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Introduction

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that

the two sides are different!”

Baez, John and Dolan, James (2001). “From finite sets to

Feynman diagrams”. In: Mathematics Unlimited – 2001 and Be-

yond. Ed. by Björn Engquist and Wilfried Schmid. Springer

Verlag, pp. 29–50. arXiv: 0004133 [math.QA].

https://arxiv.org/abs/0004133
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Examples

1. Regarding Priestop ∼ DL. Is every epimorphism in DL surjective

(= a regular epi)?

No since

(X ,=, τ) −→ (X ,≤, τ)

is a mono in Priest which is not regular if ≤ is not discrete.

2. Regarding BooSpop ∼ BA.

- A Boolean space is extremally disconnected if and only if

its Boolean algebra is complete.

- A Boolean space is projective if and only if it is extremally

disconnected.

- Hence: a Boolean algebra is injective if and only if it is

complete.

3. Regarding CompHausAbop ∼ Ab. An Abelian group is

torsion-free if and only if its corresponding compact

Hausdorff Abelian group is connected.
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About intuitionistic logic

Question
(̸⊢ φ and ̸⊢ ψ) =⇒ ̸⊢ (φ ∨ ψ)?

Better argue semantically

(̸⊨ φ and ̸⊨ ψ) =⇒ ⊭ (φ ∨ ψ).

Proof.

- First recall: ⊨ θ means JθK = ⊤, for all interpretations J−K in

(finite) Heyting algebras H .

- Hence our job is: If there are Heyting algebras H1 and H2 so

that JφKH1 < ⊤ and JψKH2 < ⊤, construct a Heyting algebra H
and an interpretation in H so that φ ∨ ψ fails. . .

- . . . does not seem to be easier!!?
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Kripke semantics

Definition
A Kripke model is a triple of the form C = (C ,≤,⊩) where (C ,≤) is

a partially ordered set and ⊩ is a binary relation between

elements of C and propositional variables so that:

if c ≤ c ′ and c ⊩ p then c ′ ⊩ p.

Definition
For a Kripke model C = (C ,≤,⊩):

- c ⊩ φ ∨ ψ whenever c ⊩ φ or c ⊩ ψ.

- . . .

- c ⊩ φ→ ψ whenever c ′ ⊩ ψ, for all c ≤ c ′ where c ′ ⊩ φ.

Furthermore, C ⊩ φ whenever c ⊩ φ for all c ∈ C and ⊩ φ
whenever C ⊩ φ for all C .

Theorem
⊨ φ ⇐⇒ ⊩ φ.
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Returning to φ ∨ ψ

Theorem
̸⊩ φ and ̸⊩ ψ =⇒ ⊮ (φ ∨ ψ).

Proof.
If φ fails in C1 and ψ fails in C2, then φ ∨ ψ fails in C = (C ,≤,⊩)
where “C = C1 + C2 + 1.”
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Proof.
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where “C = C1 + C2 + 1.”

Why “Kripke=Heyting”?

- Kripke semantics in C = Heyting semantics in {upsets of C}.
c ⊩ φ ⇐⇒ c ∈ JφK.

- Every finite Heyting algebra is of this form.

- In fact: Posopfin ∼ HAfin (∼ DLfin).

X U(X ) H spec(H)

Y U(Y ) K spec(K )

f gU(f ) spec(g)
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What about the infinite case?

Stone’s slogan:
“A cardinal principle of modern mathematical research may be

stated as a maxim: One must always topologize.”

Examples

- Spec ∼ DLop
(certain compact spaces vs. distributive lattices).

- BooSp ∼ BAop
(certain compact T2 spaces vs. Boolean

algebras).

- Priest ∼ DLop
(certain ordered spaces vs. distributive lattices).

- EsaSp ∼ HAop
(certain certain ordered spaces vs. Heyting

algebras).

- CompHaus ∼ C∗-Algop
(compact T2 spaces vs. certain Banach

algebras).

Stone, Marshall Harvey (1938). “The representation of Boolean

algebras”. In: Bulletin of the American Mathematical Society

44.(12), pp. 807–816.
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How does this work?

Regarding BooSp ∼ BAop
:

Version 1

- F : BooSp −→ BAop

FX = { clopen subsets of X}
Ff : FY → FX , B 7→ f −1(B)

- G : BAop −→ BooSp

GX = { maximal ideals of X}
Gf : GY → GX , I 7→ f −1(I )

- ηX : X −→ GFX ,

x 7−→ {A | x ∈ A}.
- εX : X −→ FGX ,

x 7−→ {I | x ∈ I}.

Version 2

- F : BooSp −→ BAop

FX = BooSp(X , 2)
Ff : FY → FX , φ 7→ φ · f

- G : BAop −→ BooSp
GX = BA(X , 2)
Gf : GY → GX , ψ 7→ ψ · f

- ηX : X −→ GFX ,

x 7−→ (evx : FX → 2).
- εX : X −→ FGX ,

x 7−→ (evx : GX → 2).
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One more example

Theorem

Ab ∼ CompHausAbop.

Pontrjagin, Lev Semenovich (1934). “The theory of topological

commutative groups”. In: The Annals of Mathematics 35.(2),

p. 361.

Remark
“That fact is a theorem of topological groups.

That character

groups yield an adjoint connection is a theorem of category

theory.”

Isbell, John R. (1972). “General functorial semantics, I”. In: Amer-

ican Journal of Mathematics 94.(2), pp. 535–596.
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1. The structure of dual

adjunction



Initial lifts

Definition
Let F : A −→ B be a functor. A cone C = (fi : C −→ Xi )i∈I in A is said
to be initial with respect to F

if for every cone
D = (gi : D −→ Xi )i∈I and every morphism h : FD −→ FC such that

FD = FC · h, there exists a unique A-morphism h̄ : D −→ C with
D = C · h̄ and h = F h̄.

C FC FXi

D FD

Ffi

h̄ 7−→ h
Fgi
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FD = FC · h, there exists a unique A-morphism h̄ : D −→ C with
D = C · h̄ and h = F h̄.

C FC FXi

D FD

Ffi

h̄ 7−→ h
Fgi

Example
- In Top, a cone is initial if and only if the domain has the initial

topology.

- A cone (fi : X −→ Xi )i∈I in Ord is initial if and only if, for all

x , y ∈ X ,

x ≤ y ⇐⇒ for all i ∈ I : fi (x) ≤ fi (y).

- In Grp,Rng, . . ., every mono-cone is initial.
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Let F : A −→ B be a functor. A cone C = (fi : C −→ Xi )i∈I in A is said
to be initial with respect to F if for every cone
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D = C · h̄ and h = F h̄.
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Ffi
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Fgi

Definition
For a limit preserving faithful functor |−| : A −→ Set, a morphism

m : A −→ B in A is an embedding whenever |m| is injective and m is

initial.



