow X_0$, *morphism:* from $\pi: X \twoheadrightarrow X_0$ to $\rho: Y \twoheadrightarrow Y_0$ is a partial function $\varphi: X \rightharpoonup Y$ satisfying the following conditions:

() φ preserves equivalence: if both $\varphi(x)$ and $\varphi(x')$ are defined, then

$$\pi(x) = \pi(x') \implies \rho(\varphi(x)) = \rho(\varphi(x')).$$

In particular, φ induces a partial function $\widetilde{\varphi} \colon X_0 \rightharpoonup Y_0$ given by

$$\widetilde{\varphi} \coloneqq \{(\pi(x), \rho(\varphi(x))) \mid x \in \mathsf{dom}(\varphi)\}.$$

② φ is fibrewise injective: for every (x₀, y₀) ∈ φ̃, the restriction and co-restriction of φ induces an injective partial map

$$\varphi_{(x_0,y_0)} \colon \pi^{-1}(x_0) \rightharpoonup \rho^{-1}(y_0),$$

$\textit{F}: \textbf{AtRepAlg} \rightarrow \textbf{Set}_{q}^{\text{op}}$

Recall 'same domain' relation $a \sim b \iff a \rhd b = b$ and $b \rhd a = a$.

$\textit{F}: \textbf{AtRepAlg} \rightarrow \textbf{Set}_{q}^{op}$

Recall 'same domain' relation $a \sim b \iff a \rhd b = b$ and $b \rhd a = a$. $F(\mathfrak{A})$ is the canonical projection $\pi_{\mathfrak{A}}$: At $(\mathfrak{A}) \twoheadrightarrow \operatorname{At}(\mathfrak{A})/\sim_{\mathfrak{A}}$

$F: \mathbf{AtRepAlg} \to \mathbf{Set_q}^{\mathsf{op}}$

Recall 'same domain' relation $a \sim b \iff a \rhd b = b$ and $b \rhd a = a$. $F(\mathfrak{A})$ is the canonical projection $\pi_{\mathfrak{A}} \colon \operatorname{At}(\mathfrak{A}) \twoheadrightarrow \operatorname{At}(\mathfrak{A})/\sim_{\mathfrak{A}}$ Given $h \colon \mathfrak{A} \to \mathfrak{B}$ a complete homomorphism, want to define partial function $Fh \colon \operatorname{At}(\mathfrak{B}) \longrightarrow \operatorname{At}(\mathfrak{A})$

$F: \mathbf{AtRepAlg} \to \mathbf{Set_q}^{\mathsf{op}}$

Recall 'same domain' relation $a \sim b \iff a \triangleright b = b$ and $b \triangleright a = a$. $F(\mathfrak{A})$ is the canonical projection $\pi_{\mathfrak{A}} \colon \operatorname{At}(\mathfrak{A}) \twoheadrightarrow \operatorname{At}(\mathfrak{A})/\sim_{\mathfrak{A}}$ Given $h \colon \mathfrak{A} \to \mathfrak{B}$ a complete homomorphism, want to define partial function $Fh \colon \operatorname{At}(\mathfrak{B}) \rightharpoonup \operatorname{At}(\mathfrak{A})$ For $y \in \operatorname{At}(\mathfrak{B})$, *if* there is $a \in \mathfrak{A}$ with $h(a) \ge y$ then there is a unique atom x with $h(x) \ge y$. When this happens, define Fh(y) = x, otherwise undefined.

6/23

$G: \operatorname{Set_q}^{\operatorname{op}} \to \operatorname{AtRepAlg}$

Given $\pi: X \to X_0$ $G(\pi)$ is the algebra consisting of all partial functions $f: X_0 \to X$ that are a subset of $\pi^{-1} = \{(\pi(x), x) \mid x \in X\}.$

$G: \operatorname{\mathbf{Set}_q}^{\operatorname{op}} \to \operatorname{\mathbf{AtRepAlg}}$

Given $\pi: X \to X_0$ $G(\pi)$ is the algebra consisting of all partial functions $f: X_0 \to X$ that are a subset of $\pi^{-1} = \{(\pi(x), x) \mid x \in X\}.$

Given a morphism φ from $(\pi \colon X \twoheadrightarrow X_0)$ to $(\rho \colon Y \twoheadrightarrow Y_0)$ in **Set**_q

 $G\varphi(g) = \{(\pi(x), x) \in X_0 \times X \mid \exists y \in Y \colon (x, y) \in \varphi \text{ and } (\rho(y), y) \in g\}.$

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

If $a \triangleright b = b \triangleright a$ then union is partial function in *any* representation.

