Difference-restriction algebras of partial functions: axiomatizations and representations

Célia Borlido based on joint work with Brett McLean

Centro de Matemática da Universidade de Coimbra

Topology, Algebra, and Categories in Logic

Coimbra, June 20-24, 2022

What is a partial function?

Let X be a set.

▶ A partial function on X is a subset $f \subseteq X \times X$ such that

$$(x,y) \in f$$
 and $(x,z) \in f \implies y = z$.

We write f(x) = y if $(x, y) \in f$.

What is a partial function?

Let X be a set.

▶ A partial function on X is a subset $f \subseteq X \times X$ such that

$$(x,y) \in f \text{ and } (x,z) \in f \implies y = z.$$

We write f(x) = y if $(x, y) \in f$.

▶ The domain of a partial function *f* is the set

$$\operatorname{dom}(f) := \{ x \in X \mid \exists y \colon (x, y) \in f \}.$$

What is a partial function?

Let X be a set.

▶ A partial function on X is a subset $f \subseteq X \times X$ such that

$$(x,y) \in f \text{ and } (x,z) \in f \implies y = z.$$

We write f(x) = y if $(x, y) \in f$.

The domain of a partial function f is the set

$$\operatorname{dom}(f) := \{ x \in X \mid \exists y \colon (x, y) \in f \}.$$

There are many different operations one can consider on the set *PF(X)* of all partial functions on X...

C. Borlido (CMUC)

What is an algebra of partial functions?

We will consider universal algebras of the signature $\{-, \triangleright\}$.

An algebra of partial functions is a $\{-, \triangleright\}$ -algebra whose universe is contained in $\mathcal{PF}(X)$, and whose operations are interpreted as follows: **Relative complement:** $f - g := \{(x, y) \mid (x, y) \in f \text{ and } (x, y) \notin g\}$. **Domain restriction:** $f \triangleright g := \{(x, y) \mid x \in \text{dom}(f) \text{ and } (x, y) \in g\}$.

What is an algebra of partial functions?

We will consider universal algebras of the signature $\{-, \triangleright\}$.

An algebra of partial functions is a $\{-, \triangleright\}$ -algebra whose universe is contained in $\mathcal{PF}(X)$, and whose operations are interpreted as follows: **Relative complement:** $f - g := \{(x, y) \mid (x, y) \in f \text{ and } (x, y) \notin g\}$. **Domain restriction:** $f \triangleright g := \{(x, y) \mid x \in \text{dom}(f) \text{ and } (x, y) \in g\}$.

• Able to express intersection: $f \cdot g = f - (f - g)$.

▶ Well-behaved order-structure: $f \leq g \iff f \cdot g = f \iff f \subseteq g$.

▶ Able to compare domains: $dom(f) \subseteq dom(g) \iff f \leq g \triangleright f$.

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms (Ax.1) a - (b - a) = a $(Ax.2) a \cdot b = b \cdot a$ (Ax.3) (a - b) - c = (a - c) - b

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms	
(Ax.1) a - (b - a) = a	$(Ax.4) \ (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c$
(Ax.2) $a \cdot b = b \cdot a$	
(Ax.3) $(a-b) - c = (a-c) - b$	

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms	
(Ax.1) $a - (b - a) = a$	$(Ax.4) \ (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c$
$(Ax.2) \ a \cdot b = b \cdot a$	$(Ax.5) \ (a \cdot b) \rhd a = a \cdot b$
(Ax.3) $(a-b) - c = (a-c) - b$	

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms	
(Ax.1) $a - (b - a) = a$	$(Ax.4) \ (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c$
$(Ax.2) \ a \cdot b = b \cdot a$	$(Ax.5) \ (a \cdot b) \rhd a = a \cdot b$
(Ax.3) $(a-b) - c = (a-c) - b$	

A difference-restriction algebra is a $\{-, \triangleright\}$ -algebra satisfying (Ax.1)-(Ax.5).

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms	
(Ax.1) $a - (b - a) = a$	$(Ax.4) \ (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c$
$(Ax.2) a \cdot b = b \cdot a$	$(Ax.5) \ (a \cdot b) \rhd a = a \cdot b$
(Ax.3) $(a-b) - c = (a-c) - b$	

A difference-restriction algebra is a $\{-, \triangleright\}$ -algebra satisfying (Ax.1)-(Ax.5). A subtraction algebra is a $\{-\}$ -algebra satisfying (Ax.1)-(Ax.3).

