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Motivations

Theorem (Kruml and Paseka 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The set of join-preserving endomaps of L is a Frobenius quantale.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of the category of complete sup-lattices are exactly the
completely distributive lattice.
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Motivations

Conjecture
Let L be an object of an autonomous category (symmetric monoidal closed). The
following are equivalent:
• L is nuclear.
• The object of endomorphisms of L is a Frobenius structure.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of the category of complete sup-lattices are exactly the
completely distributive lattices.
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Symmetric monoidal closed categories

Definition
A symmetric monoidal category (C,⊗, I, ρ, λ, σ) is closed (or autonomous) if there
is a natural bijection:

X ⊗ Y −→ Z
Y −→ [X ,Z ]

For an object 0 of C, we write (−)∗ = [−, 0] : Cop → C.
If the natural transformation jA : A → A ∗∗ is an iso, then C is ∗-autonomous.

Examples

• Autonomous categories: Set, k -Vect, a commutative unital quantale, etc.

• ∗-autonomous categories: k -Vectfin, SLatt, etc.
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Dual pair

For an object A of a ∗-autonomous category, we have the two equivalences:

A ⊗ X −→ 0
X −→ A ∗

X ⊗ A ∗ −→ 0
X −→ A ∗∗ � A .

Definition
A map ε : A ⊗ B −−−−→ 0 inV is said to be a dual pairing (w.r.t. the object 0) if the
two induced natural transformations are isomorphims.

hom(X ,B) −−−−→ hom(A ⊗ X , 0) , hom(X ,A) −−−−→ hom(X ⊗ B , 0) .

Example
In a ∗-autonomous category, (A ,A ∗, evA ,0) is a dual pair.
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Some properties of dual pairs

Proposition
Let (A ,B) be a dual pair in a symmetric monoidal closed category.

1. (B ,A) is also a dual pair.

2. We have A � B∗.

3. A is a reflexive object (i.e A � A ∗∗).

4. If Φ : A0 → A is an iso, then (A0,B) is a dual pair.
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Examples of dual pairs

Examples

• In SLatt, (L , Lop, ε), ε(x, y) = ⊥ if x ≤ y, and ε(x, y) = > otherwise.

• In a ∗-autonomous category, A ∗ ⊗ A � [A ,A ]∗ so (A ∗ ⊗ A , [A ,A ], ε) is a dual
pair with ε := ev ◦ σ ◦ ev.
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Usual adjunction between lattices

For a join preserving map f : L → M, the right adjoint to it f̃ : Mop → Lop is the
only map s.t:

f(x) ≤ y iff x ≤ f̃(y)

L⊗Mop M ⊗Mop

L⊗ Lop 0 .

L⊗f̃

f⊗Mop

εM

εL
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Adjoints in dual pair

Let (A0,B0), (A1,B1) be two dual pairs. For every morphism f : A0 −−−−→ A1 we
define f̃ : B1 −−−−→ B0 by transposing:

A0 −−−−→ A1

A0 ⊗ B1 −−−−→ 0

B1 −−−−→ B0

A0 ⊗B1 A1 ⊗B1

A0 ⊗B0 0 .

A0⊗f̃

f⊗B1

ε1

ε0

Definition
We say that (f , g) is an adjoint pair if g = f̃ .
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The category of semigroups over a monoidale category

Objects of SemC: pairs (A , µA ) such that

A⊗A⊗A A⊗A

A⊗A A.

µA⊗A

A⊗µA

µA

µA

Morphisms of SemC: arrows f : A0 −−−−→ A1 such that

A0 ⊗A1 A1 ⊗A1

A0 A1.

µA0

f⊗f

µA1

f
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Quantales

Definition
A quantale (Q , ?) is a semigroup in the category SLatt.

Remark
In a quantale, (x ? −) : Q → Q and (− ? y) : Q → Q both have a right adjoint,
the left and right implications:

x ? y ≤ z iff y ≤ x\z iff x ≤ z/y

We have

−/− : Q ⊗ Qop −−−−→ Qop and −\− : Qop ⊗ Q −−−−→ Qop

z/(y ? x) = (z/y)/x and (x ? y)\z = x\(y\z)
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Implications in a quantale

x ? y ≤ z iff x ≤ z/y

Q⊗Q⊗Qop Q⊗Qop

Q⊗Qop 0 .