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

If $a \triangleright b = b \triangleright a$ then union is partial function in *any* representation. If $a \triangleright b \neq b \triangleright a$ then union is partial function in *no* representation.

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

If $a \triangleright b = b \triangleright a$ then union is partial function in *any* representation.

If $a \triangleright b \neq b \triangleright a$ then union is partial function in *no* representation.

This extends to set *S* of elements: Union is partial function in some/every representation \iff pairwise $a \triangleright b = b \triangleright a$.

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

If $a \triangleright b = b \triangleright a$ then union is partial function in *any* representation.

If $a \triangleright b \neq b \triangleright a$ then union is partial function in *no* representation.

This extends to set *S* of elements: Union is partial function in some/every representation \iff pairwise $a \triangleright b = b \triangleright a$.

So we can only demand joins of such sets...

Some pairs of partial functions have no 'upper bound': if their union is not a partial function, then they cannot have a common extension.

Our signature can express 'agree on shared domain':

$$a \rhd b = b \rhd a$$

If $a \triangleright b = b \triangleright a$ then union is partial function in *any* representation.

If $a \triangleright b \neq b \triangleright a$ then union is partial function in *no* representation.

This extends to set *S* of elements: Union is partial function in some/every representation \iff pairwise $a \triangleright b = b \triangleright a$.

So we can only demand joins of such sets...

... and notion of completeness (w.r.t. joins) should demand joins of *all* such sets.

Definition

Let \mathfrak{P} be a poset. A binary relation C on \mathfrak{P} is a **compatibility relation** if it is reflexive, symmetric, and downward closed in $\mathfrak{P} \times \mathfrak{P}$. We say that two elements $a_1, a_2 \in \mathfrak{P}$ are **compatible** if a_1Ca_2 .

Definition

Let \mathfrak{P} be a poset. A binary relation C on \mathfrak{P} is a **compatibility relation** if it is reflexive, symmetric, and downward closed in $\mathfrak{P} \times \mathfrak{P}$. We say that two elements $a_1, a_2 \in \mathfrak{P}$ are **compatible** if a_1Ca_2 .

One can show that 'reflexive, symmetric, and downward closed' is an axiomatisation of a rather general conception of compatibility in the following sense.

Definition

Let \mathfrak{P} be a poset. A binary relation C on \mathfrak{P} is a **compatibility relation** if it is reflexive, symmetric, and downward closed in $\mathfrak{P} \times \mathfrak{P}$. We say that two elements $a_1, a_2 \in \mathfrak{P}$ are **compatible** if a_1Ca_2 .

One can show that 'reflexive, symmetric, and downward closed' is an axiomatisation of a rather general conception of compatibility in the following sense.

Proposition

Let (P, \leq, C) be a poset equipped with a binary relation C. Then (P, \leq, C) is isomorphic to a poset (P', \subseteq, C') of partial functions ordered by inclusion and equipped with the relation 'agree on the intersection of their domains' if and only if C is reflexive, symmetric, and downward closed.

Definition

Let \mathfrak{P} be a poset. A binary relation C on \mathfrak{P} is a **compatibility relation** if it is reflexive, symmetric, and downward closed in $\mathfrak{P} \times \mathfrak{P}$. We say that two elements $a_1, a_2 \in \mathfrak{P}$ are **compatible** if a_1Ca_2 .

One can show that 'reflexive, symmetric, and downward closed' is an axiomatisation of a rather general conception of compatibility in the following sense.

Proposition

Let (P, \leq, C) be a poset equipped with a binary relation C. Then (P, \leq, C) is isomorphic to a poset (P', \subseteq, C') of partial functions ordered by inclusion and equipped with the relation 'agree on the intersection of their domains' if and only if C is reflexive, symmetric, and downward closed.