Initial lifts

Definition
Let F : A −→ B be a functor. A cone C = (fi : C −→ Xi )i∈I in A is said
to be initial with respect to F if for every cone
D = (gi : D −→ Xi )i∈I and every morphism h : FD −→ FC such that

FD = FC · h, there exists a unique A-morphism h̄ : D −→ C with
D = C · h̄ and h = F h̄.

C FC FXi

D FD

Ffi

h̄ 7−→ h
Fgi

Theorem
Let F : A −→ B be a limit preserving faithful functor and

D : I −→ A a diagram. A cone C for D is a limit of D if and only if

the cone FC is a limit of FD and C is initial with respect to F .



Initial lifts

Definition
Let F : A −→ B be a functor. A cone C = (fi : C −→ Xi )i∈I in A is said
to be initial with respect to F if for every cone
D = (gi : D −→ Xi )i∈I and every morphism h : FD −→ FC such that

FD = FC · h, there exists a unique A-morphism h̄ : D −→ C with
D = C · h̄ and h = F h̄.

C FC FXi

D FD

Ffi

h̄ 7−→ h
Fgi

Definition
A functor F : A −→ X is topological whenever every cone
(fi : X −→ UBi )i∈I with a family (Bi )i∈I of A-objects admits an initial
lifting, that is, an initial cone (gi : A −→ Bi )i∈I with UA = X and
Ugi = fi for all i ∈ I .

A Bi

X F (Bi )

gi

fi



Equivalences

Definition
An equivalence between categories A and B consists of

functors f : A −→ B and G : B −→ A together with natural

isomorphisms η : 1A −→ GF and ε : FG −→ 1B .

We write A ∼ B if there is an equivalence between A and B.

Proposition
A functor F : A −→ B is (part of) an equivalence if and only if F is

full, faithful and essentially surjective on objects.
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Adjunctions

Recall . . .
For functors F : A −→ B and G : B −→ A, there is a bijection

between

1. pairs of natural transformations η : 1A −→ GF and ε : FG −→ 1B
satisfying

F (A) FGF (A)

F (A)

F (ηA)

1F (A)
εF (A) and

G(B) GFG(B)

G(B)

ηG(B)

1G(B)

G(εB )

for all A and B , and

2. natural isomorphisms

B(F−,−) −→ A(−,G−).

h 7−→ Gf · η−

An adjunction is a choice of (1) or (2), and we write F ⊣ G to

indicate that there is an adjunction.
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Restricting adjunctions

We consider an adjunction

F : A −→ B, G : B −→ A, η : 1A −→ GF , ε : FG −→ 1B, (∗)

and the full subcategories

Fix(η) and Fix(ε)

of A (resp. B) defined by all objects A in A (resp. B in B) where ηA
(resp. εB) is an isomorphism.

Theorem

1. The adjunction (∗) restricts to an equivalence Fix(η) ∼ Fix(ε).

2. The following assertions are equivalent.

(i) Fix(η) ↪→ A is right adjoint with left adjoint GF (the

monad (GF , η,GεF ) is idempotent).

(ii) ηG is an isomorphism.

(iii) Fix(ε) ↪→ A is left adjoint with right adjoint FG .

(iv) εG is an isomorphism.
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Dual adjunctions

Notation
In the sequel we typically consider adjunctions

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : FG −→ 1Bop ,

F (A) FGF (A)

F (A)

εF (A)

1F (A)
F (ηA) and

G(B) GFG(B)

G(B)

ηG(B)

1G(B)

G(εB )

Example
For a category A with an object Ã with arbitrary powers, we

have the adjunction defined by

A(−, Ã) : Aop −→ Set Ã(−) : Setop −→ A

ηA : A −→ ÃA(A,Ã) εX : X −→ A(ÃX , Ã).
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Dual adjunctions come from dualising objects

Theorem
Assume that concrete categories (A,U) and (B,V ) with

U ≃ A(A0,−) and V ≃ B(B0,−) and a dual adjunction

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG

are given. Put Ã = F (B0) and B̃ = G (A0). Then the following

assertions hold.

1. U(Ã) ∼= V (B̃).

2. VF ≃ A(−, Ã) and UG ≃ B(−, B̃).

Remark
We say that the adjunction is represented by (Ã, B̃).
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We say that the adjunction is represented by (Ã, B̃).
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Units are evaluation

We assume now
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and consider the “evaluation maps” (writing U = |−| = V )
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evF (Ã),1
Ã |B̃| |FG (B̃)| |B̃|.

|εB̃ |

σ
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B̃

Theorem

τ · evA,a = |ηA|(a), σ · evB,b = |εB |(b), τ = σ−1.
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= ||ηA|(a)|(1Ã · φ)
= ||ηA|(a)|(φ).
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= (|GFφ|(|ηA|(a)))(1Ã)
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= ||ηA|(a)|(φ).



Units are evaluation

Proof.
About the first affirmation. For φ : A −→ Ã:
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Summing up

For concrete categories (A, |−|) and (B, |−|) with representable

forgetful functors and a dual adjunction

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG ,

there are objects Ã and B̃ with |Ã| = |B̃|

and, assuming for

simplicity that “all isomorphisms above are identities”,

|F | = A(−, Ã), |G | = B(−, B̃), |ηA|(a) = evA,a, |εB |(B) = evB,b .

Remark
We have

A B(FA, B̃), a evA,a

Ã f (a).

|ηX |

|f |
evf

Therefore:

ηA is mono ⇐⇒ (f : A −→ Ã)f is mono.
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Ã f (a).

|ηX |

|f |
evf

Therefore:

ηA is mono ⇐⇒ (f : A −→ Ã)f is mono.



Regular cogenerators

Remark
Assume that C̃ is a regular cogenerator in a category C with

arbitrary powers of C̃ . It follows that, for each object C in C,

there exists an equalizer diagram

C C̃X C̃Y .

Hence, a right adjoint, full and faithful functor F : B −→ C is an

equivalence provided that C̃ is, up to isomorphism, contained in

the image of F .
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2. How to construct dual

adjunctions



Dualising objects

How can we construct a dual adjunction between given

concrete categories (A, |−|) and (B, |−|) over Set?

Certainly we

have to find objects Ã in A and B̃ in B with |Ã| = |B̃| such that

1. for each object A in A, the cone

(evA,a : A(A, Ã) −→ |B̃|)a∈|A|

admits a lifting

(evA,a : F (A) −→ B̃)a∈|A|

such that, for each f : A −→ A′ in A, the map A(f , Ã) is a

B-morphism F (f ),

2. for each object B in B, . . .

