On presheaf submonads of quantale enriched categories

Carlos Fitas

Universidade de Coimbra

23/06/2022
(this talk is based on joint work with Maria Manuel Clementino)

Relations

A relation r from a set X to a set Y, gives us a way of discerning which elements $x \in X$ and $y \in Y$ are r-related, which is usually denoted by $x r y$.

We may present a relation r as a subset or as a two-valued map:

A relation r from a set X to a set Y, gives us a way of discerning which elements $x \in X$ and $y \in Y$ are r-related, which is usually denoted by $x r y$.

We may present a relation r as a subset or as a two-valued map:

$$
r \subseteq X \times Y, \quad r: X \times Y \rightarrow \mathbf{2}=\{\perp, \top\}
$$

x r y may then be written as

A relation r from a set X to a set Y, gives us a way of discerning which elements $x \in X$ and $y \in Y$ are r-related, which is usually denoted by $x r y$.

We may present a relation r as a subset or as a two-valued map:

$$
r \subseteq X \times Y, \quad r: X \times Y \rightarrow \mathbf{2}=\{\perp, \top\}
$$

$x r y$ may then be written as

$$
(x, y) \in r, \quad r(x, y)=T .
$$

Relations

We will write $r: X \mapsto Y$ for a r a relation from X to Y. We may compose r with $s: Y \longrightarrow Z$ using the usual relational composition:

$$
x(s \cdot r) z \Leftrightarrow \exists y \in Y(x r y \& y s z) .
$$

Equivalently, this may be written as

We will write $r: X>Y$ for a r a relation from X to Y. We may compose r with $s: Y \longrightarrow Z$ using the usual relational composition:

$$
x(s \cdot r) z \Leftrightarrow \exists y \in Y(x r y \& y s z) .
$$

Equivalently, this may be written as

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \wedge s(y, z)
$$

Orders

An (pre)order on a set X is a relation $a: X \longrightarrow X$ such that,

$$
a \cdot a \leq a \quad \text { and } \quad 1_{X} \leq a .
$$

That is, a is a transitive and reflexive relation on X. This may be written as

$$
x \leq y \& y \leq z \Rightarrow x \leq z \quad \text { and } \quad x \leq x,
$$

or equivalently, when presenting r as a map $r: X \times X \rightarrow 2$ $a(x, y) \wedge a(y, z) \leq a(x, z) \quad$ and $\quad \top \leq a(x, x)$.

There is a clear similarity with these requirements and those of a (quasi)metric a $[0, \infty]$ on X

$$
a(x, y)+a(y, z) \geq a(x, z) \quad \text { and } \quad 0 \geq a(x, x) .
$$

Orders

An (pre) order on a set X is a relation $a: X \longrightarrow X$ such that,

$$
a \cdot a \leq a \quad \text { and } \quad 1_{X} \leq a .
$$

That is, a is a transitive and reflexive relation on X. This may be written as

$$
x \leq y \& y \leq z \Rightarrow x \leq z \quad \text { and } \quad x \leq x,
$$

or equivalently, when presenting r as a map $r: X \times X \rightarrow \mathbf{2}$

$$
a(x, y) \wedge a(y, z) \leq a(x, z) \quad \text { and } \quad \top \leq a(x, x) .
$$

There is a clear similarity with these requirements and those of a (quasi)metric $a(x, y)+a(y, z) \geq a(x, z) \quad$ and $\quad 0 \geq a(x, x)$.

Orders

An (pre)order on a set X is a relation $a: X \longrightarrow X$ such that,

$$
a \cdot a \leq a \quad \text { and } \quad 1_{X} \leq a .
$$

That is, a is a transitive and reflexive relation on X. This may be written as

$$
x \leq y \& y \leq z \Rightarrow x \leq z \quad \text { and } \quad x \leq x,
$$

or equivalently, when presenting r as a map $r: X \times X \rightarrow \mathbf{2}$

$$
a(x, y) \wedge a(y, z) \leq a(x, z) \quad \text { and } \quad \top \leq a(x, x) .
$$

There is a clear similarity with these requirements and those of a (quasi)metric $a: X \times X \rightarrow[0, \infty]$ on X :

$$
a(x, y)+a(y, z) \geq a(x, z) \quad \text { and } \quad 0 \geq a(x, x) .
$$

Quantales

In the previous example we replaced 2 with $[0, \infty]_{+}$.
The generalized framework encompassing both examples that we are interested is provided by a quantale.

A quantale $V=(V, \leq, \otimes, k)$ is a complete lattice equipped with a binary operation \otimes (instead of \wedge or +) respecting arbitrary joins in each variable and a \otimes-neutral element k (instead of T or 0).

As a category V is a "thin"symmetric monoidal-closed category, with internal homs hom (v, w) determined by

$$
u \leq \operatorname{hom}(v, w) \Leftrightarrow u \otimes v \leq w .
$$

A few examples:

- $2=(\{\perp, T\}, \leq, \wedge, T) ;$
- The powerset $(\mathcal{P} X, \subseteq, \cap, X)$, for any set X.
- The Lawvere quantale $[0, \infty]_{+}=([0, \infty], \geq,+, 0)$;
- $[0,1]_{\times}=([0,1], \leq, \times, 1)$.

Quantales

In the previous example we replaced 2 with $[0, \infty]_{+}$.
The generalized framework encompassing both examples that we are interested is provided by a quantale.

A quantale $V=(V, \leq, \otimes, k)$ is a complete lattice equipped with a binary operation \otimes (instead of \wedge or +) respecting arbitrary joins in each variable and a \otimes-neutral element k (instead of T or 0).

As a category V is a "thin" symmetric monoidal-closed category, with internal homs hom (v, w) determined by

A few examples:

- $2=(\{\perp, \top\}, \leq, \wedge, \top) ;$
- The powerset $(\mathcal{P} X, \subseteq, \cap, X)$, for any set X.
- The Lawvere quantale $[0, \infty]_{+}=([0, \infty], \geq,+, 0)$;

Quantales

In the previous example we replaced 2 with $[0, \infty]_{+}$.
The generalized framework encompassing both examples that we are interested is provided by a quantale.

A quantale $V=(V, \leq, \otimes, k)$ is a complete lattice equipped with a binary operation \otimes (instead of \wedge or +) respecting arbitrary joins in each variable and a \otimes-neutral element k (instead of T or 0).

As a category V is a "thin" symmetric monoidal-closed category, with internal homs hom (v, w) determined by

$$
u \leq \operatorname{hom}(v, w) \Leftrightarrow u \otimes v \leq w .
$$

A few examples:

Quantales

In the previous example we replaced 2 with $[0, \infty]_{+}$.
The generalized framework encompassing both examples that we are interested is provided by a quantale.

A quantale $V=(V, \leq, \otimes, k)$ is a complete lattice equipped with a binary operation \otimes (instead of \wedge or +) respecting arbitrary joins in each variable and a \otimes-neutral element k (instead of T or 0).

As a category V is a "thin" symmetric monoidal-closed category, with internal homs hom ($v, w)$ determined by

$$
u \leq \operatorname{hom}(v, w) \Leftrightarrow u \otimes v \leq w .
$$

A few examples:

- $2=(\{\perp, \top\}, \leq, \wedge, \top)$;
- The powerset $(\mathcal{P} X, \subseteq, \cap, X)$, for any set X.
- The Lawvere quantale $[0, \infty]_{+}=([0, \infty], \geq,+, 0)$;
- $[0,1]_{\times}=([0,1], \leq, \times, 1)$.