Proof:

$$\theta(p) \coloneqq \{(\{p'\},p') \mid p' \leq p\} \cup \{(\{p',q\},p') \mid p' \leq p \text{ and } p' \notin q\}.$$

Definition

A poset \mathfrak{P} equipped with a compatibility relation is said to be **compatibly complete** provided it has joins of all subsets of pairwise-compatible elements.

We say \mathfrak{P} is **meet complete** if it has meets of all *nonempty* subsets.

Definition

A poset \mathfrak{P} equipped with a compatibility relation is said to be **compatibly complete** provided it has joins of all subsets of pairwise-compatible elements.

We say \mathfrak{P} is **meet complete** if it has meets of all *nonempty* subsets.

When speaking about compatibility for representable $\{-,\rhd\}$ -algebras, we mean the relation that makes two elements compatible precisely when

 $a_1 \triangleright a_2 = a_2 \triangleright a_1.$

Definition

A poset \mathfrak{P} equipped with a compatibility relation is said to be **compatibly complete** provided it has joins of all subsets of pairwise-compatible elements.

We say \mathfrak{P} is **meet complete** if it has meets of all *nonempty* subsets.

When speaking about compatibility for representable $\{-, \rhd\}$ -algebras, we mean the relation that makes two elements compatible precisely when

 $a_1 \triangleright a_2 = a_2 \triangleright a_1.$

In the case that all pairs of elements are compatible, *compatibly complete* is equivalent to *complete*.

Definition

A poset \mathfrak{P} equipped with a compatibility relation is said to be **compatibly complete** provided it has joins of all subsets of pairwise-compatible elements.

We say \mathfrak{P} is **meet complete** if it has meets of all *nonempty* subsets.

When speaking about compatibility for representable $\{-, \rhd\}$ -algebras, we mean the relation that makes two elements compatible precisely when

 $a_1 \triangleright a_2 = a_2 \triangleright a_1.$

In the case that all pairs of elements are compatible, *compatibly complete* is equivalent to *complete*.

If S has an upper bound u, then by reflexivity and downward closure of compatibility, S is pairwise compatible.

Thus compatibly complete \implies bounded complete.

Compatibily complete

Definition

A poset \mathfrak{P} equipped with a compatibility relation is said to be **compatibly complete** provided it has joins of all subsets of pairwise-compatible elements.

We say \mathfrak{P} is **meet complete** if it has meets of all *nonempty* subsets.

When speaking about compatibility for representable $\{-,\rhd\}$ -algebras, we mean the relation that makes two elements compatible precisely when

 $a_1 \triangleright a_2 = a_2 \triangleright a_1.$

In the case that all pairs of elements are compatible, *compatibly complete* is equivalent to *complete*.

If S has an upper bound u, then by reflexivity and downward closure of compatibility, S is pairwise compatible.

Thus compatibly complete \implies bounded complete.

Similarly compatibly complete \implies directed complete.

Compatibly complete (continued)

For representable $\{-, \triangleright\}$ -algebras:

compatibly complete \implies meet complete.

The converse is false.

The three-element $\{-, \rhd\}$ -algebra consisting of the partial functions \emptyset , $\{(1,1)\}$, and $\{(2,2)\}$ provides a counterexample.

Compatible completions

Definition

A compatible completion of a representable $\{-, \triangleright\}$ -algebra \mathfrak{A} is an embedding $\iota \colon \mathfrak{A} \hookrightarrow \mathfrak{C}$ of $\{-, \triangleright\}$ -algebras such that \mathfrak{C} is representable and compatibly complete and $\iota[\mathfrak{A}]$ is join dense in \mathfrak{C} .

Compatible completions

Definition

A compatible completion of a representable $\{-, \triangleright\}$ -algebra \mathfrak{A} is an embedding $\iota \colon \mathfrak{A} \hookrightarrow \mathfrak{C}$ of $\{-, \triangleright\}$ -algebras such that \mathfrak{C} is representable and compatibly complete and $\iota[\mathfrak{A}]$ is join dense in \mathfrak{C} .