3. for each object A in A, the map

ηA : |A| −→ |GF (A)| = B(F (A), B̃)
a 7−→ evA,a

is actually an A-morphism ηA : A −→ GF (A) and

4. for each object B in B, . . .
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such that

1. for each object A in A, the cone

(evA,a : A(A, Ã) −→ |B̃|)a∈|A|
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How to guarantee this?

Theorem
If the following two conditions are satisfied:

(A) For each object A in A, the cone

(evA,a : A(A, Ã) −→ |B̃|)a∈U(A)

admits an initial lifting

(evA,a : F (A) −→ B̃)a∈|A|,

(B) For each object B in B, the cone

(evB,b : B(B, B̃) −→ |Ã|)b∈|B|

admits an initial lifting

(evB,a : G (B) −→ Ã)b∈|B|,

then (Ã, B̃) induce a (natural) dual adjunction.
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And how to get this?

Proposition

1. If |−| : A −→ Set is topological, then (A).

2. Assume that

2.1 all powers of Ã exist in A and are preserved by

|−| : A −→ Set, and

2.2 |−| : B −→ Set is “algebraic” and all operations |B̃|
n
−→ |B̃|

are A-morphisms Ãn −→ Ã.

Then (B).

If, moreover, A is concretely Ã-complete, then also

(A).
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Proof.
Let A be an object of A and θ be an operation symbol with arity

n. We define

A(A, Ã)n −→ A(A, Ã), (hi )i 7−→ (A
⟨hi ⟩−−→ Ãn θB̃−→ Ã).

Then put F (A) = (A(A, Ã), . . .these operations . . . ); hence F (A) is a

subalgebra of B̃ |A| .



And how to get this?

Proposition

1. If |−| : A −→ Set is mono-topological, then (A).

2. Assume that

2.1 all powers of Ã exist in A and are preserved by

|−| : A −→ Set, and

2.2 |−| : B −→ Set is “algebraic” and all operations |B̃|
n
−→ |B̃|

are A-morphisms Ãn −→ Ã.

Then (B). If, moreover, A is concretely Ã-complete, then also

(A).

Definition
The category A is concretely Ã-complete if all powers of Ã and all

equalisers of pairs of parallel maps between powers of Ã exist in

A, and these limits are preserved by |−| : A −→ Set.



Proof of the last affirmation

A map f : |B| −→ |B̃| is an algebra homomorphism if and only if, for
every operation symbol θ (with arity n), the diagram

|B|n |B̃|
n

|B| |B̃|

f n

θB θB̃

f

commutes, that is: f · θB(h) = θB̃ · f n(h) for all h ∈ |B|n .

Consider

B(B, B̃) |B̃|
|B|

|Ã|

|Ã|
n

|Ã|

πhi

π
θB (h)

θB̃

πi



Proof of the last affirmation

A map f : |B| −→ |B̃| is an algebra homomorphism if and only if, for
every operation symbol θ (with arity n), the diagram

|B|n |B̃|
n

|B| |B̃|

f n

θB θB̃

f

commutes, that is: f · θB(h) = θB̃ · f n(h) for all h ∈ |B|n . Consider

B(B, B̃) |B̃|
|B|

|Ã|
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|B|

|Ã|
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Initial cogenerators

Remark
We consider a natural dual adjunction

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG (∗)

induced by Ã and B̃ . Then

ηA is an embedding ⇐⇒ (f : A→ Ã)f is point-separating and initial.

A B(FA, B̃), a evA,a

Ã f (a).

ηX

f
evf
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F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG (∗)

induced by Ã and B̃ . Then

ηA is an embedding ⇐⇒ (f : A→ Ã)f is point-separating and initial.

Definition
Let (A, |−|) be a concrete category over Set and let Ã an object in

A. Then Ã is called initial cogenerator if, for each object A in A,

the cone (f : A −→ Ã)f is point separating and initial.

Remark
The adjunction (∗) restricts to the full subcategories InitCog(Ã)

and InitCog(B̃) “initially cogenerated by Ã and B̃”.
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3. Gelfand-duality



C ∗-algebras

Definition
A C∗-algebra is a commutative unital C-algebra with norm ∥−∥
and involution (−)∗ which is complete with respect to ∥−∥ and

satisfies (besides the “expected” axioms)

∥x · x∗∥ = ∥x∥2.

C∗-Alg denotes the category of C∗-algebras and identity and

involution preserving C-algebra homomorphisms as morphisms.



C ∗-algebras

Definition
A C∗-algebra is a commutative unital C-algebra with norm ∥−∥
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Obtaining the equivalence

Theorem (Stone-Weierstrass)
Let A be a compact Hausdorff space and let M ⊆ C∗(A) be a

C∗-subalgebra of C∗(A) such that the cone (f : A −→ D)f∈⃝(M)
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S(B) such that the cone (f : B −→ C)f∈M separates the points of

B . Then M = S(B).

Corollary

For every compact Haudorff space A, ηA : A −→ S(C∗(A)) is

surjective.

Theorem
CompHausop ∼ C∗-Alg (and CompHaus ↪→ Top is reflective).
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Some history

- CompHausop
hom(−,[0,1])−−−−−−−−−−−→ Set is monadic.

- [0, 1] is ℵ1-copresentable in CompHaus.
- The algebraic theory of CompHausop can be generated by 5

operations.

- A complete description of the algebraic theory of CompHausop

was obtain by V. Marra and L. Reggio based on the theory of

MV-algebras.

- Similarly, PosCompop
is a quasivariety.

- Even better, PosCompop
is a variety.
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4. Stone-Weierstraß

condition



The setting

Let C be a complete category and let M be a class of C-morphisms

satisfying the following conditions:

1. RegMono(C) ⊆M ⊂Mono(C),
2. M is closed under composition, stable under pullbacks and

3. for each family (mi : Ai −→ A)i∈I of M-morphisms, there exist

an intersection d : D −→ A and d ∈M.

Examples
M = {embeddings} or M = {regular monos}.

Remark
M is part of a factorization structure (M-ExtrEpi, M) for
morphisms in C.

Adámek, Jirí, Herrlich, Horst, and Strecker, George E. (1990). Ab-

stract and concrete categories: The joy of cats. Pure and Applied

Mathematics (New York). New York: John Wiley & Sons Inc. xiv +

482. Republished in: Reprints in Theory and Applications of Cate-
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The setting

Let C be a complete category and let M be a class of C-morphisms

satisfying the following conditions:

1. RegMono(C) ⊆M ⊂Mono(C),
2. M is closed under composition, stable under pullbacks and

3. for each family (mi : Ai −→ A)i∈I of M-morphisms, there exist

an intersection d : D −→ A and d ∈M.