?⊗Qop

Q⊗−/−

εQ

εQ

z ≥ x ? y iff x\z ≥ y

Qop ⊗Q⊗Q Qop ⊗Q Q⊗Qop

Qop ⊗Q Q⊗Qop 0 .

−\−⊗Q

Qop⊗? σ

εQ

σ εQ
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Implications as actions

Let (A ,B) be a dual pair such that (A , µA ) is a semigroup.
We define α`A : A ⊗ B → B and αρA : B ⊗ A → B as the only morphisms such that

A⊗A⊗B A⊗B

A⊗B 0

µA⊗B

A⊗α`A

ε

ε

B ⊗A⊗A B ⊗A A⊗B

B ⊗A A⊗B 0 .

αρA⊗A

B⊗µA σ

ε

σ ε

Defined that way, αρA and α`A are indeed actions, i.e
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The case of Frobenius quantales

In a Frobenius quantale (Q , ?, ⊥(−), (−)⊥), we have
• (Q ,Qop, ε) is a dual pair;
• (Q , ?) is a semigroup;
• ⊥(−), (−)⊥ : Q → Qop and x ≤ ⊥y iff y ≤ x⊥;

x\⊥y = x⊥/y
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Frobenius structures

Definition
A Frobenius structure is a tuple (A ,B , ε, µA , l, r) where
• (A ,B , ε) is a dual pair;
• (A , µA ) is a semigroup;
• l, r : A −−−−→ B and (l, r) is an invertible adjoint pair

such that
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Co-multiplication

In a quantale, we can define two comultiplications

x ⊕⊥ y := ⊥(y⊥ ? x⊥) x ⊥⊕ y := (⊥y ? ⊥x)⊥ .

In a Frobenius quantale they are actually the same and we have

x

&

y = ⊥x\y = x/y⊥ .



Dual pair Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear Conclusion

Co-multiplication

In a quantale, we can define two comultiplications

x ⊕⊥ y := ⊥(y⊥ ? x⊥) x ⊥⊕ y := (⊥y ? ⊥x)⊥ .

In a Frobenius quantale they are actually the same and we have

x

&

y = ⊥x\y = x/y⊥ .



Dual pair Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear Conclusion

The multiplication on B

Proposition
The diagram on the left commutes iff the diagram on the right does,

A⊗A A⊗B

B ⊗A B

l⊗A

A⊗r

α`A

αρA

B ⊗B B ⊗A

A⊗B B

µB

B⊗r−1

l−1⊗B αρA

α`A

defining a multiplication on B.

Lemma

1. (B , µB ) is a semigroup ;

2. l and r are semigroup morphisms from (A , µA ) to (B , µB ).

3. (A ,B , ε, µA , l, r) is Frobenius iff (B ,A , ε ◦ σ, µB , r−1, l−1) is.
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Frobenius structure and associative bracketed semigroups

Proposition
For a Frobenius structure (A ,B , ε, µA , l, r), we can define

πl
A := ε ◦ (A ⊗ l) : A ⊗ A → 0 ,

We have :
• (A , µA , π

l
A ) is an associative bracketed semigroup;

• πl
A is a dual pairing.

Conversely, from an associative bracketed semigroup (A , µA , πA ) for which πA is
a dual pairing, one obtains a Frobenius structure.
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Previous work on Frobenius structure

Various work have been done such:
• Lawvere 1969: Frobenius monad;

• Kock 2003: Monoid and comonoid in a monoidal category (same tensor);

• Street 2004: Pseudo-monoid with a pairing A ⊗ A → I making A his own
bidual;

• Egger 2010: Monoid and comonoid on a linear distributive category (two
different tensor).
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Nuclearity

From here, C is symmetric monoidale closed and 0 = I.

Definition
For every object A of C, there exists a canonical arrow

mixA : A ∗ ⊗ A −−−−→ [A ,A ].

An object A is nuclear if mixA is an isomorphism.

Example

• In k -Vect they are the vector spaces of finite dimension.
• In a commutative unital quantale (Q , ?, 1), they are the invertible elements.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of SLatt are exactly the completely distributive lattices.
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Adjunction and Nuclearity

Definition
For η : I → B ⊗ A , and ε : A ⊗ B → I, (A ,B , ε, η) is an adjunction if

A⊗B ⊗A A⊗ I

I ⊗A A

ε⊗A

A⊗η

ρA

`A

I ⊗B B ⊗A⊗B

B B ⊗ I .