Let \mathcal{A} be a algebra of the signature $\{-, \triangleright\}$. We say that \mathcal{A} is representable if it is isomorphic to an algebra of partial functions.

Notation: For $a, b \in A$, denote $a \cdot b := a - (a - b)$.

Some axioms	
(Ax.1) $a - (b - a) = a$	$(Ax.4) \ (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c$
$(Ax.2) a \cdot b = b \cdot a$	$(Ax.5) \ (a \cdot b) \rhd a = a \cdot b$
(Ax.3) $(a-b) - c = (a-c) - b$	

A difference-restriction algebra is a $\{-, \rhd\}$ -algebra satisfying (Ax.1)-(Ax.5). A subtraction algebra is a $\{-\}$ -algebra satisfying (Ax.1)-(Ax.3). A restriction-semilattice is a $\{\cdot, \rhd\}$ -algebra such that (\mathcal{A}, \cdot) is a semillatice an \mathcal{A} satisfies (Ax.4)-(Ax.5).

Recall: $(\mathcal{A}, -)$ is a subtraction algebra if it satisfies (Ax.1)-(Ax.3): **(Ax.1)** a - (b - a) = a **(Ax.2)** $a \cdot b = b \cdot a$ **(Ax.3)** (a - b) - c = (a - c) - b

Proposition (Schein 1992; B., McLean 2020)

If A is a subtraction algebra, then the set a[↓] := {b ∈ A | b ≤ a} is a Boolean algebra. The complement of b ∈ a[↓] is b := a − b.

Recall: $(\mathcal{A}, -)$ is a subtraction algebra if it satisfies (Ax.1)-(Ax.3): (Ax.1) a - (b - a) = a (Ax.2) $a \cdot b = b \cdot a$ (Ax.3) (a - b) - c = (a - c) - b

Proposition (Schein 1992; B., McLean 2020)

- If A is a subtraction algebra, then the set a[↓] := {b ∈ A | b ≤ a} is a Boolean algebra. The complement of b ∈ a[↓] is b := a − b.
- If (A, ·) is a semilattice with zero 0 and, for every a ∈ A, we have a Boolean algebra (a[↓], ·, 0, a, (-)^a), then setting a − b := (a · b)^a defines a subtraction algebra structure on A (on which a · b = a − (a − b) is a valid equation).

Recall: $(\mathcal{A}, -)$ is a subtraction algebra if it satisfies (Ax.1)-(Ax.3): (Ax.1) a - (b - a) = a (Ax.2) $a \cdot b = b \cdot a$ (Ax.3) (a - b) - c = (a - c) - b

Proposition (Schein 1992; B., McLean 2020)

- If A is a subtraction algebra, then the set a[↓] := {b ∈ A | b ≤ a} is a Boolean algebra. The complement of b ∈ a[↓] is b := a − b.
- If (A, ·) is a semilattice with zero 0 and, for every a ∈ A, we have a Boolean algebra (a[↓], ·, 0, a, (_)^a), then setting a − b := (a · b)^a defines a subtraction algebra structure on A (on which a · b = a − (a − b) is a valid equation).

Subtraction algebras with top \equiv Boolean algebras.

Recall: $(\mathcal{A}, -)$ is a subtraction algebra if it satisfies (Ax.1)-(Ax.3): (Ax.1) a - (b - a) = a (Ax.2) $a \cdot b = b \cdot a$ (Ax.3) (a - b) - c = (a - c) - b

Proposition (Schein 1992; B., McLean 2020)

- If A is a subtraction algebra, then the set a[↓] := {b ∈ A | b ≤ a} is a Boolean algebra. The complement of b ∈ a[↓] is b := a − b.
- If (A, ·) is a semilattice with zero 0 and, for every a ∈ A, we have a Boolean algebra (a[↓], ·, 0, a, (-)^a), then setting a − b := (a · b)^a defines a subtraction algebra structure on A (on which a · b = a − (a − b) is a valid equation).
- Subtraction algebras with top \equiv Boolean algebras.
- Every difference-restriction algebra with a top is a BA such that $\triangleright = \cdot = \wedge$.

