On the double category of coalgebras

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk
CoimBra, June 23, 2022

Based on joint work with

- Sergey Goncharov,
- Pedro Nora,
- Lutz Schröder,
- Paul Wild,
from Friedrich-Alexander-Universität Erlancen-NürnBerg.

Reminder: coalgebras

Definition
For a functor $F: C \longrightarrow C$, one defines coalcebra

Reminder: coalgebras

Definition
For a functor $F: C \longrightarrow C$, one defines coalgebra homomorphism:

Reminder: coalgebras

Definition

For a functor $F: C \longrightarrow C$, one defines coalgebra homomorphism:

The corresponding category of coalgebras and homomorphisms is denoted as $\mathrm{CoAlg}(F)$.

Behavioural equivalence

Definition

Let $\mathrm{F}:$ Set \longrightarrow Set Be a functor which admits a terminal coalgebra and let (X, α) and (Y, β) Be coalcebras. Then states $x \in X$ and $y \in Y$ are Behaviourally equivalent whenever $!_{\alpha}(x)=!_{\beta}(y)$.

Behavioural equivalence

Definition

Let $F:$ Set \longrightarrow Set Be a functor which admits a terminal coalcebra and let (X, α) and (Y, β) be coalcebras. Then states $x \in X$ and $y \in Y$ are Behaviourally equivalent whenever $!_{\alpha}(x)=!_{\beta}(y)$.

Proposition

The following assertions are equivalent.
(i) The states $x \in X$ and $y \in Y$ are Behaviourally equivalent.
(ii) There exist coalgebra homomorphisms $f:(X, \alpha) \longrightarrow(Z, \gamma)$ and $g:(Y, \beta) \longrightarrow(Z, \gamma)$ with $f(x)=g(y)$.

Bisimulations

Definition
Let (X, α) and (Y, β) Be coalgebras.

1. A relation $R \subseteq X \times Y$ is a Bisimulation whenever there is a coalgebra $\gamma: R \longrightarrow F R$ so that the projections $\pi_{1}: R \longrightarrow X$ and $\pi_{2}: R \longrightarrow Y$ are homomorphisms.

Bisimulations

Definition
Let (X, α) and (Y, β) Be coalgebras.

1. A relation $R \subseteq X \times Y$ is a bisimulation whenever there is a coalgebra $\gamma: R \longrightarrow F R$ so that the projections $\pi_{1}: R \longrightarrow X$ and $\pi_{2}: R \longrightarrow Y$ are homomorphisms.
2. States $x \in X$ and $y \in Y$ are Bisimilar whenever there is a Bisimulation from (X, α) to (Y, β) with $(x, y) \in R$.

Bisimulations

Definition

Let (X, α) and (Y, β) Be coalgebras.

1. A relation $R \subseteq X \times Y$ is a Bisimulation whenever there is a coalgebra $\gamma: R \longrightarrow F R$ so that the projections $\pi_{1}: R \longrightarrow X$ and $\pi_{2}: R \longrightarrow Y$ are homomorphisms.
2. States $x \in X$ and $y \in Y$ are Bisimilar whenever there is a Bisimulation from (X, α) to (Y, β) with $(x, y) \in R$.

Theorem

Assume that $\mathrm{F}:$ Set \longrightarrow Set preserves weak pullBacks and let (X, α) and (Y, β) Be coalgebras. Then $x \in X$ and $y \in Y$ are Behaviourally equivalent if and only if they are Bisimilar.
F. Aczel, Peter and Mendler, Nax (1989). "A final coalceBra theorem". In: Category Theory and Computer Science. Ed. By David H. Pitt, David E. Rydeheard, Peter DyBjer, Andrew M. Pitts, and Axel Poiané. Springer Berlin HeidelBerg, pp. 357365.

Bisimulations via lax extensions

Theorem
Assume that $\mathrm{F}:$ Set \longrightarrow Set preserves weak pullBacks and let (X, α) and (Y, β) be coalgebras. A relation $r: X \rightarrow Y$ is a Bisimulation if and only if

$$
\begin{aligned}
& X \xrightarrow{\alpha} F X \\
& r \downarrow \underset{\downarrow}{\perp} \underset{\sim}{\downarrow} \hat{F} r \\
& Y \xrightarrow[\beta]{ } F Y .
\end{aligned}
$$

- Rutten, Jan (1998). "Relators and Metric Bisimulations". In: Electronic Notes in Theoretical Computer Science II, pp. 252-258.