V-relations

As we just seen, a relation $r: X \longrightarrow Y$ is a map $X \times Y \rightarrow \mathbf{2}$.
A V-relation $r: X \rightarrow Y$ is a map $X \times Y \rightarrow V$.
Given two V-relations $r: X \longrightarrow Y$, s: $Y \rightarrow Z$ their composition
$s \cdot r: X>Z$ is given by

Sets and V-relations define the category V-Rel.
The order from V induces an order on V-relations $r, r^{\prime}: X \longrightarrow Y$,

for any sets X and Y.

V-relations

As we just seen, a relation $r: X \longrightarrow Y$ is a map $X \times Y \rightarrow \mathbf{2}$.
A V-relation $r: X \rightarrow Y$ is a map $X \times Y \rightarrow V$.
Given two V-relations $r: X \longrightarrow Y$, s: $Y \nrightarrow Z$ their composition $s \cdot r: X \mapsto Z$ is given by

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

Sets and V-relations define the category V-Rel.
The order from V induces an order on V-relations $r, r^{\prime}: X \hookrightarrow Y$,
for any sets X and Y.

V-relations

As we just seen, a relation $r: X \longrightarrow Y$ is a map $X \times Y \rightarrow \mathbf{2}$.
A V-relation $r: X \rightarrow Y$ is a map $X \times Y \rightarrow V$.
Given two V-relations $r: X \longrightarrow Y$, s: $Y \nrightarrow Z$ their composition $s \cdot r: X \mapsto Z$ is given by

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

Sets and V-relations define the category V-Rel.
The order from V induces an order on V-relations $r, r^{\prime}: X \longrightarrow Y$,
for any sets X and Y.

As we just seen, a relation $r: X \longrightarrow Y$ is a map $X \times Y \rightarrow \mathbf{2}$.
A V-relation $r: X \rightarrow Y$ is a map $X \times Y \rightarrow V$.
Given two V-relations $r: X \longrightarrow Y$, s: $Y \longrightarrow Z$ their composition $s \cdot r: X \mapsto Z$ is given by

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

Sets and V-relations define the category V-Rel.
The order from V induces an order on V-relations $r, r^{\prime}: X \mapsto Y$,

$$
r \leq r^{\prime} \quad \Leftrightarrow \quad \forall x \in X, y \in Y: r(x, y) \leq r^{\prime}(x, y)
$$

for any sets X and Y.
V-Rel also comes with an involution $(-)^{\circ}$ defined by

$$
r^{\circ}(y, x)=r(x, y)
$$

for any $x \in X, y \in Y$.
Each map $f: X \rightarrow Y$ induces the V-relation $f_{0}: X \longrightarrow Y$

Moreover, for every map $f: X \rightarrow Y$ we have that

that is, $f_{\circ} \dashv f^{\circ}$ in V-Rel.
V-Rel also comes with an involution $(-)^{\circ}$ defined by

$$
r^{\circ}(y, x)=r(x, y)
$$

for any $x \in X, y \in Y$.
Each map $f: X \rightarrow Y$ induces the V-relation $f_{\mathrm{o}}: X \mapsto Y$

$$
f_{0}(x, y)= \begin{cases}k & \text { if } f(x)=y \\ \perp & \text { otherwise }\end{cases}
$$

Moreover, for every map $f: X \rightarrow Y$ we have that
that is, $f_{\circ} \dashv f^{\circ}$ in V-Rel.
V-Rel also comes with an involution $(-)^{\circ}$ defined by

$$
r^{\circ}(y, x)=r(x, y)
$$

for any $x \in X, y \in Y$.
Each map $f: X \rightarrow Y$ induces the V-relation $f_{\circ}: X \mapsto Y$

$$
f_{0}(x, y)= \begin{cases}k & \text { if } f(x)=y \\ \perp & \text { otherwise }\end{cases}
$$

Moreover, for every map $f: X \rightarrow Y$ we have that

$$
f_{\circ} \cdot f^{\circ} \leq 1_{Y} \quad \text { and } \quad 1_{X} \leq f^{\circ} \cdot f_{\circ},
$$

that is, $f_{\circ} \dashv f^{\circ}$ in V-Rel.

V-categories

A (pre)order (X, a) is a set X equipped with a relation $a: X \times X \rightarrow \mathbf{2}$ such that,

$$
a \cdot a \leq a \quad \text { and } \quad 1_{X} \leq a .
$$

A V-category (X, a) is a set X equipped with a V-relation $a: X \times X \rightarrow V$,

 such thatEquivalently

$$
a(x, y) \otimes a(y, z) \leq a(x, z) \quad \text { and } \quad k \leq a(x, x)
$$

holds, for any $x, y, z \in X$.

V-categories

A (pre)order (X, a) is a set X equipped with a relation $a: X \times X \rightarrow \mathbf{2}$ such that,

$$
a \cdot a \leq a \quad \text { and } \quad 1_{X} \leq a .
$$

A V-category (X, a) is a set X equipped with a V-relation a : $X \times X \rightarrow V$, such that

$$
a \cdot a \leq a \quad \text { and } \quad 1_{x} \leq a .
$$

Equivalently

$$
a(x, y) \otimes a(y, z) \leq a(x, z) \quad \text { and } \quad k \leq a(x, x)
$$

holds, for any $x, y, z \in X$.

A morphism in $\operatorname{Ord} f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
x \text { a } y \leq f(x) b f(y),
$$

for all $x, y \in X$.

A V-functor $f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying $a(x, y) \leq b(f(x), f(y))$,
for all $x, y \in X$.
A V-functor is called fully faithful if the inequality is also an equality.
V-categories and V-functors define the category V-Cat.

A morphism in Ord $f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
x \text { a } y \leq f(x) b f(y)
$$

for all $x, y \in X$.

A V-functor $f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
a(x, y) \leq b(f(x), f(y))
$$

for all $x, y \in X$.
A V-functor is called fully faithful if the inequality is also an equality.
V-categories and V-functors define the category V-Cat.

A morphism in $\operatorname{Ord} f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
x \text { a } y \leq f(x) b f(y)
$$

for all $x, y \in X$.

A V-functor $f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
a(x, y) \leq b(f(x), f(y)),
$$

for all $x, y \in X$.
A V-functor is called fully faithful if the inequality is also an equality.
V-categories and V-functors define the category V-Cat.

A morphism in $\operatorname{Ord} f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
x a y \leq f(x) b f(y)
$$

for all $x, y \in X$.

A V-functor $f:(X, a) \rightarrow(Y, b)$ is a map $f: X \rightarrow Y$ satisfying

$$
a(x, y) \leq b(f(x), f(y)),
$$

for all $x, y \in X$.
A V-functor is called fully faithful if the inequality is also an equality.
V-categories and V-functors define the category V-Cat.

V-Cat

The quantale V is itself a V-category when equipped with its internal hom.
Given a V-category (X, a) its opposite V-category is $(X, a)^{\mathrm{op}}=\left(X, a^{\circ}\right)$.
The order from V induces an order in each V-category (X, a) as follows

$$
x \leq y \Leftrightarrow k \leq a(x, y) .
$$

This order makes every V-functor monotone.
Now, given V-categories (X, a), ($Y, b)$, we order the hom-set V-Cat (X, Y) pointwise using the order inherited from Y

$$
f \leq g \Leftrightarrow f(x) \leq g(x) \quad \forall x \in X,
$$

for any V-functors $f, g: X \rightarrow Y$.
V-Cat is a symmetric monoidal-closed category, with the unit given by $E=(\{*\}, k)$, where $k(*, *)=k$.

