On the double category of coalgebras

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk

COIMBRA, June 23, 2022

Based on joint work with

- Sergey Goncharov,
- Pedro Nora,
- Lutz Schröder,
- Paul Wild,

from Friedrich-Alexander-Universität Erlangen-Nürnberg.

Reminder: coalgebras

Definition For a functor $F: C \longrightarrow C$, one defines coalgebra

Reminder: coalgebras

Definition For a functor F: $C \longrightarrow C$, one defines coalgebra homomorphism:

Reminder: coalgebras

Definition For a functor $F: C \longrightarrow C$, one defines coalgebra homomorphism:

The corresponding category of coalgebras and homomorphisms is denoted as CoAlg(F).

Behavioural equivalence

Definition

Let F: Set \longrightarrow Set be a functor which admits a terminal coalgebra and let (X, α) and (Y, β) be coalgebras. Then states $x \in X$ and $y \in Y$ are behaviourally equivalent whenever $!_{\alpha}(x) = !_{\beta}(y)$.

Behavioural equivalence

Definition

Let F: Set \longrightarrow Set be a functor which admits a terminal coalgebra and let (X, α) and (Y, β) be coalgebras. Then states $x \in X$ and $y \in Y$ are behaviourally equivalent whenever $!_{\alpha}(x) = !_{\beta}(y)$.

Proposition

The following assertions are equivalent.

- (i) The states $x \in X$ and $y \in Y$ are Behaviourally equivalent.
- (ii) There exist coalgebra homomorphisms $f: (X, \alpha) \longrightarrow (Z, \gamma)$ and $g: (Y, \beta) \longrightarrow (Z, \gamma)$ with f(x) = g(y).

Bisimulations

Definition

Let (X, α) and (Y, β) be coalgebras.

1. A relation $R \subseteq X \times Y$ is a Bisimulation whenever there is a coalgebra $\gamma: R \longrightarrow FR$ so that the projections $\pi_1: R \longrightarrow X$ and $\pi_2: R \longrightarrow Y$ are homomorphisms.

Bisimulations

Definition

Let (X, α) and (Y, β) be coalgebras.

- 1. A relation $R \subseteq X \times Y$ is a **Bisimulation** whenever there is a coalgebra $\gamma: R \longrightarrow FR$ so that the projections $\pi_1: R \longrightarrow X$ and $\pi_2: R \longrightarrow Y$ are homomorphisms.
- 2. States $x \in X$ and $y \in Y$ are Bisimilar whenever there is a Bisimulation from (X, α) to (Y, β) with $(x, y) \in R$.

Bisimulations

Definition

Let (X, α) and (Y, β) be coalgebras.

- 1. A relation $R \subseteq X \times Y$ is a **Bisimulation** whenever there is a coalgebra $\gamma: R \longrightarrow FR$ so that the projections $\pi_1: R \longrightarrow X$ and $\pi_2: R \longrightarrow Y$ are homomorphisms.
- 2. States $x \in X$ and $y \in Y$ are Bisimilar whenever there is a Bisimulation from (X, α) to (Y, β) with $(x, y) \in R$.

Theorem

Assume that F: Set \longrightarrow Set preserves weak pullbacks and let (X, α) and (Y, β) be coalgebras. Then $x \in X$ and $y \in Y$ are behaviourally equivalent if and only if they are bisimilar.

Aczel, Peter and Mendler, Nax (1989). "A final coalgebra theorem". In: Category Theory and Computer Science. Ed. by David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné. Springer Berlin Heidelberg, pp. 357-365.

Bisimulations via lax extensions

Theorem Assume that F: Set \longrightarrow Set preserves weak pullbacks and let (X, α) and (Y,β) be coalgebras. A relation $r: X \longrightarrow Y$ is a bisimulation if and only if

🗧 Rutten, Jan (1998). "Relators and Metric Bisimulations". In: Electronic Notes in Theoretical Computer Science II, pp. 252-258.

Bisimulations via lax extensions

Theorem Assume that F: Set \longrightarrow Set preserves weak pullbacks and let (X, α) and (Y, β) be coalgebras. A relation $r: X \longrightarrow Y$ is a bisimulation if and only if

Theorem

A functor F: Set \longrightarrow Set preserves weak pullbacks if and only if there is an (unique) extension F: Rel \longrightarrow Rel.