Lemma

Let $\iota : \mathfrak{A} \hookrightarrow \mathfrak{B}$ be an embedding of representable $\{-, \triangleright\}$ -algebras. If $\iota[\mathfrak{A}]$ is join dense in \mathfrak{B} then ι is complete.

Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.

Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.

Proposition

If $\iota: \mathfrak{A} \hookrightarrow \mathfrak{C}$ and $\iota': \mathfrak{A} \hookrightarrow \mathfrak{C}'$ are compatible completions of the representable $\{-, \rhd\}$ -algebra \mathfrak{A} then there is a unique isomorphism $\theta: \mathfrak{C} \to \mathfrak{C}'$ satisfying the condition $\theta \circ \iota = \iota'$.

Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.

Proposition

If $\iota : \mathfrak{A} \hookrightarrow \mathfrak{C}$ and $\iota' : \mathfrak{A} \hookrightarrow \mathfrak{C}'$ are compatible completions of the representable $\{-, \rhd\}$ -algebra \mathfrak{A} then there is a unique isomorphism $\theta : \mathfrak{C} \to \mathfrak{C}'$ satisfying the condition $\theta \circ \iota = \iota'$.

(So we may say 'the' compatible completion.)

Compatible completion using the adjunction

Theorem

For every <u>atomic</u> representable $\{-, \triangleright\}$ -algebra \mathfrak{A} , the homomorphism

$$\eta_{\mathfrak{A}} \colon \mathfrak{A} \to (G \circ F)(\mathfrak{A}) = \{ f \colon \mathsf{At}(\mathfrak{A}) / \sim_{\mathfrak{A}} \rightharpoonup \mathsf{At}(\mathfrak{A}) \mid f \subseteq \pi_{\mathfrak{A}}^{-1} \}$$
$$a \mapsto \{ ([x], x) \mid x \in \mathsf{At}(\mathfrak{A}) \text{ and } x \leq a \}$$

is the compatible completion of \mathfrak{A} .

Compatible completion using the adjunction

Theorem

For every <u>atomic</u> representable $\{-, \rhd\}$ -algebra \mathfrak{A} , the homomorphism

$$\eta_{\mathfrak{A}} \colon \mathfrak{A} \to (G \circ F)(\mathfrak{A}) = \{ f \colon \mathsf{At}(\mathfrak{A}) / \sim_{\mathfrak{A}} \rightharpoonup \mathsf{At}(\mathfrak{A}) \mid f \subseteq \pi_{\mathfrak{A}}^{-1} \}$$
$$a \mapsto \{ ([x], x) \mid x \in \mathsf{At}(\mathfrak{A}) \text{ and } x \leq a \}$$

is the compatible completion of \mathfrak{A} .

Corollary

There is a duality between CAtRepAlg and Set_q, where CAtRepAlg is the full subcategory of AtRepAlg consisting of the compatibly complete algebras.

Compatible completion using the adjunction

Theorem

For every <u>atomic</u> representable $\{-, \triangleright\}$ -algebra \mathfrak{A} , the homomorphism

$$\eta_{\mathfrak{A}} \colon \mathfrak{A} \to (G \circ F)(\mathfrak{A}) = \{ f \colon \mathsf{At}(\mathfrak{A}) / \sim_{\mathfrak{A}} \rightharpoonup \mathsf{At}(\mathfrak{A}) \mid f \subseteq \pi_{\mathfrak{A}}^{-1} \}$$
$$a \mapsto \{ ([x], x) \mid x \in \mathsf{At}(\mathfrak{A}) \text{ and } x \leq a \}$$

is the compatible completion of \mathfrak{A} .

Corollary

There is a duality between CAtRepAlg and Set_q, where CAtRepAlg is the full subcategory of AtRepAlg consisting of the compatibly complete algebras.

Corollary

CAtRepAlg is a reflective subcategory of AtRepAlg.