V-Cat

The quantale V is itself a V-category when equipped with its internal hom.
Given a V-category (X, a) its opposite V-category is $(X, a)^{\mathrm{op}}=\left(X, a^{\circ}\right)$.
The order from V induces an order in each V-category (X, a) as follows $x \leq y \Leftrightarrow k \leq a(x, y)$.

This order makes every V-functor monotone.
Now, given V-categories $(X, a),(Y, b)$, we order the hom-set V-Cat (X, Y) pointwise using the order inherited from Y
for any V-functors $f, g: X \rightarrow Y$.
V-Cat is a symmetric monoidal-closed category, with the unit given by $E=(\{*\}, k)$, where $k(*, *)=k$

The quantale V is itself a V-category when equipped with its internal hom.
Given a V-category (X, a) its opposite V-category is $(X, a)^{\mathrm{op}}=\left(X, a^{\circ}\right)$.
The order from V induces an order in each V-category (X, a) as follows

$$
x \leq y \Leftrightarrow k \leq a(x, y) .
$$

This order makes every V-functor monotone.
Now, given V-categories $(X, a),(Y, b)$, we order the hom-set V-Cat (X, Y) pointwise using the order inherited from Y
for any V-functors $f, g: X \rightarrow Y$.
V-Cat is a symmetric monoidal-closed category, with the unit given by $E=(\{*\}, k)$, where $k(*, *)=k$.

The quantale V is itself a V-category when equipped with its internal hom.
Given a V-category (X, a) its opposite V-category is $(X, a)^{\mathrm{op}}=\left(X, a^{\circ}\right)$.
The order from V induces an order in each V-category (X, a) as follows

$$
x \leq y \Leftrightarrow k \leq a(x, y) .
$$

This order makes every V-functor monotone.
Now, given V-categories $(X, a),(Y, b)$, we order the hom-set V-Cat (X, Y) pointwise using the order inherited from Y :

$$
f \leq g \Leftrightarrow f(x) \leq g(x) \quad \forall x \in X
$$

for any V-functors $f, g: X \rightarrow Y$.
V-Cat is a symmetric monoidal-closed category, with the unit given by $E=(\{*\}, k)$, where $k(*, *)=k$.

V-Dist

Given two V-categories $(X, a),(Y, b)$, a V-distributor $\psi: X \rightarrow Y$ is a V-relation $\psi: X \longrightarrow Y$ satisfying

$$
b \cdot \psi \cdot a \leq \psi
$$

Equivalently

$$
a\left(x^{\prime}, x\right) \otimes \psi(x, y) \otimes b\left(y, y^{\prime}\right) \leq \psi\left(x^{\prime}, y^{\prime}\right)
$$

holds for any $x, x^{\prime} \in X, y, y^{\prime} \in Y$.

Under relational composition, V-categories and V-distributors form the category V-Dist.
In V-Dist, the identity morphism for each V-category is its structure.
Moreover, V-Dist inherits the 2-categorical structure of V-Rel.

Given two V-categories $(X, a),(Y, b)$, a V-distributor $\psi: X \mapsto Y$ is a V-relation $\psi: X \longrightarrow Y$ satisfying

$$
b \cdot \psi \cdot a \leq \psi
$$

Equivalently

$$
a\left(x^{\prime}, x\right) \otimes \psi(x, y) \otimes b\left(y, y^{\prime}\right) \leq \psi\left(x^{\prime}, y^{\prime}\right)
$$

holds for any $x, x^{\prime} \in X, y, y^{\prime} \in Y$.
Under relational composition, V-categories and V-distributors form the category V-Dist.
In V-Dist, the identity morphism for each V-category is its structure.
Moreover, V-Dist inherits the 2-categorical structure of V-Rel.

Given two V-categories $(X, a),(Y, b)$, a V-distributor $\psi: X \mapsto Y$ is a V-relation $\psi: X \longrightarrow Y$ satisfying

$$
b \cdot \psi \cdot a \leq \psi
$$

Equivalently

$$
a\left(x^{\prime}, x\right) \otimes \psi(x, y) \otimes b\left(y, y^{\prime}\right) \leq \psi\left(x^{\prime}, y^{\prime}\right)
$$

holds for any $x, x^{\prime} \in X, y, y^{\prime} \in Y$.
Under relational composition, V-categories and V-distributors form the category V-Dist.
In V-Dist, the identity morphism for each V-category is its structure.
Moreover, V-Dist inherits the 2-categorical structure of V-Rel.

$V-\operatorname{Dist}(X, Y) \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right)$

Given two V-categories $(X, a),(Y, b)$ and a V-relation $\varphi: X \rightarrow Y$ the following are equivalent:

- $\varphi:(X, a) \longrightarrow(Y, b)$ is a V-distributor;
- $\varphi:(X, a)^{\text {op }} \otimes(Y, b) \rightarrow(V$, hom $)$ is a V-functor.

This allows us to define a V-category structure on V - $\operatorname{Dist}(X, Y)$ by using the structure of V-Cat $\left(X^{\mathrm{op}} \otimes Y, V\right)$.

Note that, in particular
$V-\operatorname{Dist}(X, E) \cong V-\operatorname{Cat}\left(X^{\circ p} \otimes E, V\right) \cong V-\operatorname{Cat}\left(X^{\circ p}, V\right)$.

$V-\operatorname{Dist}(X, Y) \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right)$

Given two V-categories $(X, a),(Y, b)$ and a V-relation $\varphi: X \longrightarrow Y$ the following are equivalent:

- $\varphi:(X, a) \rightarrow(Y, b)$ is a V-distributor;
- $\varphi:(X, a)^{\mathrm{OP}} \otimes(Y, b) \rightarrow(V$, hom $)$ is a V-functor.

This allows us to define a V-category structure on V-Dist (X, Y) by using the structure of V - Cat $\left(X^{\circ \mathrm{P}} \otimes Y, V\right)$.

Note that, in particular

$V-\operatorname{Dist}(X, Y) \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right)$

Given two V-categories $(X, a),(Y, b)$ and a V-relation $\varphi: X \longrightarrow Y$ the following are equivalent:

- $\varphi:(X, a) \rightarrow(Y, b)$ is a V-distributor;
- $\varphi:(X, a)^{\mathrm{OP}} \otimes(Y, b) \rightarrow(V$, hom $)$ is a V-functor.

This allows us to define a V-category structure on V - $\operatorname{Dist}(X, Y)$ by using the structure of V - Cat $\left(X^{\circ p} \otimes Y, V\right)$.

Note that, in particular

$$
V-\operatorname{Dist}(X, E) \cong V-\operatorname{Cat}\left(X^{\circ p} \otimes E, V\right) \cong V-\operatorname{Cat}\left(X^{\circ p}, V\right)
$$

V-Dist

Every V-functor $f:(X, a) \rightarrow(Y, b)$ induces a pair of V-distributors

$$
f_{*}=b \cdot f_{\circ}: X \multimap Y \quad \text { and } \quad f^{*}=f^{\circ} \cdot b: Y \multimap X
$$

Moreover, we have the 2 -functors $(-)_{*}:$ V-Cat \rightarrow V-Disto ${ }^{\text {co }}$ and $(-)^{*}: V-C a t ~ \rightarrow V-$ Dist $^{\circ p}$.
which map objects identically.

V-Dist

Every V-functor $f:(X, a) \rightarrow(Y, b)$ induces a pair of V-distributors

$$
f_{*}=b \cdot f_{0}: X \longrightarrow Y \quad \text { and } \quad f^{*}=f^{\circ} \cdot b: Y \leadsto X
$$

Moreover, we have the 2 -functors

$$
(-)_{*}: V \text {-Cat } \rightarrow V \text {-Dist }{ }^{c \circ} \quad \text { and } \quad(-)^{*}: V \text {-Cat } \rightarrow V \text {-Dist }{ }^{\circ p},
$$

which map objects identically.