Examples
M = {embeddings} or M = {regular monos}.

Remark
M is part of a factorization structure (M-ExtrEpi, M) for
morphisms in C.

Adámek, Jirí, Herrlich, Horst, and Strecker, George E. (1990). Ab-

stract and concrete categories: The joy of cats. Pure and Applied

Mathematics (New York). New York: John Wiley & Sons Inc. xiv +

482. Republished in: Reprints in Theory and Applications of Cate-

gories, No. 17 (2006) pp. 1–507.



The setting

Let C be a complete category and let M be a class of C-morphisms

satisfying the following conditions:

1. RegMono(C) ⊆M ⊂Mono(C),
2. M is closed under composition, stable under pullbacks and

3. for each family (mi : Ai −→ A)i∈I of M-morphisms, there exist

an intersection d : D −→ A and d ∈M.

Examples
M = {embeddings} or M = {regular monos}.

Remark
M is part of a factorization structure (M-ExtrEpi, M) for
morphisms in C.

Adámek, Jirí, Herrlich, Horst, and Strecker, George E. (1990). Ab-

stract and concrete categories: The joy of cats. Pure and Applied

Mathematics (New York). New York: John Wiley & Sons Inc. xiv +

482. Republished in: Reprints in Theory and Applications of Cate-

gories, No. 17 (2006) pp. 1–507.



Some notation

We define the following class of small cones of C:

M = {(fi : C −→ Ci )i∈I | I is a set and ⟨fi ⟩i∈I ∈M}.

Remark
Each limit cone belongs to M and a small cone belongs to M if

and only if it contains a M-cone.

M is closed under composition if and only if M is stable under

products.

Definition
Let C̃ be a C-object. C̃ is called an M-cogenerator of C if, for

each object C in C, the cone (f : C −→ C̃ )f belongs to M.
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More setting

We consider a dual adjunction

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG

induced by Ã and B̃ .

Furthermore, there are classes MA and MB of A-morphisms resp.

B-morphisms satisfying . . . (see before) . . . and so that the cones

(evA,a : G (A) −→ B̃)a∈A and (evB,b : F (B) −→ Ã)b∈B

belong to MB resp. MA .

Finally, Ã is a MA-cogenerator of A and B̃ is a MB-cogenerator

of B.
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Injectivity

Assume that our given adjunction is already and equivalence.

Proposition

1. The following are equivalent.

1.1 F (MA) ⊆MB-ExtrEpi.

1.2 G (MB) ⊆MA-ExtrEpi.

2. The following are equivalent.

2.1 F (MA-ExtrEpi) ⊆MB .

2.2 G (MB-ExtrEpi) ⊆MA .

Remark
If

MB-ExtrEpi = {Surjections} = MA-ExtrEpi

then Ã is MA-injective if and only if B̃ is MB-injective.
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The Stone-Weierstraß condition

Definition
F satisfies the Stone-Weierstraß condition provided that

(SW) For each object A in A, a MB-morphism m : M −→ F (A)
is an isomorphism provided that the cone

(m(f ) : A −→ Ã)f∈M ∈MA .

Proposition
If F satisfies (SW) then F (MA) ⊆MB-ExtrEpi.

Proposition
Assume that our dual adjunction is a dual equivalence and

F (MA) ⊆MB-ExtrEpi. Then F satisfies (SW).

Corollary

If we have a dual equivalence, G satisfies (SW) if and only if F
satisfies (SW).
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The clone condition

Definition
F satisfies the clone-condition provided that the following holds:

(Cl) For each set X , every MB-morphism m : M −→ F (ÃX ) is

an isomorphism provided that the cone

(m(f ) : ÃX −→ Ã)f∈|M| contains all projections.

Remark
If B is a category of algebras, then the condition above means

that

|CloneX (B̃)| = |A(ÃX , Ã)|.

Proposition
If the given dual adjunction is an equivalence, then F satisfies (Cl).
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Relation with Stone-Weierstrass

Proposition
If F satisfies (Cl) and F (MA) ⊆MB-ExtrEpi, then F satisfies (SW).

Theorem
Assume that B is the category of Σ-algebras and homomorphisms

(for a signature Σ), here MB = {monos} and

MA = {regular monos}. Then the following assertions are

equivalent

(i) The dual adjunction is an equivalence.

(ii) The following three conditions are fulfilled.

(a) A is concretely Ã-complete.

(b) Ã is a regular injective regular cogenerator of A.

(c) For each set X ,

|CloneX (B̃)| = |A(ÃX , Ã)|.
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Theorem
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(for a signature Σ), here MB = {monos} and
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equivalent
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(b) Ã is a regular injective regular cogenerator of A.
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Part 2

Stone-type dualities



Some references

Clark, David M. and Davey, Brian A. (1998). Natural dualities for

the working algebraist. Vol. 57. Cambridge Studies in

Advanced Mathematics. Cambridge: Cambridge University

Press. xii + 356.

Johnstone, Peter T. (1986). Stone spaces. Vol. 3. Cambridge

Studies in Advanced Mathematics. Cambridge: Cambridge

University Press. xxii + 370. Reprint of the 1982 edition.



The idea

Let C and D be small categories. If

Cop ∼ D

then

Ind(C)op ∼ Pro(D).

Ind(C) is the free cocomple-

tion of C under filtered col-

imits.

Pro(D) is the free cocomple-

tion of D under cofiltered

limits.
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Our strategy

We consider a dual adjunction

F : A −→ Bop, G : Bop −→ A, η : 1A −→ GF , ε : 1B −→ FG (∗)

induced by Ã and B̃ .

Furthermore, we assume that the adjunction

(∗) restricts to an equivalence between the full subcategories

of A and B defined by all finite objects.

Then the adjunction (∗) is actually an equivalence provided that

- Each object B in B is a filtered colimit of finite objects.

- F sends cofiltered limits of finite objects to colimits.

- Each object A in A is a cofiltered limit of finite objects.

Remark
Under the conditions above, the endofunctor FG : B −→ B
preserves filtered colimits of finite objects and, dually,

GF : A −→ A preserves cofiltered limits of finite objects.
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Limit sketches

Definition
A finitary limit sketch is a triple S = (C,L, σ) consisting of

- a small category C,

- a set L of diagrams in C with finite shape, and

- a function σ which assigns to each diagram of L a cone.

A model of a finitary limit sketch S = (C,L, σ) in a category A is a

functor M : C −→ A which sends each diagram D : I −→ C of L to a

limit σ(D) of FD .

Finally, Mod(S,A) denotes the full subcategory of the functor

category AC defined by all models of S in A.

Remark
Mod(S,A) is reflective in AC .