Say that earlier definition was of compatible completion in RepAlg

Say that earlier definition was of compatible completion in RepAlg

 \mathbf{RepAlg}_{∞} : representable $\{-,\rhd\}\text{-algebras}$ with *complete* $\{-,\rhd\}\text{-homomorphisms}$

Say that earlier definition was of compatible completion in RepAlg

 ${\bf RepAlg}_\infty:$ representable $\{-,\rhd\}\text{-algebras}$ with complete $\{-,\rhd\}\text{-homomorphisms}$

Definition

A compatible completion in $\operatorname{RepAlg}_{\infty}$ of a representable $\{-, \triangleright\}$ -algebra \mathfrak{A} is a complete embedding $\iota \colon \mathfrak{A} \hookrightarrow \mathfrak{C}$ of $\{-, \triangleright\}$ -algebras such that \mathfrak{C} is representable and compatibly complete and $\iota[\mathfrak{A}]$ is join dense in \mathfrak{C} .

Say that earlier definition was of compatible completion in RepAlg

 ${\bf RepAlg}_\infty:$ representable $\{-,\rhd\}\text{-algebras}$ with complete $\{-,\rhd\}\text{-homomorphisms}$

Definition

A compatible completion in $\operatorname{RepAlg}_{\infty}$ of a representable $\{-, \triangleright\}$ -algebra \mathfrak{A} is a complete embedding $\iota \colon \mathfrak{A} \hookrightarrow \mathfrak{C}$ of $\{-, \triangleright\}$ -algebras such that \mathfrak{C} is representable and compatibly complete and $\iota[\mathfrak{A}]$ is join dense in \mathfrak{C} .

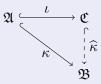
"compatible completions in ${\bf RepAlg}_\infty$ are unique, and we know how to construct them for atomic algebras"

Completion in cat. with complete homomorphisms (cont.)

Proposition

Let $\iota : \mathfrak{A} \hookrightarrow \mathfrak{C}$ be a complete embedding of representable $\{-, \triangleright\}$ -algebras. Consider the following statements about ι .

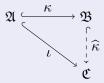
- € is the 'smallest' extension of 𝔄 that is compatibly complete. That is,
 € is compatibly complete, and for every other complete embedding
 κ: 𝔄 → 𝔅 into a compatibly complete and representable
 {−, ▷}-algebra 𝔅, there exists a complete embedding κ̂: 𝔅 → 𝔅
 making the following diagram commute.



Completion in cat. with complete homomorphisms (cont.)

Proposition

C is the 'largest' extension of A in which the image of A is join dense. That is, ι[A] is join dense in C, and for every other complete embedding κ: A → B into a representable {-, ▷}-algebra B in which the image of A is join dense, there exists a complete embedding *κ̂*: B → C making the following diagram commute.

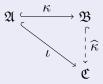


Then $1 \implies 2$, and $1 \implies 3$, and if \mathfrak{A} has a completion then all three conditions are equivalent.

Completion in cat. with complete homomorphisms (cont.)

Proposition

C is the 'largest' extension of A in which the image of A is join dense. That is, ι[A] is join dense in C, and for every other complete embedding κ: A → B into a representable {-, ▷}-algebra B in which the image of A is join dense, there exists a complete embedding *κ̂*: B → C making the following diagram commute.



Then $1 \implies 2$, and $1 \implies 3$, and if \mathfrak{A} has a completion then all three conditions are equivalent.

(The **RepAlg** version of this statement does not hold.)

Additional operators

Definition

Let Ω be an *n*-ary operation on \mathfrak{A} . Then Ω is **compatibility preserving** if: a_i, a'_i compatible, for all $i \implies \Omega(a_1, \ldots, a_n), \ \Omega(a'_1, \ldots, a'_n)$ compatible. Ω is **completely additive** if whenever the supremum $\sum S$ exists, for $S \subseteq \mathfrak{A}$,

$$\Omega(a_1,\ldots,a_{i-1},\sum S,a_{i+1},\ldots,a_n)=\sum \Omega(a_1,\ldots,a_{i-1},S,a_{i+1},\ldots,a_n)$$