Bisimulations via lax extensions
Theorem
Assume that $\mathrm{F}:$ Set \longrightarrow Set preserves weak pullbacks and let (X, α) and (Y, β) be coalcebras. A relation $r: X \rightarrow Y$ is a bisimulation if and only if

Rutten, Jan (1998). "Relators and Metric Bisimulations". In: Electronic Notes in Theoretical Computer Science II, pp. 252-258.

Theorem
A functor F : Set \longrightarrow Set preserves weak pullbacks if and only if there is an (unique) extension F: Rel \longrightarrow Rel.

Trnková, V mra (1971). "Relational automata in a category and their languages". In: Fundamentals of computation theory Proc. Internat. Conf., Poznań-Kórnik, 1971). Vol. 56. Berlin: Springer, Lecture Notes in Comput. Sci., pp. 340-355.

There is more...

- Baldan, Bonchi, Kerstan, and KöniG study Behavioural distances.
Baldan, Paolo, Bonchi, Filippo, Kerstan, Henninc, and König, BarBara (2018). "Coakebraic Behavioral Metrics". In: Logical Methods in Computer Science 14.(3), pp. 1860-5974.

There is more...

- Baldan, Bonchi, Kerstan, and KöniG study Behavioural distances.

Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, and Könic, BarBara (2018). "Coakebraic Behavioral Metrics". In: Logical Methods in Computer Science 14.(3), pp. 1860-5974.

- Worrell investigates sisimulations in the context of Quantale-enriched categories.

Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coakebraic Methods in Computer Science 33, pp. 337-356.

Double categories

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

Double categories

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).
A doußle category \mathcal{A} consists of OBjects and two types of arrows: horizontal and vertical ones, and cells in squares sugcestively written as

$$
\begin{array}{cc}
X \xrightarrow{f} Y \\
r \neq & \varepsilon \\
\downarrow & \downarrow^{2} \\
A & B
\end{array}
$$

Double categories

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).
A doußle category \mathcal{A} consists of OBjects and two types of arrows: horizontal and vertical ones, and cells in squares sugcestively written as

$$
\begin{array}{cc}
X \xrightarrow{f} Y \\
r \neq \varepsilon & \downarrow^{2} \\
A \xrightarrow{r} & B .
\end{array}
$$

We write $\operatorname{Horiz}(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A}, and with 2 -cells $\varepsilon: g \rightarrow h$ Being (from \mathcal{A})

Double categories

"Double Categories - The Best thing since slice categories" (BOB Paré (2O18)).
A double category \mathcal{A} consists of OBjects and two types of arrows: horizontal and vertical ones, and cells in squares sugcestively written as

$$
\begin{array}{ll}
X \xrightarrow{f} Y \\
r \neq & \varepsilon \\
\downarrow & \downarrow^{s} \\
A \xrightarrow{r} & B .
\end{array}
$$

We write $\operatorname{Horiz}(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A}, and with 2 -cells $\varepsilon: g \rightarrow h$ Being (from \mathcal{A})

Similarly, $\operatorname{Ver}(\mathcal{A})$ denotes the Bicategory of vertical arrows of \mathcal{A}, with 2 -cells $\delta: r \rightarrow s$ Given By cells in \mathscr{A} of type

Double categories

"Double Categories - The Best thing since slice categories" (BOB Paré (2O18)).
A double category \mathcal{A} consists of OBjects and two types of arrows: horizontal and vertical ones, and cells in squares sugcestively written as

$$
\begin{aligned}
& X \xrightarrow{f} Y \\
& r \downarrow \leq \downarrow^{s} \\
& A \xrightarrow[g]{ } B \text {. }
\end{aligned}
$$

We write $\operatorname{Horiz}(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A}, and with 2 -cells $\varepsilon: g \rightarrow h$ Being (from \mathcal{A})

$$
\begin{gathered}
A \xrightarrow{h} B \\
{ }^{1} \downarrow \leq \downarrow^{1} \\
A \xrightarrow{\longrightarrow} B .
\end{gathered}
$$

Similarly, $\operatorname{Ver}(\mathcal{A})$ denotes the Bicategory of vertical arrows of \mathcal{A}, with 2 -cells $\delta: r \rightarrow s$ Given By cells in \mathcal{A} of type

$$
\begin{aligned}
& A \xrightarrow{1} A \\
& r \downarrow \leq \downarrow^{s} \\
& \downarrow \xrightarrow[1]{\longrightarrow} B .
\end{aligned}
$$

Examples: relations

Example

Our paradicmatic example of a double category is the double category Rel of sets, functions (as horizontal arrows) and relations (as vertical arrows).