Presheaf monad

The adjunction

induces the presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ on V-Cat,

- $\mathfrak{n} X(x)=a(-, x)$;

for any $x \in X, f:(X, a) \rightarrow(Y, b), \varphi \in P X$ and $\psi \in P P X$.

The adjunction

induces the presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ on V-Cat, where

- $P X=V-\operatorname{Cat}\left(X^{\mathrm{op}}, V\right) \cong V-\operatorname{Dist}(X, E)$.
- $P(f)(\varphi)=V-\operatorname{Dist}\left(f^{*}, E\right)(\varphi)=\varphi \cdot f^{*}=Y \stackrel{f^{*}}{\rightarrow} X \stackrel{\varphi}{\mapsto} E$;
- $\mathfrak{y} X(x)=a(-, x)$;

The adjunction

induces the presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ on V-Cat, where

- $P X=V-\operatorname{Cat}\left(X^{\circ p}, V\right) \cong V-\operatorname{Dist}(X, E)$.
- $P(f)(\varphi)=V-\operatorname{Dist}\left(f^{*}, E\right)(\varphi)=\varphi \cdot f^{*}=Y \xrightarrow{f^{*}} X \xrightarrow{\varphi} E$;

The adjunction

induces the presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ on V-Cat, where

- $P X=V-\operatorname{Cat}\left(X^{\circ \mathrm{p}}, V\right) \cong V-\operatorname{Dist}(X, E)$.
- $P(f)(\varphi)=V-\operatorname{Dist}\left(f^{*}, E\right)(\varphi)=\varphi \cdot f^{*}=Y \xrightarrow{f^{*}} X \xrightarrow{\varphi} E$;
- $\mathfrak{y}_{X}(x)=a(-, x)$;

The adjunction

induces the presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ on V-Cat, where

- $P X=V-\operatorname{Cat}\left(X^{\text {op }}, V\right) \cong V-\operatorname{Dist}(X, E)$.
- $P(f)(\varphi)=V-\operatorname{Dist}\left(f^{*}, E\right)(\varphi)=\varphi \cdot f^{*}=Y \stackrel{f^{*}}{\bullet} X \xrightarrow{\varphi} E$;
- $\mathfrak{y} x(x)=a(-, x)$;
- $\mathfrak{m}_{X}(\Psi)=\psi \cdot(\mathfrak{y} X)_{*}=X \xrightarrow{\left(\mathfrak{n}_{x}\right)_{*}} P X \xrightarrow{\psi} E$.
for any $x \in X, f:(X, a) \rightarrow(Y, b), \varphi \in P X$ and $\psi \in P P X$.

Presheaf monad

Since

$$
\begin{aligned}
V-\operatorname{Dist}(X, Y) & \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right) \\
& \cong V-\operatorname{Cat}\left(Y, V-\operatorname{Cat}\left(X^{\mathrm{op}}, V\right)\right) \\
& =V-\operatorname{Cat}(Y, P X)
\end{aligned}
$$

it follows that any V-distributor $X \rightarrow Y$ can be seen as a morphism $Y \rightarrow X$ in the Kleisli category $\mathrm{KI}(\mathbb{P})$.

In fact, we have that V-Dist $\cong \mathrm{KI}(\mathbb{P})$.

This parallels nicely the fact that $V-\operatorname{ReI} \cong \operatorname{KI}\left(\mathbb{P}_{d}\right)$, where \mathbb{P}_{d} is the discrete presheaf monad on Set.

Since

$$
\begin{aligned}
V-\operatorname{Dist}(X, Y) & \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right) \\
& \cong V-\operatorname{Cat}\left(Y, V-\operatorname{Cat}\left(X^{\mathrm{op}}, V\right)\right) \\
& =V-\operatorname{Cat}(Y, P X)
\end{aligned}
$$

it follows that any V-distributor $X \mapsto Y$ can be seen as a morphism $Y \rightarrow X$ in the Kleisli category $\mathrm{KI}(\mathbb{P})$.

In fact, we have that V-Dist $\cong \mathrm{KI}(\mathbb{P})$.
This parallels nicely the fact that $V-\operatorname{ReI} \cong K I\left(\mathbb{P}_{d}\right)$, where \mathbb{P}_{d} is the discrete presheaf monad on Set.

Since

$$
\begin{aligned}
V-\operatorname{Dist}(X, Y) & \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right) \\
& \cong V-\operatorname{Cat}\left(Y, V-\operatorname{Cat}\left(X^{\mathrm{op}}, V\right)\right) \\
& =V-\operatorname{Cat}(Y, P X)
\end{aligned}
$$

it follows that any V-distributor $X \mapsto Y$ can be seen as a morphism $Y \rightarrow X$ in the Kleisli category $\mathrm{KI}(\mathbb{P})$.

In fact, we have that V-Dist $\cong \mathrm{KI}(\mathbb{P})$.
This parallels nicely the fact that $V-\operatorname{Rel} \cong K I\left(\mathbb{P}_{d}\right)$, where \mathbb{P}_{d} is the discrete presheaf monad on Set.

Since

$$
\begin{aligned}
V-\operatorname{Dist}(X, Y) & \cong V-\operatorname{Cat}\left(X^{\mathrm{op}} \otimes Y, V\right) \\
& \cong V-\operatorname{Cat}\left(Y, V-\operatorname{Cat}\left(X^{\mathrm{op}}, V\right)\right) \\
& =V-\operatorname{Cat}(Y, P X)
\end{aligned}
$$

it follows that any V-distributor $X \mapsto Y$ can be seen as a morphism $Y \rightarrow X$ in the Kleisli category $\operatorname{KI}(\mathbb{P})$.

In fact, we have that V-Dist $\cong \mathrm{KI}(\mathbb{P})$.
This parallels nicely the fact that V - $\operatorname{Rel} \cong \mathrm{KI}\left(\mathbb{P}_{d}\right)$, where \mathbb{P}_{d} is the discrete presheaf monad on Set.

A new Beck-Chevalley type condition

A commutative square in Set

is said to be a $(B C)$-square if the following diagram commutes in Rel

A commutative square in V-Cat

is said to be a $(B C)^{*}$-square if the following diagram commutes in V-Dist

(In fact, it's enough to verify that if $h^{*} \cdot f_{*} \leq I_{*} \cdot g^{*}$)

A new Beck-Chevalley type condition

It's well known that a map $f: X \rightarrow Y$ is a monomorphism if and only if

is a $(B C)$-square.

In parallel with this, a V-functor $(X, a) \rightarrow(Y, b)$ being fully faithful is equivalent to

being a ($B C)^{*}$-square.

$(B C)^{*}$ functors and $(B C)^{*}$ natural transformations

Consider the following:

- A Set-endofunctor is said to satisfy $(B C)$ if it preserves ($B C$)-squares.
- A natural transformation $\alpha: T \rightarrow T^{\prime}$ between Set-endofunctors satisfies ($B C$) if, for each morphism in Set, its naturality square is a ($B C$)-square.

Analogously, we define:
 - A V-Cat-endofunctor is said to satisfy $(B C)^{*}$ if it preserves $(B C)^{*}$-squares.
 - A natural transformation $\alpha: T \rightarrow T^{\prime}$ between V-Cat-endofunctors satisfies $(B C)^{*}$ if, for each morphism f in V-Cat, its naturality square is a $(B C)^{*}$-square.