Trnková, Vara (1977). "Relational automata in a category and their languages". In: Fundamentals of computation theory (Proc. Internat. Conf., Poznań-Kórnik, 1977). Vol. 56. Berlin: Springer, Lecture Notes in Comput. Sci., pp. 340-355.

There is more ...

- Baldan, Bonchi, Kerstan, and König study Behavioural distances.

Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, and König, Barbara (2018). "Coalgebraic Behavioral Metrics". In: Logical Methods in Computer Science 14.(3), pp. 1860-5974.

There is more ...

- Baldan, Bonchi, Kerstan, and König study Behavioural distances.

- Baldan, Paolo, Bonchi, Filippo, Kerstan, Henning, and König, Barbara (2018). "Coalgebraic Behavioral Metrics". In: Logical Methods in Computer Science 14.(3), pp. 1860-5974.
- Worrell investigates Bisimulations in the context of quantale-enriched categories.
 - Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coalgebraic Methods in Computer Science 33, pp. 337-356.

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

A double category \mathcal{A} consists of objects and two types of arrows: horizontal and vertical ones, and cells in squares suggestively written as

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

A double category \mathcal{A} consists of objects and two types of arrows: horizontal and vertical ones, and cells in squares suggestively written as

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \downarrow & \varepsilon & \downarrow \\ A & \stackrel{g}{\longrightarrow} & B. \end{array}$$

We write $Horiz(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A} , and with 2-cells $\varepsilon: g \to h$ being (from \mathcal{A})

$$\begin{array}{c} A \xrightarrow{h} B \\ 1 \downarrow & \varepsilon & \downarrow 1 \\ A \xrightarrow{g} B. \end{array}$$

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

A double category \mathcal{A} consists of objects and two types of arrows: horizontal and vertical ones, and cells in squares suggestively written as

We write $Horiz(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A} , and with 2-cells $\varepsilon: g \to h$ being (from \mathcal{A})

$$\begin{array}{c} A \xrightarrow{h} B \\ 1 \downarrow & \varepsilon & \downarrow 1 \\ A \xrightarrow{g} B. \end{array}$$

Similarly, $Ver(\mathcal{A})$ denotes the Bicategory of vertical arrows of \mathcal{A} , with 2-cells $\delta: r \rightarrow s$ given By cells in \mathcal{A} of type

"Double Categories - The Best thing since slice categories" (BOB Paré (2018)).

A double category \mathcal{A} consists of objects and two types of arrows: horizontal and vertical ones, and cells in squares suggestively written as

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \downarrow & \leq & \downarrow \\ A & \stackrel{g}{\longrightarrow} & B. \end{array}$$

We write $Horiz(\mathcal{A})$ for the 2-category of horizontal arrows of \mathcal{A} , and with 2-cells $\varepsilon: g \to h$ being (from \mathcal{A})

$$\begin{array}{cccc}
A & \xrightarrow{h} & B \\
 1 & \downarrow & \leq & \downarrow 1 \\
 A & \xrightarrow{g} & B.
\end{array}$$

Similarly, $Ver(\mathcal{A})$ denotes the Bicategory of vertical arrows of \mathcal{A} , with 2-cells $\delta: r \rightarrow s$ given By cells in \mathcal{A} of type

$$\begin{array}{ccc} A & \stackrel{1}{\longrightarrow} & A \\ r \downarrow & \leq & \downarrow s \\ B & \stackrel{1}{\longrightarrow} & B. \end{array}$$

Examples: relations

Example

Our paradigmatic example of a double category is the double category $\Re($ of sets, functions (as horizontal arrows) and relations (as vertical arrows).

Examples: relations

Example

Our paradigmatic example of a double category is the double category $\Re($ of sets, functions (as horizontal arrows) and relations (as vertical arrows).

Example

More general, for a quantale V, we consider the double category V-Rel of sets, functions (as horizontal arrows) and V-relations (as vertical arrows).