Examples: relations

Example
Our paradigmatic example of a double category is the double category Rel of sets, functions (as horizontal arrows) and relations (as vertical arrows).

Example
More General, for a quantale \mathcal{V}, we consider the douBle category \mathcal{V}-Rel of sets, functions (as horizontal arrows) and \mathcal{V}-relations (as vertical arrows).

Remark
A \mathcal{V}-relation from X to Y is a map $X \times Y \longrightarrow \mathcal{V}$ and it is represented by $X \rightarrow Y$; \mathcal{V}-relations can Be composed via "matrix
multiplication": for $r: X \longrightarrow Y$ and $s: Y \leftrightarrow Z$,

$$
(s \cdot r)(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z) .
$$

Companions and conjoints
Given an horizontal arrow $f: A \longrightarrow B$ in a double catecory \mathcal{A}, a companion for f is a vertical arrow $f_{*}: A \rightarrow B$ in \mathcal{A} so that

Companions and conjoints
Given an horizontal arrow $f: A \longrightarrow B$ in a double category \mathcal{A}, a companion for f is a vertical arrow $f_{*}: A \rightarrow B$ in \mathcal{A} so that

Dually, a conjoint for f is a vertical arrow $f^{*}: B \longrightarrow A$ so that

Companions and conjoints
Given an horizontal arrow $f: A \longrightarrow B$ in a double category \mathcal{A}, a companion for f is a vertical arrow $f_{*}: A \longrightarrow B$ in \mathcal{A} so that

Dually, a conjoint for f is a vertical arrow $f^{*}: B \longrightarrow A$ so that

Definition
A double category \mathcal{A} is a framed Bicategory if every horizontal arrow has a companion and a conjoint.
Fhulman, Michael (2008). "Framed Bicategories and monoidal firrations". In: Theory and Applications of Categories 20.(18), pp. 650-138.

Example

For a map $f: X \longrightarrow Y$, a companion of f in Rel is the Graph $f_{*}: X \longrightarrow Y$ of f, and a conjoint is the cograph $f^{*}: Y \rightarrow X$ of f (and similar in \mathcal{V}-Rel).

The Pro-construction

- Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topolocy, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed Bicategory \mathscr{A} there is the framed Bicategory $\operatorname{Pro}(\mathscr{A})$ of the procompletion of $\operatorname{Ver}(\mathcal{A})$.

The Pro-construction
Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: Metric, topolocy, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed Bicategory \mathscr{A} there is the framed Bicatecory $\operatorname{Pro}(\mathscr{A})$ of the procompletion of $\operatorname{Ver}(\mathcal{A})$.

- The OBjects and the horizontal arrows of $\operatorname{Pro}(\mathcal{A})$ are the same of \mathcal{A}.

The Pro-construction

F- Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed Bicategory \mathscr{A} there is the framed Bicategory $\operatorname{Pro}(\mathscr{A})$ of the procompletion of $\operatorname{Ver}(\mathcal{A})$.

- The OBjects and the horizontal arrows of $\operatorname{Pro}(\mathcal{A})$ are the same of A.
- A vertical arrow from an OBject X to an OBject Y in $\operatorname{Pro}(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A}.

The Pro-construction
Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topoloGy, uniformity, approach structure". In: Applied Categorical Structures 12.(2), pp. 127-154.

For a framed Bicatecory \mathcal{A} there is the framed Bicatecory $\operatorname{Pro}(\mathcal{A})$ of the procompletion of $\operatorname{Ver}(\mathcal{A})$.

- The objects and the horizontal arrows of $\operatorname{Pro}(\mathcal{A})$ are the same of \mathcal{A}.
- A vertical arrow from an OBject X to an OBject Y in $\operatorname{Pro}(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A}.
for all $s \in S$ there is $r \in R$ such that

whenever

in \mathcal{A}.