Kennison, John F. (1968). “On limit-preserving functors”. In: Illinois

Journal of Mathematics 12.(4), pp. 616–619.

Freyd, P. J. and Kelly, G. M. (1972). “Categories of continuous functors,

I”. In: Journal of Pure and Applied Algebra 2.(3), pp. 169–191.
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Example

Consider the following limit sketch S = (C,L, σ):

- C is the category consisting of two objects c1 and c2 and has,

besides the identity morphisms, three morphisms

o, p1, p2 : c2 −→ c1 .

- L contains only the discrete diagram consisting of two

copies of c1 .

- σ assigns the cone (p1, p2 : c2 −→ c1) to this diagram.

Then Mod(S, Set) is the category of magmas and magma

homomorphisms, Mod(S,CompHaus) is the category of “compact

Hausdorff magmas” and . . .
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One more

Consider the following limit sketch S = (C,L, σ):

- C is the category consisting of three objects c1, c2 and r and

has, besides the identity morphisms, the morphisms

p1, p2 : c2 −→ c1, m : r −→ c2 and p1 ·m and p2 ·m.

- L contains the discrete diagram consisting of two copies of

c1 and the span r
m−−→ c2

m←−− r .

- σ assigns the cones

c2

c1 c1

p1 p2

r r

r c2

1r

1r m

m

to these diagrams.

Then Mod(S, Set) is category of sets equipped with a binary

relation and relation-preserving maps, . . .
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And still one more example

For a finitely complete small category C, we may consider the

limit sketch S = (C,L, σ) where

- L is the collection of all finite diagrams in C and

- σ assigns a limit to each of these diagrams.

Then Mod(S, Set) ∼ Cart(C, Set).
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Locally presentable categories

Definition
An object B in a category B is called finitely presentable if the

covariant hom-functor B(B,−) preserves filtered colimits.

A category B is called locally finitely presentable provided that the

following conditions hold:

1. B is cocomplete.

2. There exists, up to isomorphism, only a set of finitely

presentable objects in B.

3. Each object B in B is a filtered colimit of finitely presentable

objects.

Remark
Locally finitely presentable categories are also complete,

(co)wellpowered and have a generating set.

Moreover, each

functor between locally finitely presentable categories which

preserves limits and filtered colimits has a left adjoint.



Locally presentable categories

Definition
An object B in a category B is called finitely presentable if the

covariant hom-functor B(B,−) preserves filtered colimits.

A category B is called locally finitely presentable provided that the

following conditions hold:

1. B is cocomplete.

2. There exists, up to isomorphism, only a set of finitely

presentable objects in B.

3. Each object B in B is a filtered colimit of finitely presentable

objects.

Remark
Locally finitely presentable categories are also complete,

(co)wellpowered and have a generating set.

Moreover, each

functor between locally finitely presentable categories which

preserves limits and filtered colimits has a left adjoint.



Locally presentable categories

Definition
An object B in a category B is called finitely presentable if the

covariant hom-functor B(B,−) preserves filtered colimits.

A category B is called locally finitely presentable provided that the

following conditions hold:

1. B is cocomplete.

2. There exists, up to isomorphism, only a set of finitely

presentable objects in B.

3. Each object B in B is a filtered colimit of finitely presentable

objects.

Remark
Locally finitely presentable categories are also complete,

(co)wellpowered and have a generating set.

Moreover, each

functor between locally finitely presentable categories which

preserves limits and filtered colimits has a left adjoint.



Locally presentable categories

Definition
An object B in a category B is called finitely presentable if the

covariant hom-functor B(B,−) preserves filtered colimits.

A category B is called locally finitely presentable provided that the

following conditions hold:

1. B is cocomplete.

2. There exists, up to isomorphism, only a set of finitely

presentable objects in B.

3. Each object B in B is a filtered colimit of finitely presentable

objects.

Remark
Locally finitely presentable categories are also complete,

(co)wellpowered and have a generating set. Moreover, each

functor between locally finitely presentable categories which

preserves limits and filtered colimits has a left adjoint.



Gabriel and Ulmer (1971)

The model categories of finitary limit sketches in Set are precisely

(up to equivalence) the locally finitely presentable categories.

More precisely, (Set, Set) represent a dual equivalence

FinComplop ∼ LocFinPres.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierbare

Kategorien. Vol. 221. Lecture Notes in Mathematics. Berlin:

Springer-Verlag. v + 200.

Adámek, Jirí and Rosický, Jirí (1994). Locally presentable and

accessible categories. Vol. 189. London Mathematical Society

Lecture Note Series. Cambridge: Cambridge University Press.

xiv + 316.
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Still some more

Examples

- Set is locally finitely presentable, here the finitely presentable

objects are precisely the finite sets.

- A category of finitary algebras is finitely presentable, here

finitely presentable objects are precisely the finitely

presented algebras.

- A set X is copresentable in Set if and only if X = {∗}.
- The finitely copresentable compact Hausdorff spaces are

precisely the finite ones (same for Boolean spaces).

- The ℵ1-copresentable compact Hausdorff spaces are precisely

the metrisable ones.

Remark

- The category of models of a limit sketch in a locally

presentable category is locally presentable.

- The category of models of a colimit sketch in a locally

presentable category is locally presentable.
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Single-sorted sketches

For limit sketch S = (C,L, σ), we define:

- The class of all S-monomorphisms is defined as the

composition closure of the class of all C-morphisms

m : A −→ B such that the span A
m−−→ B

m←−− A belongs to L and

σ assigns the cone

A A

A B

1A

1A m

m

to this diagram.

- For a full subcategory C0 of C, we put:

1. Sub(C0) = {C | C is a S-subobject of an object in C0},
2. Lim(C0) = {C | C is an S-limit of an object in C0},

- For an object C in C, we define a chain Gn(C ) (n ∈ N) of full

subcategories of C in the following way:

1. We put G0(C ) = {C} and,

2. for each n ≥ 0, Gn+1(C ) = SubS(LimS(Gn(C ))).
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1. We put G0(C ) = {C} and,

2. for each n ≥ 0, Gn+1(C ) = SubS(LimS(Gn(C ))).



Single-sorted sketches

Definition
Let S = (C,L, σ) be a finitary limit sketch. An object C0 in C is

called sketch-cogenerator of S if C =
⋃

n∈N Gn(C0). The sketch S is

called single-sorted provided that it has a sketch-cogenerator.

Lemma
Let S = (C,L, σ) be a finitary, single-sorted limit sketch with

sketch-cogenerator C0 . For each object C in C, there exists a

finite subset M ⊆ C(C ,C0) such that, for each model F : C −→ A of

S , the cone (F (f ) : F (C ) −→ F (C0))f∈M is a mono-cone in A.