Recall: $(\mathcal{A}, -)$ is a subtraction algebra if it satisfies (Ax.1)-(Ax.3): (Ax.1) a - (b - a) = a (Ax.2) $a \cdot b = b \cdot a$ (Ax.3) (a - b) - c = (a - c) - b

Proposition (Schein 1992; B., McLean 2020)

- If A is a subtraction algebra, then the set a[↓] := {b ∈ A | b ≤ a} is a Boolean algebra. The complement of b ∈ a[↓] is b := a − b.
- If (A, ·) is a semilattice with zero 0 and, for every a ∈ A, we have a Boolean algebra (a[↓], ·, 0, a, (-)^a), then setting a − b := (a · b)^a defines a subtraction algebra structure on A (on which a · b = a − (a − b) is a valid equation).
- Subtraction algebras with top \equiv Boolean algebras.
- Every difference-restriction algebra with a top is a BA such that $\triangleright = \cdot = \wedge$.
- Every Boolean algbera is a difference-restriction algebra for $\triangleright = \land$.

C. Borlido (CMUC)

Domain inclusion - definition

 $(\mathcal{A},\cdot,arDelta)$ - restriction-semilattice

 $\ast~(\mathcal{A},\cdot)$ is a semilattice,

*
$$\mathcal{A}$$
 satisfies (Ax.4) and (Ax.5):

$$(Ax.4) (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c (Ax.5) (a \cdot b) \rhd a = a \cdot b$$

We define the relation \preceq on ${\mathcal A}$ by

$$a \preceq b \iff a \leq (b \triangleright a)$$

(For partial functions: $f \leq g \iff \operatorname{dom}(f) \subseteq \operatorname{dom}(g)$)

Domain inclusion - definition

 $(\mathcal{A},\cdot,arrow)$ - restriction-semilattice

* (\mathcal{A}, \cdot) is a semilattice,

*
$$\mathcal{A}$$
 satisfies (Ax.4) and (Ax.5):

$$(Ax.4) (a \rhd c) \cdot (b \rhd c) = (a \rhd b) \rhd c (Ax.5) (a \cdot b) \rhd a = a \cdot b$$

We define the relation \preceq on ${\mathcal A}$ by

$$a \preceq b \iff a \leq (b \triangleright a)$$

(For partial functions: $f \leq g \iff \operatorname{dom}(f) \subseteq \operatorname{dom}(g)$)

► The relation ≤ is a partial order that contains ≤. (the induced equivalence relation will be denoted by ~)

Domain inclusion - definition

 $(\mathcal{A},\cdot,arrow)$ - restriction-semilattice

* (\mathcal{A}, \cdot) is a semilattice,

*
$$\mathcal{A}$$
 satisfies (Ax.4) and (Ax.5):

$$(Ax.4) (a \triangleright c) \cdot (b \triangleright c) = (a \triangleright b) \triangleright c (Ax.5) (a \cdot b) \triangleright a = a \cdot b$$

We define the relation \preceq on ${\mathcal A}$ by

$$a \preceq b \iff a \leq (b \triangleright a)$$

(For partial functions: $f \leq g \iff \operatorname{dom}(f) \subseteq \operatorname{dom}(g)$)

► The relation ≤ is a partial order that contains ≤. (the induced equivalence relation will be denoted by ~)

▶ The relations \leq and \leq coincide on each poset $a^{\downarrow} := \{b \in \mathcal{A} \mid b \leq a\}.$

Definition

A filter on a semilattice (\mathcal{A}, \cdot) is a nonempty subset $F \subseteq \mathcal{A}$ such that

- ▶ *F* is upward closed: $a \in F$ and $a \leq b$ implies $b \in F$,
- ▶ *F* is closed under binary meets: $a, b \in F$ implies $a \cdot b \in F$.

<u>Remark:</u> There is an order-embedding $(\mathcal{A}, \leq) \hookrightarrow (\operatorname{Filt}(\mathcal{A}), \supseteq)$, given by $a \mapsto a^{\uparrow} = \{b \in \mathcal{A} \mid a \leq b\}$

Definition

A filter on a semilattice (\mathcal{A}, \cdot) is a nonempty subset $F \subseteq \mathcal{A}$ such that

- ▶ *F* is upward closed: $a \in F$ and $a \leq b$ implies $b \in F$,
- ▶ *F* is closed under binary meets: $a, b \in F$ implies $a \cdot b \in F$.