The Pro-construction
Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topoloGy, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed Bicatecory \mathcal{A} there is the framed Bicatecory $\operatorname{Pro}(\mathcal{A})$ of the procompletion of $\operatorname{Ver}(\mathcal{A})$.

- The objects and the horizontal arrows of $\operatorname{Pro}(\mathcal{A})$ are the same of \mathcal{A}.
- A vertical arrow from an OBject X to an OBject Y in $\operatorname{Pro}(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A}.
for all $s \in S$ there is $r \in R$ such that
-

whenever

in \mathcal{A}.

- For every horizontal arrow f in $\operatorname{Pro}(\mathscr{A})$, the set $\left\{f_{*}\right\}$ is a companion for f, while the set $\left\{f^{*}\right\}$ is a conjoint for f.

The Mon-construction
Fhulman, Michael (2008). "Framed Bicategories and monoidal firrations". In: Theory and Applications of Catecories 20.(18), pp. 650-138.

For a framed Bicategory \mathcal{A}, there is the framed Bicategory $\operatorname{Mon}(\mathscr{A})$ of monoids, monoid homomorphisms and Bimodules in \mathcal{A}.

The Mon-construction
Shulman, Michael (2008). "Framed Bicategories and monoidal fibrations". In: Theory and Applications of Categories 20.(18), pp. 650-138.

For a framed Bicategory \mathcal{A}, there is the framed Bicategory $\operatorname{Mon}(\mathscr{A})$ of monoids, monoid homomorphisms and Bimodules in \mathcal{A}.

- A monoid in \mathcal{A} consists of an object A in \mathscr{A} together with a vertical arrow $a: A \rightarrow A$ so that $1 \leq a$ and $a \circ a \leq a$.
- A monoid homomorphism $f:(A, a) \longrightarrow(B, b)$ consists of a horizontal arrow $f: A \longrightarrow B \in \mathcal{A}$ so that

- A Bimodule $\varphi:(A, a) \rightarrow(B, b)$ consists of a vertical arrow $\varphi: A \longrightarrow B$ in \mathcal{A} so that $\varphi \circ a \leq \varphi$ and $b \circ \varphi \leq \varphi$.

The Mon-construction
Shulman, Michael (2008). "Framed Bicategories and monoidal fibrations". In: Theory and Applications of Categories 20.(18), pp. 650-138.

For a framed Bicategory A, there is the framed Bicategory $\operatorname{Mon}(\mathcal{A})$ of monoids, monoid homomorphisms and Bimodules in \mathcal{A}.

- A monoid in \mathcal{A} consists of an object A in \mathcal{A} together with a vertical arrow $a: A \rightarrow A$ so that $1 \leq a$ and a o $a \leq a$.
- A monoid homomorphism $f:(A, a) \longrightarrow(B, b)$ consists of a horizontal arrow $f: A \longrightarrow B \in \mathcal{A}$ so that

- A simodule $\varphi:(A, a) \rightarrow(B, b)$ consists of a vertical arrow $\varphi: A \longrightarrow B$ in \mathcal{A} so that $\varphi \circ a \leq \varphi$ and $b \circ \varphi \leq \varphi$.
- For every horizontal arrow $f:(A, a) \longrightarrow(B, b)$ in $\operatorname{Mon}(\mathscr{A})$, the vertical arrow $b \circ f_{*}$ in \mathcal{A} is a companion for f, while the vertical arrow $f^{*} \circ b$ in \mathcal{A} is a conjoint for f.

Examples

Example
The framed Bicategory $\operatorname{Mon}(\mathcal{V}$ - $\operatorname{Rel})$, which we denote By \mathcal{V}-Dist, consists of \mathcal{V}-categories as OBjects, \mathcal{V}-functors as horizontal arrows and \mathcal{V}-distributors as vertical arrows.

Examples

Example

The framed Bicatecory Mon $(\mathcal{V}$ - $\operatorname{Rel})$, which we denote By \mathcal{V}-Dist, consists of \mathcal{V}-categories as OBjects, \mathcal{V}-functors as horizontal arrows and \mathcal{V}-distributors as vertical arrows.

Example

The framed Bicategory Mon(Pro(Rel)), which we denote By qunif, consists of Quasiuniform spaces as Objects, uniformly continuous maps as horizontal arrows, and promodules as vertical arrows.