Corollary

Let S = (C,L, σ) be a finitary, single-sorted limit sketch with

sketch-cogenerator C0 .

- The evaluation functor evC0 : Mod(S,A) −→ A is faithful.

- Assume that |−| : A −→ Set preserves finite mono-cones and

let F : C −→ A be a model of S in A. Then |F (C )| is finite for

each object C in C if and only if |F (C0)| is finite.
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Our starting point

Let SA = (CA,LA, σA) and SB = (CB ,LB , σB) be single sorted, finitary

limit sketches with sketch-cogenerators CA and CB .

- The category Mod(SB ,Set) is a locally finitely presentable

category, hence (co)complete and (co)wellpowered and the

forgetful functor evCB
: Mod(SB , Set) −→ Set has a left adjoint

and preserves filtered colimits.

- The category Mod(SA,BooSp) is locally copresentable and

therefore (co)complete and (co)wellpowered and has a

cogenerating set. Hence, the functor

evCA
: Mod(SA,BooSp) −→ BooSp has a left adjoint as well.

Furthermore, we consider objects Ã in Mod(SA,BooSp) and B̃ in

Mod(S2, Set) with finite underlying set |Ã(CA)| = B̃(CB) are given.
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Our starting point

Let MA and MB be classes of Mod(SA,BooSp)-morphisms resp.

Mod(SB , Set)-morphisms closed under composition, pullback and

intersection stable, containing all regular monomorphisms and

contained in the class of all embeddings.

We define A as the full subcategory of Mod(SA,BooSp) of all

MA-subobjects of powers of Ã. Likewise, B denotes the full

subcategory of Mod(SB , Set) of all MB-subobjects of powers of B̃ .

Remark
A is an MA-ExtrEpi-reflective subcategory of Mod(SA,BooSp) with

left adjoint RÃ : Mod(SA,BooSp) −→ A and B is an

MB-ExtrEpi-reflective subcategory of Mod(SB , Set) with left

adjoint RB̃ : Mod(SB ,Set) −→ B.
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The “algebraic” side

Proposition
Each object B in B is a filtered colimit of finite objects in B.

Proof.

- An object B in B is finite if and only if B(B, B̃) is finite.

- Each presheaf F in SetCB is a colimit of representables.

- For a representable presheaf CB(C ,−):

B(RB̃(CB(C ,−)), B̃) = Nat(CB(C ,−), B̃) = B̃(C )

is finite.
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6. Models in Boolean spaces



Copresentable objects

Remark
Since A is a reflective subcategory of Mod(SA,BooSp), an object A
of A is finitely copresentable in A provided that it is in

Mod(SA,BooSp).

Lemma
Assume that CA is finitely generated. An object M in

Mod(SA,BooSp) is finitely copresentable provided that, for each C
in CA, M(C ) is a finite discrete space.
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Copresentable objects

Remark
Since A is a reflective subcategory of Mod(SA,BooSp), an object A
of A is finitely copresentable in A provided that it is in

Mod(SA,BooSp).

Lemma
Assume that CA is finitely generated. An object M in

Mod(SA,BooSp) is finitely copresentable provided that, for each C
in CA, M(C ) is a finite discrete space.

Corollary
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F

A(−,Ã)
|−|
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The duality compactness theorem

Proposition
Let D : I −→ A be a diagram in A with limit (pi : L −→ D(i))i∈I such

that each ηD(i) is an isomorphism. Then (F (pi ) : F (L) −→ FD(i))i∈I is

a colimit of FD : I op −→ B provided that hom(−, Ã) sends

(pi : L −→ D(i))i∈I to a colimit of hom(D(−), Ã) : I op −→ Set.

Theorem
Assume that CA is finitely generated. Then, for each object B in

B, εB is an isomorphism.

Zádori, László (1995). “Natural duality via a finite set of

relations”. In: Bulletin of the Australian Mathematical Society

51.(3), pp. 469–478.

Clark, David M. and Davey, Brian A. (1998). Natural dualities for

the working algebraist. Vol. 57. Cambridge Studies in

Advanced Mathematics. Cambridge: Cambridge University

Press. xii + 356.



The duality compactness theorem

Proposition
Let D : I −→ A be a diagram in A with limit (pi : L −→ D(i))i∈I such

that each ηD(i) is an isomorphism. Then (F (pi ) : F (L) −→ FD(i))i∈I is

a colimit of FD : I op −→ B provided that hom(−, Ã) sends
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The “Bourbaki-criterion”

Theorem
Let D : I −→ CompHaus be a cofiltered diagram. Then a cone

(pi : L −→ D(i))i∈I for D is a limit cone if and only if

1. (pi : L −→ D(i))i∈I is mono and,

2. for every i ∈ I :
⋂
j→i

imD(j → i) = im pi .

That is, “the image of each pi is as large as possible”.
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imD(j → i) = im pi .

That is, “the image of each pi is as large as possible”.

Remark
- If each pi : L −→ D(i) is surjective, then the second condition

is automatically true.

- This characterisation applies also to BooSp.
- Recall that a cone in A is a limit cone if and only if it is initial

with respect to A −→ BooSp and it is a limit in BooSp.
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The canonical diagram

For an object A in A, we consider the canonical diagram

DA : A/Afin −→ A.
(A→ A0) 7−→ A0

and the canonical cone (A −→ A0)A→A0 .

- (A −→ A0)A→A0 is an initial mono cone since it contains the

cone (f : A −→ Ã)f .

- A/Afin is cofiltered.

A1

A A1 × A2

A2

- If A has “image factorisation”

then the canonical cone is a limit

of the canonical diagram.

X

finite: Xi im(p)

p
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Summing up

Theorem
Our dual adjunction is a dual equivalence provided that the

following hold:

- CA is finitely generated and

- A has “image factorisations”.



Structure switch

Example
From

BooSp ∼ BAop

(induced by (2, 2) we get

BooSpfin ∼ BAop
fin,

that is,

Setfin ∼ BooSpBAop
fin.

Therefore (2, 2) induces a dual equivalence

Set ∼ BooSpBAop.

Well, if 2 is a cogenerator in BooSpBA . . .
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Profinite Algebras

Theorem
Consider an algebraic theory containing only “at most” binary

operation symbols (finitely many) so that

- the binary operations are associative,

- there is a total order on the binary operation symbols and

the distributive laws hold,

- The unitary operations are closed under composition,

- the de Morgan laws hold (for every unary and every binary

operation symbol, there exist . . . ).

Then every algebra in Boolean spaces is profinite.

Johnstone, Peter T. (1986). Stone spaces. Vol. 3. Cambridge

Studies in Advanced Mathematics. Cambridge: Cambridge

University Press. xxii + 370. Reprint of the 1982 edition.