Remark

A \mathcal{V} -relation from X to Y is a map $X \times Y \longrightarrow \mathcal{V}$ and it is represented by $X \longrightarrow Y$; \mathcal{V} -relations can be composed via "matrix multiplication": for $r: X \longrightarrow Y$ and $s: Y \longrightarrow Z$,

$$(s \cdot r)(x,z) = \bigvee_{y \in Y} r(x,y) \otimes s(y,z).$$

Companions and conjoints

Given an horizontal arrow $f: A \longrightarrow B$ in a double category \mathcal{A} , a companion for f is a vertical arrow $f_*: A \longrightarrow B$ in \mathcal{A} so that

$$\begin{array}{cccc} A & \xrightarrow{1} & A & & & A & \xrightarrow{f} & B \\ 1 & \downarrow & \leq & \downarrow f_* & \text{ and } & & f_* & \downarrow & \leq & \downarrow 1 \\ A & \xrightarrow{f} & B & & & B & \xrightarrow{1} & B. \end{array}$$

Companions and conjoints

Given an horizontal arrow $f: A \longrightarrow B$ in a double category \mathcal{A} , a companion for f is a vertical arrow $f_*: A \longrightarrow B$ in \mathcal{A} so that

Dually, a conjoint for f is a vertical arrow $f^*: B \longrightarrow A$ so that

Companions and conjoints

Given an horizontal arrow $f: A \longrightarrow B$ in a double category \mathcal{A} , a companion for f is a vertical arrow $f_*: A \longrightarrow B$ in \mathcal{A} so that

Dually, a conjoint for f is a vertical arrow $f^*: B \longrightarrow A$ so that

Definition

A double category \mathcal{A} is a framed bicategory if every horizontal arrow has a companion and a conjoint.

📕 Shulman, Michael (2008). "Framed bicategories and monoidal fibrations". In: Theory and Applications of Categories 20.(18), pp. 650-138.

Example

For a map $f: X \longrightarrow Y$, a companion of f in \mathcal{Rel} is the graph $f_*: X \longrightarrow Y$ of f, and a conjoint is the cograph $f^*: Y \longrightarrow X$ of f (and similar in $\mathcal{V}-\mathcal{Rel}$).

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed bicategory \mathcal{A} there is the framed bicategory $Pro(\mathcal{A})$ of the procompletion of $Ver(\mathcal{A})$.

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed bicategory \mathcal{A} there is the framed bicategory $Pro(\mathcal{A})$ of the procompletion of $Ver(\mathcal{A})$.

- The objects and the horizontal arrows of $Pro(\mathcal{A})$ are the same of \mathcal{A} .

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed bicategory \mathcal{A} there is the framed bicategory $Pro(\mathcal{A})$ of the procompletion of $Ver(\mathcal{A})$.

- The objects and the horizontal arrows of $Pro(\mathcal{A})$ are the same of \mathcal{A} .
- A vertical arrow from an object X to an object Y in $Pro(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A} .

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12.(2), pp. 127-154.

For a framed bicategory \mathcal{A} there is the framed bicategory $Pro(\mathcal{A})$ of the procompletion of $Ver(\mathcal{A})$.

- The objects and the horizontal arrows of $Pro(\mathcal{A})$ are the same of \mathcal{A} .

ver

- A vertical arrow from an object X to an object Y in $Pro(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A} .

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y \\ R \downarrow & \leq & \downarrow s \\ A & \stackrel{g}{\longrightarrow} & B \end{array} \qquad \text{where}$$

for all
$$s \in S$$
 there is $r \in R$
such that
$$X \xrightarrow{f} Y$$
$$r \downarrow \leq \qquad \downarrow s$$
$$A \xrightarrow{g} B.$$
in $\mathcal{A}.$

 $X \xrightarrow{f} Y$

 $A \xrightarrow[\sigma]{\sigma} B$

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2004). "One setting for all: metric, topology, uniformity, approach structure". In: Applied Categorical Structures 12(2), pp. 127-154.

For a framed bicategory \mathcal{A} there is the framed bicategory $Pro(\mathcal{A})$ of the procompletion of $Ver(\mathcal{A})$.