$(B C)^{*}$ functors and $(B C)^{*}$ natural transformations

Consider the following:

- A Set-endofunctor is said to satisfy $(B C)$ if it preserves ($B C$)-squares.
- A natural transformation $\alpha: T \rightarrow T^{\prime}$ between Set-endofunctors satisfies ($B C$) if, for each morphism in Set, its naturality square is a ($B C$)-square.

Analogously, we define:

- A V-Cat-endofunctor is said to satisfy $(B C)^{*}$ if it preserves $(B C)^{*}$-squares.
- A natural transformation $\alpha: T \rightarrow T^{\prime}$ between V-Cat-endofunctors satisfies $(B C)^{*}$ if, for each morphism f in V-Cat, its naturality square is a ($B C)^{*}$-square.

A monad $\mathbb{T}=(T, \mu, \eta)$ on Set is said to:

- satisfy $(B C)$ if T and μ satisfy ($B C$).
- satisfy fully $(B C)$ if T, μ and η satisfy ($B C$).
\square
Theorem (Clementino, F)
The presheaf monad $\mathbb{P}=(P, m, \mathfrak{y})$ satisfies fully $(B C)^{*}$

A monad $\mathbb{T}=(T, \mu, \eta)$ on Set is said to:

- satisfy $(B C)$ if T and μ satisfy ($B C$).
- satisfy fully $(B C)$ if T, μ and η satisfy $(B C)$.

A monad $\mathbb{T}=(T, \mu, \eta)$ on V-Cat is said to:

- satisfy $(B C)^{*}$ if T and μ satisfy $(B C)^{*}$.
- satisfy fully $(B C)^{*}$ if T, μ and η satisfy $(B C)^{*}$.

A monad $\mathbb{T}=(T, \mu, \eta)$ on Set is said to:

- satisfy $(B C)$ if T and μ satisfy ($B C$).
- satisfy fully $(B C)$ if T, μ and η satisfy $(B C)$.

A monad $\mathbb{T}=(T, \mu, \eta)$ on V-Cat is said to:

- satisfy $(B C)^{*}$ if T and μ satisfy $(B C)^{*}$.
- satisfy fully $(B C)^{*}$ if T, μ and η satisfy $(B C)^{*}$.

Theorem (Clementino, F)

The presheaf monad $\mathbb{P}=(P, \mathfrak{m}, \mathfrak{y})$ satisfies fully $(B C)^{*}$.

$(B C)^{*}$ and lax idempotency

A monad $\mathbb{T}=(T, \mu, \eta)$ is lax idempotent if it satisfies $T \eta \leq \eta_{T}$.

Proposition (Clementino, F) Given a monad $\mathbb{T}=(T, \mu, \eta)$ on V-Cat, the following are equivalent: (i): \mathbb{T} is lax idempotent. (ii): For each V-category (X, a), the diagram

is a $(B C)^{*}$-square.

$(B C)^{*}$ and lax idempotency

A monad $\mathbb{T}=(T, \mu, \eta)$ is lax idempotent if it satisfies $T \eta \leq \eta_{T}$.

Proposition (Clementino, F)

Given a monad $\mathbb{T}=(T, \mu, \eta)$ on V-Cat, the following are equivalent:
(i): \mathbb{T} is lax idempotent.
(ii): For each V-category (X, a), the diagram

is a $(B C)^{*}$-square.

Recall that a monad morphism between two monads $(T, \mu, \eta),\left(T^{\prime}, \mu^{\prime}, \eta^{\prime}\right)$ on a category C is a natural transformation $\sigma: \mathbb{T} \rightarrow \mathbb{T}^{\prime}$ such that the following diagrams commute

A submonad of $(P, \mathfrak{m}, \mathfrak{y})$ is a monad (T, μ, η) on V-Cat with a monad morphism $\sigma: \mathbb{T} \rightarrow \mathbb{P}$ such that each σ_{X} is an embedding for every V category X.

Recall that a monad morphism between two monads $(T, \mu, \eta),\left(T^{\prime}, \mu^{\prime}, \eta^{\prime}\right)$ on a category C is a natural transformation $\sigma: \mathbb{T} \rightarrow \mathbb{T}^{\prime}$ such that the following diagrams commute

A submonad of $(P, \mathfrak{m}, \mathfrak{y})$ is a monad (T, μ, η) on V-Cat with a monad morphism $\sigma: \mathbb{T} \rightarrow \mathbb{P}$ such that each σ_{X} is an embedding for every V category X.

Submonads of the Presheaf monad - $(B C)^{*}$

Given a V-functor f, we have the adjunction

$$
f_{*} \dashv f^{*} .
$$

It follows that we have an adjunction

$$
P f=() \cdot f^{*} \dashv() \cdot f_{*}=Q f
$$

```
Theorem (Clementino, F)
For a monad TT on V-Cat, the following assertions are equivalent:
(i): }\mathbb{T}\mathrm{ is a submonad of }\mathbb{P}
(ii): }\mathbb{T}\mathrm{ is lax idempotent, }\eta\mathrm{ satisfies (BC)* and both }\etax\mathrm{ and Q \X · ท TX
    are fully faithful for each V-category ( }X,a)\mathrm{ .
```


Submonads of the Presheaf monad $-(B C)^{*}$

Given a V-functor f, we have the adjunction

$$
f_{*} \dashv f^{*} .
$$

It follows that we have an adjunction

$$
P f=() \cdot f^{*} \dashv() \cdot f_{*}=Q f
$$

Theorem (Clementino, F)

For a monad \mathbb{T} on V-Cat, the following assertions are equivalent:
(i): \mathbb{T} is a submonad of \mathbb{P}.
(ii): \mathbb{T} is lax idempotent, η satisfies $(B C)^{*}$ and both η_{X} and $Q \eta_{X} \cdot \mathfrak{y}_{T X}$ are fully faithful for each V-category (X, a).

Submonads of the Presheaf monad - Admissible classes

We say that a Φ class of V-distributors is admissible if, for every V-functor $f: X \rightarrow Y$ and V-distributors $\varphi: Z \multimap Y$ and $\psi: X \mapsto Z$ in Φ,
(i): $f^{*} \in \Phi$;
(ii): $\psi \cdot f^{*} \in \Phi$ and $f^{*} \cdot \varphi \in \Phi$;
(iii): $\varphi \in \Phi \Leftrightarrow(\forall y \in Y) y^{*} \cdot \varphi \in \Phi$;
(iv): for every V-distributor $\gamma: P X \longrightarrow E$, if the restriction of γ to ΦX belongs to Φ, then $\gamma \cdot(\mathfrak{y} x)_{*} \in \Phi$.
Given a class of Φ of V-distributors, for every V-category X let

have the V-category structure inherited from $P X$

We say that a Φ class of V-distributors is admissible if, for every V-functor $f: X \rightarrow Y$ and V-distributors $\varphi: Z \multimap Y$ and $\psi: X \mapsto Z$ in Φ,
(i): $f^{*} \in \Phi$;
(ii): $\psi \cdot f^{*} \in \Phi$ and $f^{*} \cdot \varphi \in \Phi$;
(iii): $\varphi \in \Phi \Leftrightarrow(\forall y \in Y) y^{*} \cdot \varphi \in \Phi$;
(iv): for every V-distributor $\gamma: P X \longrightarrow E$, if the restriction of γ to ΦX belongs to Φ, then $\gamma \cdot(\mathfrak{y} x)_{*} \in \Phi$.
Given a class of Φ of V-distributors, for every V-category X let

$$
\Phi X=\{\varphi: X \longrightarrow E \mid \varphi \in \Phi\}
$$

have the V-category structure inherited from $P X$.