<u>Remark:</u> There is an order-embedding $(\mathcal{A}, \leq) \hookrightarrow (\operatorname{Filt}(\mathcal{A}), \supseteq)$, given by $a \mapsto a^{\uparrow} = \{b \in \mathcal{A} \mid a \leq b\}$

If \mathcal{A} is a restriction-semilattice, then the operations \cdot and \triangleright may be extended to operations \cdot_F and \triangleright_F on $\operatorname{Filt}(\mathcal{A})$ as follows:

$$F \cdot_F G := \langle F \cdot G \rangle_{\mathsf{Filt}}$$
 and $F \rhd_F G := \langle F \rhd G \rangle_{\mathsf{Filt}}$.

(where $F \cdot G := \{a \cdot b \mid a \in F, b \in G\}$ and $F \triangleright G := \{a \triangleright b \mid a \in F, b \in G\}$)

Proposition

If \mathcal{A} is a restriction-semilattice, then so is $(\operatorname{Filt}(\mathcal{A}), \cdot_F, \rhd_F)$.

Proposition

If \mathcal{A} is a restriction-semilattice, then so is $(\operatorname{Filt}(\mathcal{A}), \cdot_F, \rhd_F)$.

In particular, the "domain containment" relation \leq on \mathcal{A} extends to $\operatorname{Filt}(\mathcal{A})$, and we have:

- ▶ The relation \leq on $\operatorname{Filt}(\mathcal{A})$ is a partial order that contains \supseteq .
- The relations ≤ and ⊇ coincide on each upset
 F[↑] := {G ∈ Filt(A) | F ⊆ G}.

Maximal filters

A filter is maximal if it is proper and \subseteq -maximal among all proper filters.

Proposition

Let \mathcal{A} be a subtraction algebra, $a \in \mathcal{A}$. There is a bijection between the maximal filters of a^{\downarrow} and the maximal filters of \mathcal{A} that contain a:

- ▶ if $F \subseteq A$ is maximal and $a \in F$, then $F \cap a^{\downarrow}$ is a maximal filter of a^{\downarrow} ,
- ▶ if $G \subseteq a^{\downarrow}$ is a maximal filter of a^{\downarrow} , then G^{\uparrow} is a maximal filter of A.

Maximal filters

A filter is maximal if it is proper and \subseteq -maximal among all proper filters.

Proposition

Let \mathcal{A} be a subtraction algebra, $a \in \mathcal{A}$. There is a bijection between the maximal filters of a^{\downarrow} and the maximal filters of \mathcal{A} that contain a:

if F ⊆ A is maximal and a ∈ F, then F ∩ a[↓] is a maximal filter of a[↓],
 if G ⊂ a[↓] is a maximal filter of a[↓], then G[↑] is a maximal filter of A.

Corollary

A filter F is maximal if and only if for all a ∈ F, b ∈ A, precisely one of a · b and a − b belongs to F.

Maximal filters

A filter is maximal if it is proper and \subseteq -maximal among all proper filters.

Proposition

Let \mathcal{A} be a subtraction algebra, $a \in \mathcal{A}$. There is a bijection between the maximal filters of a^{\downarrow} and the maximal filters of \mathcal{A} that contain a:

if F ⊆ A is maximal and a ∈ F, then F ∩ a[↓] is a maximal filter of a[↓],
 if G ⊆ a[↓] is a maximal filter of a[↓], then G[↑] is a maximal filter of A.

Corollary

A filter F is maximal if and only if for all a ∈ F, b ∈ A, precisely one of a · b and a − b belongs to F.

Proof:

 $F \text{ maximal} \Longleftrightarrow F \cap a^{\downarrow} \text{ maximal} \Longleftrightarrow a \cdot b \in F \cap a^{\downarrow} \quad \lor \quad \overline{a \cdot b}^{a^{\downarrow}} \in F \cap a^{\downarrow}.$

Representation theorems

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

<u>Remark:</u> If A has a top element, that is, if A is a Boolean algebra, then θ gives the classical representation of a Boolean algebra as a field of sets.

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

 a^{θ} is a partial function:

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

a^{θ} is a partial function:

Since Filt(A) is a restriction-semilattice, the relations ~ and = coincide on each upset F[↑] = {G ∈ Filt(A) | F ⊆ G}.

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

a^{θ} is a partial function:

Since Filt(A) is a restriction-semilattice, the relations ~ and = coincide on each upset F[↑] = {G ∈ Filt(A) | F ⊆ G}.