- The objects and the horizontal arrows of $Pro(\mathcal{A})$ are the same of \mathcal{A} .
- A vertical arrow from an object X to an object Y in $Pro(\mathcal{A})$ is a down-directed set of vertical arrows from X to Y in \mathcal{A} .

for all
$$s \in S$$
 there is $r \in R$
such that
$$X \xrightarrow{f} Y$$
$$r \downarrow \leq \downarrow s$$
$$A \xrightarrow{g} B.$$
in $\mathcal{A}.$

- For every horizontal arrow f in $Pro(\mathcal{A})$, the set $\{f_*\}$ is a companion for f, while the set $\{f^*\}$ is a conjoint for f.

whenever

The Mon-construction

Shulman, Michael (2008). "Framed Bicategories and monoidal fibrations". In: Theory and Applications of Categories 2.0.(18), pp. 650-738.

For a framed bicategory \mathcal{A} , there is the framed bicategory $Mon(\mathcal{A})$ of monoids, monoid homomorphisms and bimodules in \mathcal{A} .

The Mon-construction

Shulman, Michael (2008). "Framed Bicategories and Monoidal fibrations". In: Theory and Applications of Categories 2.0.(18), pp. 650-738.

For a framed bicategory \mathcal{A} , there is the framed bicategory $Mon(\mathcal{A})$ of monoids, monoid homomorphisms and bimodules in \mathcal{A} .

- A monoid in \mathcal{A} consists of an object A in \mathcal{A} together with a vertical arrow $a: A \longrightarrow A$ so that $1 \leq a$ and $a \circ a \leq a$.
- A monoid homomorphism $f: (A, a) \longrightarrow (B, b)$ consists of a horizontal arrow $f: A \longrightarrow B \in \mathcal{A}$ so that

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ p \downarrow & \leq & \downarrow \\ A & \stackrel{f}{\longrightarrow} & B. \end{array}$$

- A bimodule $\varphi: (A, a) \longrightarrow (B, b)$ consists of a vertical arrow $\varphi: A \longrightarrow B$ in \mathcal{A} so that $\varphi \circ a \leq \varphi$ and $b \circ \varphi \leq \varphi$.

The Mon-construction

Shulman, Michael (2008). "Framed Bicategories and Monoidal fibrations". In: Theory and Applications of Categories 2.0.(18), pp. 650-738.

For a framed bicategory \mathcal{A} , there is the framed bicategory $Mon(\mathcal{A})$ of monoids, monoid homomorphisms and bimodules in \mathcal{A} .

- A monoid in \mathcal{A} consists of an object A in \mathcal{A} together with a vertical arrow $a: A \longrightarrow A$ so that $1 \leq a$ and $a \circ a \leq a$.
- A monoid homomorphism $f: (A, a) \longrightarrow (B, b)$ consists of a horizontal arrow $f: A \longrightarrow B \in \mathcal{A}$ so that

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ p \downarrow & \leq & \downarrow \\ A & \stackrel{f}{\longrightarrow} & B. \end{array}$$

- A **BIMODULE** $\varphi: (A, a) \longrightarrow (B, b)$ consists of a vertical arrow $\varphi: A \longrightarrow B$ in \mathcal{A} so that $\varphi \circ a \leq \varphi$ and $b \circ \varphi \leq \varphi$.
- For every horizontal arrow $f: (A, a) \longrightarrow (B, b)$ in $Mon(\mathcal{A})$, the vertical arrow $b \circ f_*$ in \mathcal{A} is a companion for f, while the vertical arrow $f^* \circ b$ in \mathcal{A} is a conjoint for f.

Examples

Example

The framed Bicategory Mon(V-Rel), which we denote By V-Dist, consists of V-categories as OBjects, V-functors as horizontal arrows and V-distributors as vertical arrows.

Examples

Example

The framed Bicategory Mon(V-Ref), which we denote by V-Dist, consists of V-categories as objects, V-functors as horizontal arrows and V-distributors as vertical arrows.

Example

The framed Bicategory Mon(Pro(Rel)), which we denote By *qUnif*, consists of Quasiuniform spaces as OBjects, uniformly continuous maps as horizontal arrows, and promodules as vertical arrows.

Lax double functors

A lax-double functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.

Lax double functors

A lax-double functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.

Definition

A lax-framed functor is a lax-double functor between framed bicategories.

Lax double functors

A lax-double functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ sends

and preserves horizontal composition and identities strictly and vertical composition and identities laxly.