Lax double functors
A lax-double functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.

Lax double functors
A lax-double functor $\mathcal{F}: A \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.
Definition
A lax-framed functor is a lax-double functor Between framed Bicategories.

Lax double functors
A lax-double functor $\mathcal{F}: A \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.
Definition
A lax-framed functor is a lax-double functor Between framed Bicategories.

Theorem
A lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ corresponds precisely to a pair (F, \widehat{F}), where $F: \operatorname{Horiz}(\mathcal{A}) \longrightarrow \operatorname{Horiz}(X)$ is a 2 -functor and
$\widehat{F}: \operatorname{Ver}(\mathcal{A}) \longrightarrow \operatorname{Ver}(X)$ is a lax functor, such that for every
$f: X \longrightarrow Y \in \mathcal{A}$,

$$
\mathrm{F}(f)_{*} \leq \widehat{\mathrm{F}}\left(f_{*}\right) \text { and } \mathrm{F}(f)^{*} \leq \widehat{\mathrm{F}}\left(f^{*}\right)
$$

Coalgebras

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-double functor. The double catecory of (horizontal) coalgebras $\operatorname{CoAlg}(\mathcal{F})$ is defined as follows:

Coalgebras

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-double functor. The double cateciory of (horizontal) coalgebras $\operatorname{CoAlg}(\mathcal{F})$ is defined as follows:

- the OBjects of $\operatorname{CoAlg}(\mathcal{F})$ are the coalgebras (A, α) for F: $\operatorname{Horiz}(\mathcal{A}) \longrightarrow \operatorname{Horiz}(\mathcal{A})$,
- the horizontal arrows in $\operatorname{CoAlg}(\mathcal{F})$ Between OBjects (A, α) and (B, β) are coalcebra homomorphisms,

Coalgebras
Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-double functor. The double category of (horizontal) coalgebras $\operatorname{CoAlg}(\mathcal{F})$ is defined as follows:

- the OBjects of $\operatorname{CoAlg}(\mathcal{F})$ are the coalgebras (A, α) for F: $\operatorname{Horiz}(\mathcal{A}) \longrightarrow \operatorname{Horiz}(\mathcal{A})$,
- the horizontal arrows in $\operatorname{CoAlg}(\mathcal{F})$ Between objects (A, α) and (B, β) are coalgebra homomorphisms,
- the vertical arrows in $\operatorname{CoAlg}(\mathcal{F})$ Between objects (A, α) and (B, β) are \mathcal{F}-simulations, that is, vertical arrows $s: X \rightarrow Y$ in A so that

Coalgebras
Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-double functor. The double category of (horizontal) coalgebras $\operatorname{CoAlg}(\mathcal{F})$ is defined as follows:

- the OBjects of $\operatorname{CoAlg}(\mathcal{F})$ are the coalgebras (A, α) for F: $\operatorname{Horiz}(\mathcal{A}) \longrightarrow \operatorname{Horiz}(\mathcal{A})$,
- the horizontal arrows in $\operatorname{CoAlg}(\mathcal{F})$ Between objects (A, α) and (B, β) are coalgebra homomorphisms,
- the vertical arrows in $\operatorname{CoAlg}(\mathcal{F})$ Between objects (A, α) and (B, β) are \mathcal{F}-simulations, that is, vertical arrows $s: X \rightarrow Y$ in A so that

Theorem
$\operatorname{CoAlg}(\mathcal{F})$ is a framed Bicategory, for a lax-framed functor \mathcal{F}.
Remark
For a coalgebra homomorphism $f:(A, \alpha) \longrightarrow(B, \beta)$, the companion f_{*} and the conjoint f^{*} of $f: A \longrightarrow B$ in \mathcal{A} are $\widehat{\mathrm{F}}$-simulations.

Similarity

Definition

We call a framed Bicategory \mathcal{A} locally complete whenever the ordered category $\operatorname{Ver}(\mathcal{A})$ has complete hom-sets.

Remark
The previous constructions preserve local completeness.

Similarity

Definition

We call a framed Bicategory \mathcal{A} locally complete whenever the ordered category $\operatorname{Ver}(\mathcal{A})$ has complete hom-sets.