η⊗B

`B B⊗ε

ρB

Proposition
An object is nuclear iff there exist a (right or left) adjoint to it.
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Nuclearity and Frobenius quantale

Theorem Kruml and Paseka 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The set of endomorphisms of L is a Frobenius quantale.

The first implication is actually a corollary of a more general result.

Theorem (LS and CL, see last talk)
Let L be a complete lattice. The image of the Raney’s transform
(−)∨ : [L , L ]

∧
→ [L , L ] can always be endowed with a Frobenius quantale

structure.
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Let L be a complete lattice. The image of the Raney’s transform
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L∗ ⊗ L ∼= [L,L]∧ [L,L]

[L,L]
t
∨

(−)∨
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From Nuclearity to Frobenius structure

Theorem (LS and CL)
In a symmetric monoidal closed category, if A is nuclear then [A ,A ] can be
endowed with a Frobenius structure.

Sketch of the proof

• We verify that if mix is invertible, then (A ∗ ⊗ A , [A ,A ], ε, µA∗⊗A , mix, mix) is a
Frobenius structure.

• As A ∗ ⊗ A is isomorphic to [A ,A ]∗ and Frobenius structures are closed
under iso, we obtain the desired theorem.

It has already been noticed that

Theorem (Street 2004)
If X has a (right or left) adjoint X ∗ and X � X ∗∗, then X ∗ ⊗ X is a Frobenius
pseudo-monoid.
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Result

Theorem (LS and CL)
Let C be a ∗-autonomous category such that SemC has an epi-mono factorization
system and A an object of C.
The image of mixA can always be endowed with a Frobenius structure.

A∗ ⊗A [A,A]

=mixA

mixA

Corollary

If A is nuclear then [A ,A ] can always be endowed with a Frobenius structure.
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From Frobenius structure to nuclearity

Conjecture
Let ([A ,A ], [A ,A ]∗, µ, r , l) be a Frobenius structure in an autonomous category.
Then A is a nuclear object.

We actually need to add a technical hypothesis.

Sketch of a proof
We use the caracterisation of nuclearity with adjoints. So we want:

η : I −−−−→ A ∗ ⊗ A ε : A ⊗ A ∗ −−−−→ I

such that (A ,A ∗, ε, η) is an adjunction.
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From Frobenius structure to nuclearity

• We identify [A ,A ]∗ with A ∗ ⊗ A . Suppose ([A ,A ],A ∗ ⊗ A , ev , µ, r , l) is a
Frobenius structure.

• [A ,A ] is a monoid. As r : [A ,A ]→ A ∗ ⊗ A is an iso, A ∗ ⊗ A is also a monoid
with unit η : I → A ∗ ⊗ A .
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Its composition is given by

A∗ ⊗A⊗A∗ ⊗A A∗ ⊗A⊗ [A,A]

[A,A]⊗A∗ ⊗A A∗ ⊗A .

A∗⊗A⊗l−1

r−1⊗A∗⊗A
µA∗⊗A

A∗⊗ev

µA,A,0⊗A
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From Frobenius structure to nuclearity

That is, we have a diagram of the shape

A∗ ⊗A⊗A∗ ⊗A

A∗ ⊗A

A∗⊗g h⊗A
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From Frobenius structure to nuclearity

We want:

A∗ ⊗A⊗A∗ ⊗A

A∗ ⊗ I ⊗A

A∗ ⊗A

A∗⊗g h⊗A

A∗⊗ε⊗A

This map actually exits if we ask I to embed into A as a retract, i.e if there exists
p : I → A and c : A → I such that c ◦ p = idI.
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From Frobenius structure to nuclearity

Definition
If for every object A in C, I embeds into A as a retract, C is pseudoaffine.

Examples

• SLatt
• k -Vect

Theorem (LS and CL)
If C is pseudoaffine and ([A ,A ], [A ,A ]∗, ev , µ, r , l) is a Frobenius structure then A
is a nuclear object.
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Conclusion

Results
• A definition of Frobenius structures in autonomous categories;

• Generalisation of the double negation construction;

• Proof of our conjecture up to a technical (but quite natural) hypothesis.

What we will do next
• Connect with linear logic semantic;

• Study the logic of pseudoaffine category;

• Understand ”how much” we need ∗-autonomous categories;

• Use our results on differents categories such as Banach spaces.
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Obrigado pela atenção !
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