Definition

A lax-framed functor is a lax-double functor between framed bicategories.

Theorem

A lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow X$ corresponds precisely to a pair (F, \widehat{F}) , where $F: \operatorname{Horiz}(\mathcal{A}) \longrightarrow \operatorname{Horiz}(X)$ is a 2-functor and $\widehat{F}: \operatorname{Ver}(\mathcal{A}) \longrightarrow \operatorname{Ver}(X)$ is a lax functor, such that for every $f: X \longrightarrow Y \in \mathcal{A}$,

 $\mathsf{F}(f)_* \leq \widehat{\mathsf{F}}(f_*)$ and $\mathsf{F}(f)^* \leq \widehat{\mathsf{F}}(f^*)$.

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-double functor. The double category of (horizontal) coalgebras $CoAlg(\mathcal{F})$ is defined as follows:

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-double functor. The double category of (horizontal) coalgebras $CoAlg(\mathcal{F})$ is defined as follows:

- the objects of $CoAlg(\mathcal{F})$ are the coalgebras (A, α) for F: $Horiz(\mathcal{A}) \longrightarrow Horiz(\mathcal{A})$,
- the horizontal arrows in $CoAlg(\mathcal{F})$ between objects (A, α) and (B, β) are coalgebra homomorphisms,

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-double functor. The double category of (horizontal) coalgebras $CoAlg(\mathcal{F})$ is defined as follows:

- the objects of $CoAlg(\mathcal{F})$ are the coalgebras (A, α) for F: $Horiz(\mathcal{A}) \longrightarrow Horiz(\mathcal{A})$,
- the horizontal arrows in $CoAlg(\mathcal{F})$ between objects (A, α) and (B, β) are coalgebra homomorphisms,
- the vertical arrows in $CoAlg(\mathcal{F})$ between $OBjects(A, \alpha)$ and (B, β) are \mathcal{F} -simulations, that is, vertical arrows $s: X \longrightarrow Y$ in \mathcal{A} so that

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} & \mathsf{F}A \\ \stackrel{s}{\downarrow} & \leq & \downarrow \widehat{\mathsf{F}}_s \\ B & \stackrel{\beta}{\longrightarrow} & \mathsf{F}B. \end{array}$$

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-double functor. The double category of (horizontal) coalgebras $CoAlg(\mathcal{F})$ is defined as follows:

- the objects of $CoAlg(\mathcal{F})$ are the coalgebras (A, α) for F: $Horiz(\mathcal{A}) \longrightarrow Horiz(\mathcal{A})$,
- the horizontal arrows in $CoAlg(\mathcal{F})$ between objects (A, α) and (B, β) are coalgebra homomorphisms,
- the vertical arrows in $CoAlg(\mathcal{F})$ between $OBjects(A, \alpha)$ and (B, β) are \mathcal{F} -simulations, that is, vertical arrows $s: X \longrightarrow Y$ in \mathcal{A} so that

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} & \mathsf{F}A \\ s \downarrow & \leq & \downarrow \widehat{\mathsf{F}}s \\ B & \stackrel{\beta}{\longrightarrow} & \mathsf{F}B. \end{array}$$

Theorem

 $CoAlg(\mathcal{F})$ is a framed bicategory, for a lax-framed functor \mathcal{F} .

Remark

For a coalgebra homomorphism $f: (A, \alpha) \longrightarrow (B, \beta)$, the companion f_* and the conjoint f^* of $f: A \longrightarrow B$ in \mathcal{A} are \widehat{F} -simulations.

Similarity

Definition We call a framed bicategory \mathcal{A} locally complete whenever the ordered category $Ver(\mathcal{A})$ has complete hom-sets.

Remark The previous constructions preserve local completeness.

Similarity

Definition We call a framed bicategory \mathcal{A} locally complete whenever the ordered category $Ver(\mathcal{A})$ has complete hom-sets.

Remark The previous constructions preserve local completeness.

Definition Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-framed functor where \mathcal{A} is locally complete. Let (A, α) and (B, β) be \mathcal{F} -coalgebras. The \mathcal{F} -similarity from (A, α) to (B, β) is the greatest \mathcal{F} -simulation

from (A, α) to (B, β) , and we denote it by $\top_{\alpha, \beta}$, or by \top_{α} , if $\alpha = \beta$.