Remark
The previous constructions preserve local completeness.
Definition
Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-framed functor where \mathcal{A} is locally complete. Let (A, α) and (B, β) Be \mathcal{F}-coalgebras.
The \mathcal{F}-similarity from (A, α) to (B, β) is the ereatest \mathcal{F}-simulation from (A, α) to (B, β), and we denote it $B y T_{\alpha, \beta}$, or $B y T_{\alpha}$, if $\alpha=\beta$.

Similarity

Definition

We call a framed Bicategory \mathcal{A} locally complete whenever the ordered category $\operatorname{Ver}(\mathscr{A})$ has complete hom-sets.
Remark
The previous constructions preserve local completeness.

Definition

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-framed functor where \mathcal{A} is locally complete. Let (A, α) and (B, β) Be \mathcal{F}-coalcebras.
The \mathcal{F}-similarity from (A, α) to (B, β) is the createst \mathcal{F}-simulation from (A, α) to (B, β), and we denote it $B y T_{\alpha, \beta}$, or $B y T_{\alpha}$, if $\alpha=\beta$.

Theorem

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ Be a lax-framed functor where \mathcal{A} is locally complete. For every pair of horizontal arrows

$$
(A, \alpha) \xrightarrow{f}(C, \gamma) \quad(B, \beta) \xrightarrow{g}(D, \delta)
$$

in $\operatorname{CoAlg} \mathcal{F}, \top_{\alpha, \beta}=g^{*} \circ T_{\gamma, \delta} \circ f_{*}$.

Behavioural distance

Remark
For every lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ on a locally complete framed Bicategory, the forgetful functor

$$
\operatorname{Horiz}(\operatorname{CoAlg} \operatorname{Mon}(\mathcal{F})) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg} \mathcal{F})
$$

is topolocical and therefore has a right adjoint

$$
\text { gfp: } \operatorname{Horiz}(\operatorname{CoAlg} \mathcal{F}) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg} \operatorname{Mon}(\mathcal{F})) .
$$

Behavioural distance

Remark
For every lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ on a locally complete framed Bicategory, the forgetful functor

$$
\operatorname{Horiz}(\operatorname{CoAlg} \operatorname{Mon}(\mathcal{F})) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg} \mathcal{F})
$$

is topolocical and therefore has a richt adjoint

$$
\text { gfp: } \operatorname{Horiz}(\operatorname{CoAlg} \mathcal{F}) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg} \operatorname{Mon}(\mathcal{F})) .
$$

Definition

Let \mathcal{F} Be a lax-framed endofunctor on a locally complete framed Bicategory. The \mathcal{F}-Behavioural distance bd $_{\alpha}$ on an \mathcal{F}-coalcebra (A, α) is the monoid structure on A Given $B y \operatorname{gfp}(A, \alpha)$.

Behavioural distance $=$ similarity

Theorem
Let \mathcal{F} Be a lax-framed endofunctor on a locally complete framed Bicategory. Then, \mathcal{F}-similarity and \mathcal{F}-Behavioural distance coincide on every \mathcal{F}-coalcebra.

Behavioural distance $=$ similarity

Theorem
Let \mathcal{F} Be a lax-framed endofunctor on a locally complete framed Bicatecory. Then, \mathcal{F}-similarity and \mathcal{F}-Behavioural distance coincide on every \mathcal{F}-coalgebra.

Corollary
\mathcal{F}-Behavioural distance is compatible with coakebra homomorphisms.
worrell (2000)

Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coakebraic Methods in Computer Science 33, pp. 337-356.
Worrell considers a locally monotone functor $F: V$-Cat $\longrightarrow \mathcal{V}$-Cat, where \mathcal{V} is a quantale.

Theorem
Assume that $\mathrm{F}: \mathcal{V}$-Cat $\longrightarrow \mathcal{V}$-Cat preserves initial \mathcal{V}-functors and admits a final coalgebra (Z, c, γ). For every coalgebra (X, a, α) and all $x, y \in X$,

$$
c\left(\operatorname{beh}_{\alpha}(x), \operatorname{beh}_{\alpha}(y)\right)=\bigvee\{\varphi(x, y) \mid \varphi:(X, a) \longrightarrow(X, a) \text { Bisimulation }\} .
$$

worrell (2000)

Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coakebraic Methods in Computer Science 33, pp. 337-356.