Part 3

Kleisli categories, Splitting

idempotents, and all that



Halmos duality

Theorem
BooSpKripke ∼ BAOop.

Boolean space Kripke frame:

X Y

X Y

f

|

R

|

S

f

Theorem
BooSpRel ∼ FinSupop

BA .

BooSp BAop

BooSpRel FinSupop
BA

hom(−,2)

hom(−,1)

Jónsson, Bjarni and Tarski, Alfred (1951). “Boolean algebras

with operators. I”. In: American Journal of Mathematics 73.(4),

pp. 891–939.

Kupke, Clemens, Kurz, Alexander, and Venema, Yde (2004).

“Stone coalgebras”. In: Theoretical Computer Science 327.(1-2),

pp. 109–134.

Halmos, Paul R. (1956). “Algebraic logic I. Monadic Boolean

algebras”. In: Compositio Mathematica 12, pp. 217–249.
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Halmos duality (variation)

Theorem
PriestKripke ∼ DLOop

.

“Priestley Kripke frame”:

X Y

X Y

f

|

R

|

S

f

Theorem
PriestDist ∼ FinSupop

DL .

Priest DLop

PriestDist FinSupop
DL

hom(−,2)

hom(−,1)

Cignoli, Roberto, Lafalce, S., and Petrovich, Alejandro (1991).

“Remarks on Priestley duality for distributive lattices”. In: Order 8.(3),

pp. 299–315.

Petrovich, Alejandro (1996). “Distributive lattices with an operator”.

In: Studia Logica 56.(1-2), pp. 205–224. Special issue on Priestley

duality.

Bonsangue, Marcello M., Kurz, Alexander, and Rewitzky, Ingrid M.

(2007). “Coalgebraic representations of distributive lattices with

operators”. In: Topology and its Applications 154.(4), pp. 778–791.



The bigger picture

BooSp ∼ BAop Priest ∼ DLop

PriestDist ∼ FinSupop
DL

PriestKripke ∼ DLOop EsaDist ∼ FinSupop
HA EsaSp ∼ HAop



The powerset monad

The powerset monad P = (P,m, e) on Set consists of the

powerset functor P : Set −→ Set and

eX : X −→ PX , x 7−→ {x} and mX : PPX −→ PX , A 7−→
⋃
A.

Remark
Rel ∼ SetP .

Remark
A relation r : X −7−→ Y is a function if and only if

- r has a right adjoint in the ordered category Rel.
- r is a homomorphism of comonoids in the monoidal category

Rel:

X Y

1

|

⊤
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| ⊤

X × X Y × Y

X Y

|
r×r
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The Upset monad

The upset monad U = (U,m, e) on Ord consists of the upset

functor U : Ord −→ Ord defined by

UX = {A ⊆ X | ↑A = A}, Uf : UX −→ UY , A 7−→ ↑f (A)

and

eX : X −→ UX , x 7−→ ↑x and mX : UUX −→ UX , A 7−→
⋃
A.

Remark
Dist ∼ OrdU .
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Vietoris monads (discrete case)

Vietoris, Leopold (1922). “Bereiche zweiter Ordnung”. In:

Monatshefte für Mathematik und Physik 32.(1), pp. 258–280.

The functor V : CompHaus −→ CompHaus is defined by

- VX = {A ⊆ X | A closed} with the “hit-and-miss topology”

{A | A ∩ B ̸= ∅}, {A | A ∩ B∁ = ∅} (for all B open);

- Vf (A) = f (A).

We obtain a monad V = (V ,m, e) with unit x 7−→ {x} and

multiplication given by union.

This monad restricts to BooSp and BooSpV ∼ BooSpRel.
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Vietoris monad (ordered case)

Definition
An orderered compact space is a triple (X ,≤, τ) consisting of a

set X , an order ≤ on X and a compact Hausdorff topology τ on

X so that the set

{(x , y) ∈ X × X | x ≤ y}

is closed with respect to the product topology.

Nachbin, Leopoldo (1950). Topologia e Ordem. University of

Chicago Press.
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set X , an order ≤ on X and a compact Hausdorff topology τ on

X so that the set

{(x , y) ∈ X × X | x ≤ y}

is closed with respect to the product topology.

We consider here V : PosComp −→ PosComp defined by

- VX = {A ⊆ X | A upper closed} with the “hit-and-miss topology”;

- Vf (A) = ↑f (A).

We obtain a monad V = (V ,m, e) with unit x 7−→ ↑{x} and multipli-

cation given by union.

This monad restricts to Priest and PriestV ∼ PriestDist.

More information:

Schalk, Andrea (1993). “Algebras for Generalized Power Con-

structions”. PhD thesis. Technische Hochschule Darmstadt.
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Vietoris monad (the topological case)

The lower Vietoris monad V = (V ,m, e) on Top consists of the

functor V : Top −→ Top sending a topological space X to the space

VX = {A ⊆ X | A is closed}

with the topology generated by the sets

B♢ = {A ∈ VX | A ∩ B ̸= ∅} (B ⊆ X open),

and Vf : VX −→ VY sends A to f [A], for f : X −→ Y in Top; and the

unit e and the multiplication m of V are given by

eX : X −→ VX , x 7−→ {x} and mX : VVX −→ VX , A 7−→
⋃
A
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are closed and compact intersections of open subsets are

open”. In: Portugaliæ Mathematica 49.(4), pp. 403–409.



Vietoris monad (the topological case)

The lower Vietoris monad V = (V ,m, e) on Top consists of the

functor V : Top −→ Top sending a topological space X to the space

VX = {A ⊆ X | A is closed}

with the topology generated by the sets

B♢ = {A ∈ VX | A ∩ B ̸= ∅} (B ⊆ X open),

and Vf : VX −→ VY sends A to f [A], for f : X −→ Y in Top; and the

unit e and the multiplication m of V are given by

eX : X −→ VX , x 7−→ {x} and mX : VVX −→ VX , A 7−→
⋃
A

Remark
The classic Vietoris construction, with closed sets, does not

define an obvious functor on Top. That is, adding the sets U□ to

the subbasis of above does not define a functor.



Stone vs. Priestley spaces

Theorem
The category Spec of spectral spaces and spectral maps is dually

equivalent to the category DL of distributive lattices and

homomorphisms.

Spec ≃ DLop.

Stone, Marshall Harvey (1938). “Topological representations of

distributive lattices and Brouwerian logics”. In: Casopis pro pestování

matematiky a fysiky 67.(1), pp. 1–25.

In particular: Spec ∼ Priest
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spectral whenever f −1(A) is compact, for every A ⊆ Y compact and
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In particular: Spec ∼ Priest
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Stably compact spaces

Definition
A topological space X is stably compact if X is sober, locally

compact and finite intersections of compact down-sets are

compact.