We say that a Φ class of V-distributors is admissible if, for every V-functor $f: X \rightarrow Y$ and V-distributors $\varphi: Z \rightarrow Y$ and $\psi: X \rightarrow Z$ in Φ,
(i): $f^{*} \in \Phi$;
(ii): $\psi \cdot f^{*} \in \Phi$ and $f^{*} \cdot \varphi \in \Phi$;
(iii): $\varphi \in \Phi \Leftrightarrow(\forall y \in Y) y^{*} \cdot \varphi \in \Phi$;
(iv): for every V-distributor $\gamma: P X \multimap E$, if the restriction of γ to ΦX belongs to Φ, then $\gamma \cdot\left(\mathfrak{y}_{X}\right)_{*} \in \Phi$.
Given a class of Φ of V-distributors, for every V-category X let

$$
\Phi X=\{\varphi: X \rightarrow E \mid \varphi \in \Phi\}
$$

have the V-category structure inherited from $P X$.

Theorem (Clementino, Hofmann)

For a monad \mathbb{T} on V-Cat, the following assertions are equivalent:
(i): T is isomorphic to Φ, for some admissible class of V-distributors Φ.
(ii): \mathbb{T} is a submonad of \mathbb{P}.

Eilenberg-Moore Algebras

Let \mathbb{T} be lax idempotent monad on V-Cat.

For a V-category X, the following assertions are equivalent:
(i): $\alpha: T X \rightarrow X$ is a \mathbb{T}-algebra structure on X;
(ii): there is a V-functor $\alpha: T X \rightarrow X$ such that $\alpha \cdot \eta_{X}=1_{X}$;
(iii): $\alpha: T X \rightarrow X$ is a split epimorphism in V-Cat.

Given \mathbb{T}-algebras (X, α) and (Y, β)
for every V-functor $f: X \rightarrow Y$.

Eilenberg-Moore Algebras

Let \mathbb{T} be lax idempotent monad on V-Cat.
For a V-category X, the following assertions are equivalent:
(i): $\alpha: T X \rightarrow X$ is a \mathbb{T}-algebra structure on X;
(ii): there is a V-functor $\alpha: T X \rightarrow X$ such that $\alpha \cdot \eta_{X}=1_{X}$;
(iii): $\alpha: T X \rightarrow X$ is a split epimorphism in V-Cat.

Given \mathbb{T}-algebras (X, α) and (Y, β)
for every V-functor $f: X \rightarrow Y$.

Eilenberg-Moore Algebras

Let \mathbb{T} be lax idempotent monad on V-Cat.
For a V-category X, the following assertions are equivalent:
(i): $\alpha: T X \rightarrow X$ is a \mathbb{T}-algebra structure on X;
(ii): there is a V-functor $\alpha: T X \rightarrow X$ such that $\alpha \cdot \eta_{X}=1_{X}$;
(iii): $\alpha: T X \rightarrow X$ is a split epimorphism in V-Cat.

Given \mathbb{T}-algebras (X, α) and (Y, β)

$$
\beta \cdot T f \leq f \cdot \alpha,
$$

for every V-functor $f: X \rightarrow Y$.

Extensions

In V-Dist, given a V-distributor $\varphi:(X, a) \rightarrow(Y, b)$, the functor ()$\cdot \varphi$ preserves suprema, and therefore it has a right adjoint $[\varphi,-]$:

For each distributor $\psi: X \rightarrow-Z$,
where $[\varphi, \psi]: Y \rightarrow Z$ is defined by $[\varphi, \psi](y, z)=\bigwedge_{x \in X} \operatorname{hom}(\varphi(x, y), \psi(x, z))$.

In V-Dist, given a V-distributor $\varphi:(X, a) \rightarrow(Y, b)$, the functor ()$\cdot \varphi$ preserves suprema, and therefore it has a right adjoint [$\varphi,-]$:

For each distributor $\psi: X \rightarrow Z$,

where $[\varphi, \psi]: Y \longrightarrow Z$ is defined by $[\varphi, \psi](y, z)=\bigwedge_{x \in X} \operatorname{hom}(\varphi(x, y), \psi(x, z))$.

Algebras and Weighted Colimits

Given a V-functor $f: X \rightarrow Z$ and a distributor $\varphi: X \rightarrow Y$, a φ-colimit of f is a V-functor $g: Y \rightarrow Z$ such that $g_{*}=\left[\varphi, f_{*}\right]$, if it exists.

One says then that g represents $\left[\varphi, f_{*}\right]$.
The \mathbb{T}-algebras for any \mathbb{T} submonad of \mathbb{P} can be characterized as follows:

Theorem

(i): A map $\alpha: T X \rightarrow X$ is a \mathbb{T}-algebra structure if, and only if, for each distributor $\varphi: X \longrightarrow E$ in $T X, \alpha(\varphi)_{*}=\left[\varphi,(1 X)_{*}\right]$.
(ii): Given \mathbb{T}-algebras X and Y, a V-functor $f: X \rightarrow Y$ is a \mathbb{T}-algebra morphism if and only if, f preserves φ-colimits for any $\varphi \in T X$.

The space of formal balls is an important tool in the study of (quasi)metric spaces.

Given a (quasi)metric space (X, d) its space of formal balls is simply the collection of all pairs (x, r), where $x \in X$ and $r \in[0, \infty[$.

This space can itself be equipped with a (quasi)metric. This construction can naturally be made into a lax idempotent monad.

The formal ball monad $\mathbb{B}=(B, \eta, \mu)$ is given by:

$B:$ Met \rightarrow Met

where the distance in $B X$ is given by

The formal ball monad $\mathbb{B}=(B, \eta, \mu)$ is given by:

$$
\begin{aligned}
B: \text { Met } & \rightarrow \text { Met } \\
(X, a) & \mapsto B X=X \times[0, \infty[\\
(f: X \rightarrow Y) & \mapsto(B f: B X \rightarrow B Y) \\
(x, r) & \mapsto(f(x), r)
\end{aligned}
$$

where the distance in $B X$ is given by

$$
B X((x, r),(y, s))=\operatorname{hom}(r, a(x, y)+s)=\max \{0, a(x, y)+s-r\}
$$

The formal ball monad $\mathbb{B}=(B, \eta, \mu)$ is given by:

$$
\begin{aligned}
B: \text { Met } & \rightarrow \text { Met } \\
(X, a) & \mapsto B X=X \times[0, \infty[\\
(f: X \rightarrow Y) & \mapsto(B f: B X \rightarrow B Y) \\
(x, r) & \mapsto(f(x), r)
\end{aligned}
$$

where the distance in $B X$ is given by

$$
B X((x, r),(y, s))=\operatorname{hom}(r, a(x, y)+s)=\max \{0, a(x, y)+s-r\}
$$

$$
\begin{aligned}
\eta: X & \rightarrow B X \\
x & \mapsto(x, 0)
\end{aligned}
$$

$$
\begin{aligned}
\mu: B B X & \rightarrow B X \\
((x, r), s) & \mapsto(x, r+s)
\end{aligned}
$$