Similarity

Definition We call a framed bicategory \mathcal{A} locally complete whenever the ordered category $Ver(\mathcal{A})$ has complete hom-sets.

Remark The previous constructions preserve local completeness.

Definition Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-framed functor where \mathcal{A} is locally complete. Let (A, α) and (B, β) be \mathcal{F} -coalgebras.

The *F*-similarity from (A, α) to (B, β) is the greatest *F*-simulation from (A, α) to (B, β) , and we denote it by $\top_{\alpha,\beta}$, or by \top_{α} , if $\alpha = \beta$.

Theorem

Let $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ be a lax-framed functor where \mathcal{A} is locally complete. For every pair of horizontal arrows

$$(A, \alpha) \stackrel{f}{\longrightarrow} (C, \gamma) \qquad \qquad (B, \beta) \stackrel{g}{\longrightarrow} (D, \delta)$$

in CoAlg \mathcal{F} , $op_{lpha,eta}=g^*\circ op_{\gamma,\delta}\circ f_{*}.$

Behavioural distance

Remark For every lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ on a locally complete framed bicategory, the forgetful functor

 $\operatorname{Horiz}(\operatorname{CoAlg}\operatorname{Mon}(\mathcal{F})) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg}\mathcal{F})$

is topological and therefore has a right adjoint

 $\mathsf{gfp} \colon \mathsf{Horiz}(\mathsf{CoAlg}\,\mathcal{F}) \longrightarrow \mathsf{Horiz}(\mathsf{CoAlg}\,\mathsf{Mon}(\mathcal{F})).$

Behavioural distance

Remark

For every lax-framed functor $\mathcal{F}: \mathcal{A} \longrightarrow \mathcal{A}$ on a locally complete framed bicategory, the forgetful functor

 $\operatorname{Horiz}(\operatorname{CoAlg}\operatorname{Mon}(\mathcal{F})) \longrightarrow \operatorname{Horiz}(\operatorname{CoAlg}\mathcal{F})$

is topological and therefore has a right adjoint

 $\mathsf{gfp} \colon \mathsf{Horiz}(\mathsf{CoAlg}\,\mathcal{F}) \longrightarrow \mathsf{Horiz}(\mathsf{CoAlg}\,\mathsf{Mon}(\mathcal{F})).$

Definition

Let \mathcal{F} be a lax-framed endofunctor on a locally complete framed bicategory. The \mathcal{F} -behavioural distance bd_{α} on an \mathcal{F} -coalgebra (A, α) is the monoid structure on A given by $gfp(A, \alpha)$.

Behavioural distance = similarity

Theorem

Let \mathcal{F} be a lax-framed endofunctor on a locally complete framed bicategory. Then, \mathcal{F} -similarity and \mathcal{F} -behavioural distance coincide on every \mathcal{F} -coalgebra.

Behavioural distance = similarity

Theorem

Let \mathcal{F} be a lax-framed endofunctor on a locally complete framed bicategory. Then, \mathcal{F} -similarity and \mathcal{F} -behavioural distance coincide on every \mathcal{F} -coalgebra.

Corollary

 \mathcal{F} -behavioural distance is compatible with coalgebra homomorphisms.

Worrell (2000)

Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coalgebraic Methods in Computer Science 33, pp. 337-356.

Worrell considers a locally monotone functor F: \mathcal{V} -Cat $\longrightarrow \mathcal{V}$ -Cat, where \mathcal{V} is a quantale.

Theorem

Assume that F: \mathcal{V} -Cat $\longrightarrow \mathcal{V}$ -Cat preserves initial \mathcal{V} -functors and admits a final coalgebra (Z, c, γ) . For every coalgebra (X, a, α) and all $x, y \in X$,

 $c(beh_{\alpha}(x), beh_{\alpha}(y)) = \bigvee \{ \varphi(x, y) \mid \varphi \colon (X, a) \longrightarrow (X, a) \text{ Bisimulation} \}.$

Worrell (2000)

Worrell, James (2000). "Coinduction for recursive data types: partial orders, metric spaces and Ω-categories". In: Electronic Notes in Theoretical Computer Science. CMCS'2000, Coalgebraic Methods in Computer Science 33, pp. 337-356.