Additional operators

Definition

Let Ω be an *n*-ary operation on \mathfrak{A} . Then Ω is **compatibility preserving** if: a_i, a'_i compatible, for all $i \implies \Omega(a_1, \ldots, a_n)$, $\Omega(a'_1, \ldots, a'_n)$ compatible. Ω is **completely additive** if whenever the supremum $\sum S$ exists, for $S \subseteq \mathfrak{A}$,

$$\Omega(a_1,\ldots,a_{i-1},\sum S,a_{i+1},\ldots,a_n)=\sum \Omega(a_1,\ldots,a_{i-1},S,a_{i+1},\ldots,a_n)$$

Definition

The category **AtRepAlg**(σ) has

- objects: algebras of the signature {−, ▷} ∪ σ whose {−, ▷}-reduct is atomic and representable, and such that the symbols of σ are interpreted as compatibility preserving completely additive operations,
- *morphisms*: complete homomorphisms of $(\{-, \triangleright\} \cup \sigma)$ -algebras.

Dually: additional relations

From compatibility preserving and completely additive *n*-ary Ω , can define (n + 1)-ary relation R_{Ω} on atoms of \mathfrak{A} :

$$R_{\Omega}x_1...x_{n+1} \iff \Omega(x_1,...,x_n) \ge x_{n+1}.$$

Dually: additional relations

From compatibility preserving and completely additive *n*-ary Ω , can define (n + 1)-ary relation R_{Ω} on atoms of \mathfrak{A} :

$$R_{\Omega}x_1\ldots x_{n+1} \iff \Omega(x_1,\ldots,x_n) \ge x_{n+1}.$$

Definition

Given: sets X, X_0 , surjection $\pi: X \to X_0$, and R an (n+1)-ary relation on X. The **compatibility relation** $C \subseteq X \times X$ is given by

x C y if and only if $\pi(x) = \pi(y) \implies x = y$.

Then *R* has the **compatibility property** (with respect to π) if given $x_1Cx'_1, \ldots, x_nCx'_n$ and $Rx_1\ldots x_{n+1}$ and $Rx'_1\ldots x'_{n+1}$, we have $x_{n+1}Cx'_{n+1}$.

Dually: additional relations

From compatibility preserving and completely additive *n*-ary Ω , can define (n + 1)-ary relation R_{Ω} on atoms of \mathfrak{A} :

$$R_{\Omega}x_1\ldots x_{n+1} \iff \Omega(x_1,\ldots,x_n) \ge x_{n+1}.$$

Definition

Given: sets X, X_0 , surjection $\pi: X \to X_0$, and R an (n+1)-ary relation on X. The **compatibility relation** $C \subseteq X \times X$ is given by

x C y if and only if $\pi(x) = \pi(y) \implies x = y$.

Then *R* has the **compatibility property** (with respect to π) if given $x_1Cx'_1, \ldots, x_nCx'_n$ and $Rx_1\ldots x_{n+1}$ and $Rx'_1\ldots x'_{n+1}$, we have $x_{n+1}Cx'_{n+1}$.

Given *R* satisfying compatibility property, can define *n*-ary operation Ω_R on the dual \mathfrak{A}_{π} of $\pi \colon X \twoheadrightarrow X_0$ by conflating elements of \mathfrak{A}_{π} with their image, and setting

$$\Omega_R(X_1,\ldots,X_n)=\bigcup_{x_1\in X_1,\ldots,x_n\in X_n}\{x_{n+1}\in X\mid Rx_1\ldots x_{n+1}\}.$$

Morphisms and the dual category

Definition

Given: $\varphi: X \to Y$ and (n + 1)-ary relations R_X and R_Y on X and Y. Then φ satisfies the **reverse forth condition** if whenever $R_X x_1 \dots x_{n+1}$ and $\varphi(x_1), \dots, \varphi(x_n)$ are defined, then $\varphi(x_{n+1})$ is defined and $R_Y \varphi(x_1) \dots \varphi(x_{n+1})$. And φ satisfies the **back condition** if whenever $\varphi(x_{n+1})$ is defined and $R_Y y_1 \dots y_n \varphi(x_{n+1})$, then there exist $x_1, \dots, x_n \in \text{dom}(\varphi)$ such that $\varphi(x_1) = y_1, \dots, \varphi(x_n) = y_n$ and $R_X x_1 \dots x_{n+1}$.