► $(H, F), (H, G) \in a^{\theta} \implies F \sim G \text{ and } F, G \in (a^{\uparrow})^{\uparrow} \implies F = G.$

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

 θ preserves – :

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

 θ preserves – :

Let $H \sim F$. Then,

$$(H,F)\in a^ heta-b^ heta\iff a\in F$$
 and $b\notin F$

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

 θ preserves – :

Let $H \sim F$. Then,

 $(H,F) \in a^{\theta} - b^{\theta} \iff a \in F \text{ and } b \notin F \iff a - b \in F$

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{Filt}_{\max}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(H, F) \mid H \sim F \text{ and } a \in F\}$

is a representation of \mathcal{A} by partial functions.

 θ preserves – :

Let $H \sim F$. Then,

$$(H,F) \in a^{\theta} - b^{\theta} \iff a \in F \text{ and } b \notin F \iff a - b \in F$$

 $\iff (H,F) \in (a - b)^{\theta}.$

Representation of difference-restriction algebras

Let ${\mathcal A}$ be a difference-restriction algebra. Then, the assignment

 $heta:\mathcal{A}
ightarrow\mathcal{PF}(\mathrm{Filt}_{\mathrm{max}}(\mathcal{A})),\qquad a\mapsto a^{ heta}:=\{(H,F)\mid H\sim F ext{ and } a\in F\}$

is a representation of \mathcal{A} by partial functions.

Theorem

The class of $\{-, \triangleright\}$ -algebras representable by partial functions is a variety, axiomatised by the finite set of equations (Ax.1) – (Ax.5).

A representation $(\theta : \mathcal{A} \hookrightarrow \mathcal{PF}(X), a \mapsto a^{\theta})$ is:

- ▶ meet complete if for every *nonempty* subset $S \subseteq A$, if inf S exists then $\theta(\inf S) = \bigcap \theta[S],$
- ▶ join complete if for every subset $S \subseteq A$, if sup S exists, then $\theta(\sup S) = \bigcup \theta[S],$

• atomic if whenever $(x, y) \in a^{\theta}$, there is an atom z such that $(x, y) \in z^{\theta}$.

A representation $(\theta : \mathcal{A} \hookrightarrow \mathcal{PF}(X), a \mapsto a^{\theta})$ is:

▶ meet complete if for every *nonempty* subset $S \subseteq A$, if inf S exists then $\theta(\inf S) = \bigcap \theta[S]$,

▶ join complete if for every subset $S \subseteq A$, if sup S exists, then $\theta(\sup S) = \bigcup \theta[S],$

• atomic if whenever $(x, y) \in a^{\theta}$, there is an atom z such that $(x, y) \in z^{\theta}$.

Proposition

The following are equivalent:

- \blacktriangleright θ is meet complete,
- \blacktriangleright θ is join complete,
- \blacktriangleright θ is atomic.

C. Borlido (CMUC)

Difference-restriction algebras of partial functions

We say that \mathcal{A} is atomic if every nonzero element of \mathcal{A} is greater than or equal to an atom.

Corollary

If A has a complete representation then A is atomic.

We say that \mathcal{A} is atomic if every nonzero element of \mathcal{A} is greater than or equal to an atom.

Corollary

If \mathcal{A} has a complete representation then \mathcal{A} is atomic.

Proof: Let $\theta : \mathcal{A} \hookrightarrow \mathcal{PF}(X), a \mapsto a^{\theta}$ be a complete representation.

▶ If $a \neq 0$, then $a^{\theta} \neq \emptyset$. Pick $(x, y) \in a^{\theta}$.

We say that ${\mathcal A}$ is atomic if every nonzero element of ${\mathcal A}$ is greater than or equal to an atom.

Corollary

If \mathcal{A} has a complete representation then \mathcal{A} is atomic.

Proof: Let $\theta : \mathcal{A} \hookrightarrow \mathcal{PF}(X), a \mapsto a^{\theta}$ be a complete representation.

- ▶ If $a \neq 0$, then $a^{\theta} \neq \emptyset$. Pick $(x, y) \in a^{\theta}$.
- ▶ θ complete $\iff \theta$ atomic $\implies (x, y) \in z^{\theta}$ for some atom z.

We say that ${\mathcal A}$ is atomic if every nonzero element of ${\mathcal A}$ is greater than or equal to an atom.

Corollary

If \mathcal{A} has a complete representation then \mathcal{A} is atomic.

Proof: Let $\theta : \mathcal{A} \hookrightarrow \mathcal{PF}(X), a \mapsto a^{\theta}$ be a complete representation.