Worrell considers a locally monotone functor F: \mathcal{V} -Cat $\longrightarrow \mathcal{V}$ -Cat, where \mathcal{V} is a quantale.

Theorem

Assume that F: \mathcal{V} -Cat $\longrightarrow \mathcal{V}$ -Cat preserves initial \mathcal{V} -functors and admits a final coalgebra (Z, c, γ) . For every coalgebra (X, a, α) and all $x, y \in X$,

 $c(beh_{\alpha}(x), beh_{\alpha}(y)) = \bigvee \{ \varphi(x, y) \mid \varphi \colon (X, a) \longrightarrow (X, a) \text{ Bisimulation} \}.$

Theorem

F extends (in a canonical way) to a normal lax functor $\widehat{\mathsf{F}}\colon\mathcal{V}\text{-}\mathsf{Dist}\longrightarrow\mathcal{V}\text{-}\mathsf{Dist}$ if and only if F preserves initial $\mathcal{V}\text{-}\mathsf{functors}.$

From our perspective

Corollary

Consider a normal lax-double functor $\mathcal{F} \colon \mathcal{V} \neg \mathcal{D}ist \longrightarrow \mathcal{V} \neg \mathcal{D}ist$ which admits a admits a terminal coalgebra (Z, c, γ) . For every coalgebra (X, a, α) and all $x, y \in X$,

 $\mathsf{bd}_{\gamma}(\mathsf{beh}_{\alpha}(x),\mathsf{beh}_{\alpha}(y)) = \top_{\alpha}(x,y).$

Remark Above we apply (on the horizontal categories) $CoAlg(\mathcal{F} \text{ on } \mathcal{V}-\mathcal{D}ist) \longrightarrow CoAlg(Mon(\mathcal{F}) \text{ on } Mon(\mathcal{V}-\mathcal{D}ist))$ which, being right adjoint, preserves terminal coalgebras.

From our perspective

Corollary

Consider a normal lax-double functor $\mathcal{F} \colon \mathcal{V} \neg \mathcal{D}ist \longrightarrow \mathcal{V} \neg \mathcal{D}ist$ which admits a admits a terminal coalgebra (Z, c, γ) . For every coalgebra (X, a, α) and all $x, y \in X$,

 $\mathsf{bd}_{\gamma}(\mathsf{beh}_{\alpha}(x),\mathsf{beh}_{\alpha}(y)) = \top_{\alpha}(x,y).$

Remark Above we apply (on the horizontal categories) $CoAlg(\mathcal{F} \text{ on } Mon(\mathcal{V}-Rel)) \longrightarrow CoAlg(Mon(\mathcal{F}) \text{ on } Mon Mon(\mathcal{V}-Rel))$ which, being right adjoint, preserves terminal coalgebras.

From our perspective

Corollary

Consider a normal lax-double functor $\mathcal{F}: \mathcal{V}-\mathcal{D}ist \longrightarrow \mathcal{V}-\mathcal{D}ist$ which admits a admits a terminal coalgebra (Z, c, γ) . For every coalgebra (X, a, α) and all $x, y \in X$,

 $\mathsf{bd}_{\gamma}(\mathsf{beh}_{\alpha}(x),\mathsf{beh}_{\alpha}(y)) = \top_{\alpha}(x,y).$

Remark Above we apply (on the horizontal categories)

 $\operatorname{CoAlg}(\mathcal{F} \text{ on } \operatorname{Mon}(\mathcal{V}-\operatorname{Rel})) \longrightarrow \operatorname{CoAlg}(\operatorname{Mon}(\mathcal{F}) \text{ on } \operatorname{Mon}\operatorname{Mon}(\mathcal{V}-\operatorname{Rel}))$

which, being right adjoint, preserves terminal coalgebras.

Lemma

Let \mathcal{A} be a framed bicategory and let $\mathcal{F}: \operatorname{Mon}(\mathcal{A}) \longrightarrow \operatorname{Mon}(\mathcal{A})$ be a normal lax-double functor. If (C, c, γ) is a terminal \mathcal{F} -coalgebra, then (C, c, c, γ) is a terminal $\operatorname{Mon}(\mathcal{F})$ -coalgebra.