Morphisms and the dual category

Definition

Given: $\varphi: X \to Y$ and (n + 1)-ary relations R_X and R_Y on X and Y. Then φ satisfies the **reverse forth condition** if whenever $R_X x_1 \dots x_{n+1}$ and $\varphi(x_1), \dots, \varphi(x_n)$ are defined, then $\varphi(x_{n+1})$ is defined and $R_Y \varphi(x_1) \dots \varphi(x_{n+1})$. And φ satisfies the **back condition** if whenever $\varphi(x_{n+1})$ is defined and $R_Y y_1 \dots y_n \varphi(x_{n+1})$, then there exist $x_1, \dots, x_n \in \text{dom}(\varphi)$ such that $\varphi(x_1) = y_1, \dots, \varphi(x_n) = y_n$ and $R_X x_1 \dots x_{n+1}$.

Definition

The category $\mathbf{Set}_{\mathbf{q}}(\sigma)$ has

- objects: the objects of $\mathbf{Set}_{\mathbf{q}}$ equipped with, for each $\Omega \in \sigma$, an (n+1)-ary relation R_{Ω} that has the compatibility property, where n is the arity of Ω ,
- morphisms: morphisms of $\mathbf{Set}_{\mathbf{q}}$ that satisfy the reverse forth condition and the back condition with respect to R_{Ω} , for every $\Omega \in \sigma$.

Extended adjunction

Theorem

There is an adjunction F': **AtRepAlg**(σ) \dashv **Set**_{**q**}(σ)^{op}: G' extending F: **AtRepAlg** \dashv **Set**_{**q**}^{op}: G in the sense that the appropriate reducts of $F'(\mathfrak{A})$ and $G'(\pi: X \twoheadrightarrow X_0)$ equal $F(\mathfrak{A})$ and $G(\pi: X \twoheadrightarrow X_0)$, respectively.

Extended adjunction

Theorem

There is an adjunction F': **AtRepAlg**(σ) \dashv **Set**_q(σ)^{op} : G' extending F: **AtRepAlg** \dashv **Set**_q^{op} : G in the sense that the appropriate reducts of $F'(\mathfrak{A})$ and $G'(\pi: X \twoheadrightarrow X_0)$ equal $F(\mathfrak{A})$ and $G(\pi: X \twoheadrightarrow X_0)$, respectively.

Corollary

For every algebra \mathfrak{A} in $AtRepAlg(\sigma)$, the embedding $\eta_{\mathfrak{A}} \colon \mathfrak{A} \hookrightarrow (G' \circ F')(\mathfrak{A})$ is the compatible completion of \mathfrak{A} .

Corollary

There is a duality between $CAtRepAlg(\sigma)$ and $Set_q(\sigma)^{op}$, where $CAtRepAlg(\sigma)$ is the full subcategory of $AtRepAlg(\sigma)$ consisting of the compatibly complete algebras.

Corollary

The category $CAtRepAlg(\sigma)$ is a reflective subcategory of $AtRepAlg(\sigma)$.

 Which representable {−, ▷}-algebras have a compatible completion in **RepAlg**_∞? Describe a general method to construct these completions.

- Which representable {−, ▷}-algebras have a compatible completion in **RepAlg**_∞? Describe a general method to construct these completions.
- Weaken the base signature $\{-, \rhd\}$.

- Which representable {−, ▷}-algebras have a compatible completion in **RepAlg**_∞? Describe a general method to construct these completions.
- Weaken the base signature $\{-, \rhd\}$.
- Relax constraints on additional operators.

- Which representable {−, ▷}-algebras have a compatible completion in **RepAlg**_∞? Describe a general method to construct these completions.
- Weaken the base signature $\{-, \rhd\}$.
- Relax constraints on additional operators.
- Find a non-discrete duality for full class of representable algebras.

References

Célia Borlido and Brett McLean.

Difference-restriction algebras of partial functions: axiomatisations and representations.

Algebra Universalis (in press), 2022.

Célia Borlido and Brett McLean.

Difference–restriction algebras of partial functions with operators: Discrete duality and completion.

Journal of Algebra 604 (2022), 760–789.