- ▶ If $a \neq 0$, then $a^{\theta} \neq \emptyset$. Pick $(x, y) \in a^{\theta}$.
- ▶ θ complete $\iff \theta$ atomic $\implies (x, y) \in z^{\theta}$ for some atom z.
- $\blacktriangleright (x,y) \in a^{\theta} \cap z^{\theta} = (a \cdot z)^{\theta} \Longrightarrow (a \cdot z)^{\theta} \neq \emptyset \Longrightarrow a \cdot z \neq 0 \Longrightarrow z < a \quad \Box$

Proposition

Let $\mathcal A$ be an atomic difference-restriction algebra. Then, the assignment

$$heta:\mathcal{A} o\mathcal{P\!F}(\mathrm{At}(\mathcal{A})), \qquad \mathsf{a}\mapsto\mathsf{a}^{ heta}:=\{(x,y)\mid\ x\sim y \ \ \mathsf{and} \ \ y\leq \mathsf{a}\}$$

is a complete representation of \mathcal{A} by partial functions.

Proposition

Let $\mathcal A$ be an atomic difference-restriction algebra. Then, the assignment

$$heta:\mathcal{A} o\mathcal{PF}(\mathrm{At}(\mathcal{A})), \qquad \mathsf{a}\mapsto\mathsf{a}^ heta:=\{(x,y)\mid\ x\sim y \ \ \mathsf{and} \ \ y\leq \mathsf{a}\}$$

is a complete representation of \mathcal{A} by partial functions.

<u>Remark:</u> If A is a Boolean algebra, then θ gives the classical *complete* representation of a Boolean algebra as a field of sets.

Proposition

Let $\mathcal A$ be an atomic difference-restriction algebra. Then, the assignment

 $\theta: \mathcal{A} \to \mathcal{PF}(\operatorname{At}(\mathcal{A})), \qquad a \mapsto a^{\theta} := \{(x, y) \mid x \sim y \text{ and } y \leq a\}$

is a complete representation of \mathcal{A} by partial functions.

<u>Remark:</u> If A is a Boolean algebra, then θ gives the classical *complete* representation of a Boolean algebra as a field of sets.

Theorem

The class of $\{-, \rhd\}$ -algebras that are completely representable by partial functions is axiomatised by the finite set of equations (Ax.1) – (Ax.5) together with the $\forall \exists \forall$ first-order formula stating that the algebra is atomic.

C. Borlido (CMUC)

Difference-restriction algebras of partial functions

Proposition

The class of $\{-, \rhd\}$ -algebras that are completely representable by partial functions is not axiomatisable by any $\exists \forall \exists$ first-order theory.

Proposition

The class of $\{-, \triangleright\}$ -algebras that are completely representable by partial functions is not axiomatisable by any $\exists \forall \exists$ first-order theory.

Proof:

If (B, 0, 1, ∧, ¬) is a Boolean algebra, then setting
 a − b := a ∧ ¬b and a ⊳ b := a ∧ b
 defines a difference-restriction algebra structure on B (with a ⋅ b = a ∧ b),

Proposition

The class of $\{-, \triangleright\}$ -algebras that are completely representable by partial functions is not axiomatisable by any $\exists \forall \exists$ first-order theory.

Proof:

- If (B, 0, 1, ∧, ¬) is a Boolean algebra, then setting
 a − b := a ∧ ¬b and a ⊳ b := a ∧ b
 defines a difference-restriction algebra structure on B (with a ⋅ b = a ∧ b),
- ▶ B is atomic as a Boolean algebra if and only if it is atomic as a differencerestriction algebra (the underlying posets are the same),

Proposition

The class of $\{-, \triangleright\}$ -algebras that are completely representable by partial functions is not axiomatisable by any $\exists \forall \exists$ first-order theory.

Proof:

- If (B, 0, 1, ∧, ¬) is a Boolean algebra, then setting
 a − b := a ∧ ¬b and a ⊳ b := a ∧ b
 defines a difference-restriction algebra structure on B (with a ⋅ b = a ∧ b),
- ▶ B is atomic as a Boolean algebra if and only if it is atomic as a differencerestriction algebra (the underlying posets are the same),
- ► there are Boolean algebras B and B' that satisfy the same ∃∀∃ first-order theory, with B atomic and B' not atomic (McLean 2017).

Thank you for your attention!