Worrell considers a locally monotone functor $F: V$-Cat $\longrightarrow \mathcal{V}$-Cat, where \mathcal{V} is a quantale.

Theorem
Assume that $\mathrm{F}: \mathcal{V}$-Cat $\longrightarrow \mathcal{V}$-Cat preserves initial \mathcal{V}-functors and admits a final coalgebra (Z, c, γ). For every coalgebra (X, a, α) and all $x, y \in X$,

$$
c\left(\operatorname{beh}_{\alpha}(x), \operatorname{beh}_{\alpha}(y)\right)=\bigvee\{\varphi(x, y) \mid \varphi:(X, a) \longrightarrow(X, a) \text { Bisimulation }\} .
$$

Theorem
F extends (in a canonical way) to a normal lax functor
$\widehat{F}: \mathcal{V}$-Dist $\longrightarrow \mathcal{V}$-Dist if and only if F preserves initial \mathcal{V}-functors.

From our perspective
Corollary
Consider a normal lax-double functor $\mathcal{F}: \mathcal{V}$ - \mathcal{D} ist $\longrightarrow \mathcal{V}$-Dist which admits a admits a terminal coalgebra (Z, c, γ). For every coalgebra (X, a, α) and all $x, y \in X$,

$$
\operatorname{bd}_{\gamma}\left(\operatorname{beh}_{\alpha}(x), \operatorname{beh}_{\alpha}(y)\right)=T_{\alpha}(x, y) .
$$

Remark
Above we apply (on the horizontal catecories)

$$
\operatorname{CoAlg}(\mathcal{F} \text { on } \mathcal{V} \text {-Dist }) \longrightarrow \operatorname{CoAlg}(\operatorname{Mon}(\mathcal{F}) \text { on } \operatorname{Mon}(\mathcal{V}-\mathcal{D i s t}))
$$

which, Being right adjoint, preserves terminal coalgebras.

From our perspective
Corollary
Consider a normal lax-double functor $\mathcal{F}: \mathcal{V}$ - \mathcal{D} ist $\longrightarrow \mathcal{V}$-Dist which admits a admits a terminal coalgebra (Z, c, γ). For every coalgebra (X, a, α) and all $x, y \in X$,

$$
\operatorname{bd}_{\gamma}\left(\operatorname{beh}_{\alpha}(x), \operatorname{beh}_{\alpha}(y)\right)=T_{\alpha}(x, y) .
$$

Remark
ABove we apply (on the horizontal catecories)

$$
\operatorname{CoAlg}(\mathcal{F} \text { on } \operatorname{Mon}(\mathcal{V}-\operatorname{Rel})) \longrightarrow \operatorname{CoAlg}(\operatorname{Mon}(\mathcal{F}) \text { on } \operatorname{Mon} \operatorname{Mon}(\mathcal{V}-\operatorname{Rel}))
$$

which, Being right adjoint, preserves terminal coalgebras.

From our perspective
Corollary
Consider a normal lax-double functor $\mathcal{F}: \mathcal{V}$ - \mathcal{D} st $\longrightarrow \mathcal{V}$-Dist which admits a admits a terminal coalcebra (Z, c, γ). For every coalcebra (X, a, α) and all $x, y \in X$,

$$
\operatorname{bd}_{\gamma}\left(\operatorname{beh}_{\alpha}(x), \operatorname{beh}_{\alpha}(y)\right)=T_{\alpha}(x, y) .
$$

Remark
ABove we apply (on the horizontal categories)

$$
\operatorname{CoAlg}(\mathcal{F} \text { on } \operatorname{Mon}(\mathcal{V}-\operatorname{Rel})) \longrightarrow \operatorname{CoAlg}(\operatorname{Mon}(\mathcal{F}) \text { on } \operatorname{Mon} \operatorname{Mon}(\mathcal{V}-\operatorname{Rel}))
$$

which, Being right adjoint, preserves terminal coalgebras.
Lemma
Let \mathcal{A} Be a framed Bicatecory and let $\mathcal{F}: \operatorname{Mon}(\mathcal{A}) \longrightarrow \operatorname{Mon}(\mathcal{A})$ Be a normal lax-double functor. If (C, c, γ) is a terminal \mathcal{F}-coalgebra, then (C, c, c, γ) is a terminal $\operatorname{Mon}(\mathcal{F})$-coalcebra.