Extended formal ball monad

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

Extended formal ball monad

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

$$
B_{0}: V \text {-Cat } \rightarrow V \text {-Cat }
$$

where the structure in $B_{\bullet} X$ is given by

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

$$
\begin{aligned}
B_{\bullet}: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto B_{0} X=X \times V
\end{aligned}
$$

where the structure in $B_{0} X$ is given by

$$
B_{0} \times((x, r),(y, s))=\operatorname{hom}(r, a(x, y) \otimes s)
$$

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

$$
\begin{aligned}
B_{\bullet}: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto B_{\mathbf{\bullet}} X=X \times V \\
(f: X \rightarrow Y) & \mapsto\left(B_{\bullet} f: B_{\mathbf{\bullet}} X \rightarrow B_{\mathbf{\bullet}} Y\right) \\
(x, r) & \mapsto(f(x), r)
\end{aligned}
$$

where the structure in $B_{0} X$ is given by

$$
B_{\bullet} X((x, r),(y, s))=\operatorname{hom}(r, a(x, y) \otimes s)
$$

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

$$
\begin{aligned}
B_{\mathbf{\bullet}}: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto B_{\mathbf{0}} X=X \times V \\
(f: X \rightarrow Y) & \mapsto\left(B_{\mathbf{\bullet}} f: B_{\mathbf{\bullet}} X \rightarrow B_{\mathbf{\bullet}} Y\right) \\
(x, r) & \mapsto(f(x), r)
\end{aligned}
$$

where the structure in $B_{0} X$ is given by

$$
B_{\bullet} X((x, r),(y, s))=\operatorname{hom}(r, a(x, y) \otimes s)
$$

The extended formal ball monad $\mathbb{B}_{\bullet}=\left(B_{\bullet}, \eta, \mu\right)$ is given by:

$$
\begin{aligned}
B_{\bullet}: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto B_{\mathbf{\bullet}} X=X \times V \\
(f: X \rightarrow Y) & \mapsto\left(B_{\mathbf{\bullet}} f: B_{\mathbf{\bullet}} X \rightarrow B_{\mathbf{\bullet}} Y\right) \\
(x, r) & \mapsto(f(x), r)
\end{aligned}
$$

where the structure in $B_{0} X$ is given by

$$
\begin{aligned}
& B_{\bullet} X((x, r),(y, s))=\operatorname{hom}(r, a(x, y) \otimes s) \\
& \eta: X \rightarrow B . X \\
& x \mapsto(x, k) \\
& \mu: B \mathbf{B} \boldsymbol{\bullet} X \rightarrow B \mathbf{\bullet} X \\
& ((x, r), s) \mapsto(x, r \otimes s)
\end{aligned}
$$

Theorem (Clementino, F)

The natural transformation $\sigma: \mathbb{B} \bullet \rightarrow \mathbb{P}$ with components defined by

$$
\begin{aligned}
\sigma_{X}: & B_{\bullet} X
\end{aligned} \rightarrow P X, ~(x, r) \mapsto a(-, x) \otimes r: X \rightarrow E
$$

for each V-category (X, a), is a pointwise fully faithful monad morphism.

Note that $\sigma: \mathbb{B}_{\bullet} \rightarrow \mathbb{P}$ is not injective on objects; indeed, if $r=\perp$, then $\sigma_{X}(x, \perp): X \rightarrow E$ is the distributor that is constantly \perp, for any $x \in X$.

Theorem (Clementino, F)

The natural transformation $\sigma: \mathbb{B} \bullet \rightarrow \mathbb{P}$ with components defined by

$$
\begin{aligned}
\sigma_{X}: & B_{\bullet} X
\end{aligned} \rightarrow P X, ~(x, r) \mapsto a(-, x) \otimes r: X \rightarrow E
$$

for each V-category (X, a), is a pointwise fully faithful monad morphism.

Note that $\sigma: \mathbb{B}_{\bullet} \rightarrow \mathbb{P}$ is not injective on objects; indeed, if $r=\perp$, then $\sigma_{X}(x, \perp): X \leftrightarrow E$ is the distributor that is constantly \perp, for any $x \in X$.

B.-Algebras

Proposition (Clementino, F)

For a V-category (X, a), the following conditions are equivalent:
(i): (X, a) has a \mathbb{B}_{\bullet}-algebra structure $\alpha: B_{\bullet} X \rightarrow X$;
(ii): $(\forall x \in X)(\forall r \in V)(\exists x \oplus r \in X)(\forall y \in X)$

$$
a(x \oplus r, y)=\operatorname{hom}(r, a(x, y))
$$

(iii): for all $(x, r) \in B_{\bullet} X$, every diagram of the sort

has a (weighted) colimit.

\mathbb{B}_{\bullet}-Algebras

The V-categories X satisfying (iii) are called tensored. This notion was originally introduced by Borceux and Kelly for general V-categories.

Thanks to condition (ii), we also get the following characterization of tensored categories:

Corollary

A V-category (X, a) is tensored if, and only if, for every $x \in X$,

B.-Algebras

The V-categories X satisfying (iii) are called tensored. This notion was originally introduced by Borceux and Kelly for general V-categories.

Thanks to condition (ii), we also get the following characterization of tensored categories:

Corollary

A V-category (X, a) is tensored if, and only if, for every $x \in X$,

is an adjunction in V-Cat.

\mathbb{B}_{\circ} is a submonad of \mathbb{P} in V-Cat sep
 (for certain quantales)

\mathbb{B}_{0} is the submonad of \mathbb{B} • obtained when we only consider formal balls with radius different from \perp.

We (co)restricted \mathbb{B}_{0} to V-Cat sep $_{\text {sep }}$ to obtain some results regarding \mathbb{B}_{0} embeddings.

Unfortunately X being separated does not entail $B_{\circ} X$ being so. this we needed also to restrict our attention to the cancellative quantales:

Definition
A quantale V is said to be cancellative if

\mathbb{B}_{\circ} is a submonad of \mathbb{P} in V-Cat sep
 (for certain quantales)

\mathbb{B}_{0} is the submonad of \mathbb{B} • obtained when we only consider formal balls with radius different from \perp.

We (co)restricted \mathbb{B}_{0} to V-Cat sep $_{\text {sep }}$ to obtain some results regarding \mathbb{B}_{0} embeddings.

Unfortunately X being separated does not entail $B_{\circ} X$ being so. Because of this we needed also to restrict our attention to the cancellative quantales:

Definition

A quantale V is said to be cancellative if $\forall r, s \in V, r \neq \perp: r=s \otimes r \Rightarrow s=k$.

\mathbb{B}_{\circ} is a submonad of \mathbb{P} in V-Cat sep (for certain quantales)

Proposition

Let V be an integral $(k=T)$ quantale. The following assertions are equivalent:
(i) $B_{0} V$ is separated;
(ii) V is cancellative;
(iii) If X is separated then $B_{0} X$ is separated.

Lastly

Proposition

Let V be a cancellative integral quantale. Then \mathbb{B}_{\circ} is a submonad of \mathbb{P} in V-Cat

Proposition

Let V be an integral $(k=T)$ quantale. The following assertions are equivalent:
(i) $B_{\circ} V$ is separated;
(ii) V is cancellative;
(iii) If X is separated then $B_{\circ} X$ is separated.

Lastly

Proposition

Let V be a cancellative integral quantale. Then \mathbb{B}_{\circ} is a submonad of \mathbb{P} in V-Cat sep .

F．Borceux，G．M．Kelly，A notion of limit for enriched categories．Bull．Austral．Math．Soc． 12 （1975），49－ 72.

M．M．Clementino，D．Hofmann，Relative injectivity as cocompleteness for a class of distributors．Theory Appl．Categ． 21 （2008），210－230．

M．M．Clementino，D．Hofmann，Lawvere complete－ ness in topology．Appl．Categ．Structures 17 （2009）， 175－210．

M．M．Clementino，D．Hofmann，The rise and fall of V－functors．Fuzzy Sets and Systems 321 （2017），29－ 49.

M．M．Clementino，D．Hofmann，G．Janelidze，The monads of classical algebra are seldom weakly carte－ sian．J．Homotopy Relat．Struct． 9 （2014），175－197．

M．M．Clementino，I．López Franco，Lax orthogonal factorisations in ordered structures．Theory Appl．Ca－ teg．35，（2020），1379－1423．

S．Eilenberg and G．Max Kelly．Closed categories． In Proc．Conf．Categorical Algebra（La Jolla，Calif．， 1965），pages 421－562．Springer，New York， 1966.

M．Escardó，Properly injective spaces and function spaces．Topology Appl． 89 （1998），75－120．M．Escardó，R．Flagg，Semantic domains，injective spaces and monads．Electr．Notes in Theor．Comp． Science 20，electronic paper 15 （1999）．
．J．Goubault－Larrecq，Formal ball monads．Topology Appl． 263 （2019），372－391．

D．Hofmann，Injective spaces via adjunction．J．Pure Appl．Algebra 215 （2011），283－302．

D．Hofmann，P．Nora，Hausdorff coalgebras．Appl． Categ．Structures 28 （2020），773－806．

D．Hofmann，C．D．Reis，Probabilistic metric spaces as enriched categories，Fuzzy Sets and Systems 210 （2013），1－21．

D．Hofmann，W．Tholen，Lawvere completion and separation via closure，Appl．Categ．Structures 18 （2010），259－287．
（1）G．M．Kelly，Basic concepts of enriched category the－ ory，volume 64 of London Mathematical Society Lec－ ture Note Series．Cambridge University Press，Cam－ bridge，1982．No． 10 （2005），1－136．

戋 M．Kostanek，P．Waszkiewicz，The formal ball model for \mathcal{Q}－categories．Math．Structures Comput．Sci． 21 （2011），41－64．
围 R．C．Flagg，Quantales and continuity spaces，Algebra universalis 37 （1997），257－276．

F．W．Lawvere，Metric spaces，generalized logic，and closed categories．Rend．Semin．Mat．Fis．Milano， 43 （1973），135－166．Republished in：Reprints in Theory and Applications of Categories，No． 1 （2002），1－37．
E．Manes，Taut monads and T0－spaces．Theoret． Comput．Sci． 275 （2002），79－109．

E I．Stubbe，Categorical structures enriched in a quan－ taloid：categories，distributors and functors．Theory Appl．Categ． 14 （2005），1－45．

The characterisation of \mathbb{B}-algebras given in [GL19] can readily be generalised to V-Cat as follows:

Proposition (Clementino, F)

For a V-functor $\alpha: B X \rightarrow X$ the following conditions are equivalent.

- α is a \mathbb{B}-algebra structure.
- For every $x \in X, r, s \in V \backslash\{\perp\}, \alpha(x, k)=x$ and $\alpha(x, r \otimes s)=\alpha(\alpha(x, r), s)$.
- For every $x \in X, r \in V \backslash\{\perp\}, \alpha(x, k)=x$ and $a(x, \alpha(x, r)) \geq r$.
- For every $x \in X, \alpha(x, k)=x$.

Corollary (Clementino, F)

If $B X \xrightarrow{-\oplus-} X$ is a \mathbb{B}-algebra structure, then, for $x \in X, r, s \in V \backslash\{\perp\}$:
(i): $x \oplus k=x$;
(ii): $x \oplus(r \otimes s)=(x \oplus r) \oplus s$;
(iii): $a(x, x \oplus r) \geq r$.

Powerset Monad

The powerset monad $\mathcal{P}=(\mathcal{P},\{\cdot\}, \cup)$ is given by:

$$
\mathcal{P}: \text { Set } \rightarrow \text { Set }
$$

The powerset monad $\mathcal{P}=(\mathcal{P},\{\cdot\}, \cup)$ is given by:

$$
\begin{aligned}
\mathcal{P}: \text { Set } & \rightarrow \text { Set } \\
X & \mapsto \mathcal{P} X=\{X \rightarrow \mathbf{2}\}
\end{aligned}
$$

The powerset monad $\mathcal{P}=(\mathcal{P},\{\cdot\}, \cup)$ is given by:

$$
\begin{aligned}
\mathcal{P}: \text { Set } & \rightarrow \text { Set } \\
X & \mapsto \mathcal{P} X=\{X \rightarrow \mathbf{2}\} \\
(f: X \rightarrow Y) & \mapsto(\mathcal{P} f: \mathcal{P} X \rightarrow \mathcal{P} Y) \\
A & \mapsto f(A)
\end{aligned}
$$

$$
\begin{aligned}
\{\cdot\}: & X \\
& \rightarrow \mathcal{P} X \\
x & \mapsto\{x\}
\end{aligned}
$$

$$
\cup: \mathcal{P} \mathcal{P} X \rightarrow \mathcal{P} X
$$

$$
\mathcal{A} \mapsto \bigcup \mathcal{A}
$$

The downset monad $\mathcal{D}=(\mathcal{D}, \downarrow\{\cdot\}, \cup)$ is given by:
$\mathcal{D}:$ Ord \rightarrow Ord

The downset monad $\mathcal{D}=(\mathcal{D}, \downarrow\{\cdot\}, \cup)$ is given by:

$$
\begin{aligned}
\mathcal{D}: \text { Ord } & \rightarrow \text { Ord } \\
X & \mapsto \mathcal{D} X=\left\{X^{\mathrm{op}} \rightarrow \mathbf{2}\right\}
\end{aligned}
$$

The downset monad $\mathcal{D}=(\mathcal{D}, \downarrow\{\cdot\}, \cup)$ is given by:

$$
\begin{aligned}
\mathcal{D}: \text { Ord } & \rightarrow \text { Ord } \\
X & \mapsto \mathcal{D} X=\left\{X^{\mathrm{op}} \rightarrow \mathbf{2}\right\} \\
(f: X \rightarrow Y) & \mapsto(\mathcal{D} f: \mathcal{D} X \rightarrow \mathcal{D} Y) \\
& A \mapsto \downarrow f(A)
\end{aligned}
$$

$$
\begin{aligned}
\downarrow\{\cdot\}: & X \\
x & \rightarrow \mathcal{D} X \\
x & \mapsto\{x\}
\end{aligned}
$$

$$
\cup: \mathcal{D D} X \rightarrow \mathcal{D} X
$$

$$
\mathcal{A} \mapsto \bigcup \mathcal{A}
$$

Presheaf Monad
The presheaf monad $\mathbb{P}=(P, \mathfrak{y}, \mathfrak{m})$ is given by:

$$
P: V \text {-Cat } \rightarrow V \text {-Cat }
$$

Presheaf Monad
The presheaf monad $\mathbb{P}=(P, \mathfrak{y}, \mathfrak{m})$ is given by:

$$
\begin{aligned}
P: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto P X=\left\{X^{\mathrm{op}} \rightarrow V\right\}
\end{aligned}
$$

The presheaf monad $\mathbb{P}=(P, \mathfrak{y}, \mathfrak{m})$ is given by:

$$
\begin{aligned}
P: V \text {-Cat } & \rightarrow V \text {-Cat } \\
(X, a) & \mapsto P X=\left\{X^{\mathrm{op}} \rightarrow V\right\} \\
(f:(X, a) \rightarrow(Y, b)) & \mapsto(P f: P X \rightarrow P Y) \\
\varphi & \mapsto \varphi \cdot f^{*}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\mathfrak{y} x:(X, a) & \rightarrow P X \\
x & \mapsto x^{*}: X^{\mathrm{op}}
\end{array}\right) V V, \begin{aligned}
y & \mapsto a(y, x)
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{m}_{x}: P P X & \rightarrow P X \\
\Psi & \mapsto \Psi \cdot\left(\mathfrak{y}_{X}\right)_{*}
\end{aligned}
$$