A continuous map f : X −→ Y between stably compact spaces is

spectral whenever f −1(A) is compact, for every A ⊆ Y compact and

down-closed.

Gierz, Gerhard, Hofmann, Karl Heinrich, Keimel, Klaus, Law-

son, Jimmie D., Mislove, Michael W., and Scott, Dana S. (2003).

Continuous lattices and domains. Vol. 93. Encyclopedia of Math-

ematics and its Applications. Cambridge: Cambridge University

Press. xxxvi + 591.
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compact and finite intersections of compact down-sets are
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A continuous map f : X −→ Y between stably compact spaces is

spectral whenever f −1(A) is compact, for every A ⊆ Y compact and

down-closed.

Remark
Here we consider the natural order of a topological space X
defined as

x ≤ y whenever y ∈ {x},

Remark
Every compact Hausdorff space is stably compact and every

continuous map between compact Hausdorff spaces is spectral:

CompHaus −→ StablyComp.



Stably compact spaces

Definition
A topological space X is stably compact if X is sober, locally

compact and finite intersections of compact down-sets are

compact.

A continuous map f : X −→ Y between stably compact spaces is

spectral whenever f −1(A) is compact, for every A ⊆ Y compact and

down-closed.

Remark
Here we consider the natural order of a topological space X
defined as

x ≤ y whenever y ∈ {x},

Remark
Every compact Hausdorff space is stably compact and every

continuous map between compact Hausdorff spaces is spectral:

CompHaus −→ StablyComp.



Connection with ordered compact spaces

Remark
This functor has a right adjoint

StablyComp −→ CompHaus

which sends a stably compact space X to the compact Hausdorff

space with the same underlying set and the patch topology: the

topology generated by the open subsets and the complements of

the compact down-closed subsets of X .

Theorem
Every stably compact space X defines an ordered compact

Hausdorff space with the patch topology and the underlying order

of X ,

and an ordered compact Hausdorff space X becomes a

stably compact space where the topology is given by all

down-closed opens of X .

PosComp ∼ StablyComp
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Back to Vietoris

Proposition

- The monad V = (V ,m, e) on Top is of Kock-Zöberlein type,

that is, eVX ≤ VeX or, equivalently, eVX ⊣ mX ⊣ VeX .

- Let f : X −→ Y be in Top. Then Vf has a left adjoint if and only

if f is “down-wards open”.

- If X is stably compact, then so is VX .

- If X is stably compact, then eX : X −→ VX and mX : VVX −→ VX
are spectral.

- If f : X −→ Y is a continuous map between stably compact

spaces, then Vf : VX −→ VY is spectral if and only if f : X −→ Y
is spectral.

- A stably compact space X is spectral if and only if VX is

spectral.

Corollary

Consequently, the monad V = (V ,m, e) on Top restricts to

monads on StablyComp and on Spec.
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Back to Vietoris

Remark
Using the adjunction between StablyComp and CompHaus, we can

transfer the monad V on StablyComp to the Vietoris monad V

on CompHaus.

The topology of VX is the patch topology which is generated by

the sets

U♢ = {A ⊆ X | A ∩ B = ∅} (U ⊆ X open) and

{A ⊆ X closed | A ∩ K = ∅} (K ⊆ X compact).

Proposition
A compact Hausdorff space X is a Stone space if and only if VX
is a Stone space.

Therefore the monad V on CompHaus restricts to a monad on

BooSp.
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The "monadic strategy"

- Start with X Aop
F

G

⊣

.

- If (for instance) F is not full, then the category A has to

many morphisms . . .

- . . . or the category X too few!!

- With D being the monad induced by F ⊣ G on X,

XD −→ Aop

is fully faithful.

- Identify D, that is, find a “nice” monad isomorphic to D.
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Liftings to Kleisli categories

Theorem
Let X and A be categories with respresentable forgetful

functors to Set, T = (T,m, e) a monad on X and F ⊣ G an

adjunction

X Aop
F

G

⊣

. induced by (X̃ , Ã). The following data are in bijection.

(i) Functors F : XT −→ Aop commuting with the left adjoints.

(ii) Monad morphisms j : T −→ D (D induced by F ⊣ G).

(iii) T-algebra structures σ : TX̃ −→ X̃ such that the map

(̂−) : X(X , X̃ ) −→ X(TX , X̃ ), ψ 7−→ σ · Tψ =: ψ̂

is an A-morphism κX : FX −→ FTX .



Litings to Kleisli categories
For a T-algebra structure σ : TX̃ −→ X̃ such that the map

X(X , X̃ ) −→ X(TX , X̃ ), ψ 7−→ σ · Tψ

is an A-morphism κX : FX −→ FTX :

- We define a functor F : XT −→ Aop commuting with the left

adjoints by

(φ : X → TY ) 7−→ (FY
κY−−→ FTY

Fφ−−→ FX ).

- The induced monad morphism j : T −→ D is given by the family

of maps

jX : |TX | −→ A(FX , Ã), x 7−→ (ψ 7→ σ · Tψ(x)).

Remark
For every X in X:

|TX | A(FX , Ã)

|X̃ | = |Ã|

jX

ψ̂

evFX,ψ

Hence, jX is an embedding if

and only if the cone

(ψ̂ : TX −→ X̃ )ψ

is point-separating and initial.
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jX

ψ̂

evFX,ψ

Hence, jX is an embedding if

and only if the cone

(ψ̂ : TX −→ X̃ )ψ

is point-separating and initial.



Some simplification

If X̃ = TX0 with T-algebra structure mX0 , then

- the functor F : XT −→ Aop is a lifting of the hom-functor

X(−,X0) : XT −→ Setop,

- interpreting the elements of TX as morphisms φ : X0 −7−→ X in

the Kleisli category XT allows to describe the components of

the monad morphism j using composition in XT :

jX : |TX | −→ hom(FX , Ã), φ 7−→ (ψ 7→ ψ · φ).
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Frames

Example

We consider now:

- the category SFrm∨ of spatial frames and suprema preserving

maps,

- the Vietoris monad V on Top,

- With 2 being the Sierpiński space with
∨
: V 2 −→ 2, the map

(̂−) : Top(X , 2)→ Top(VX , 2)

sends B ⊆ X open to B♢ .

- Therefore (̂−) preserves all suprema.

- VX has by definition the initial topology with respect to the

point-separating source (ĥ : VX → 2)h∈Top(X ,2) .

The monad morphism j is given by

jX : VX −→ SFrm∨(FX , 2), A 7−→ (B 7→ JA ∩ B ̸= ∅K)

hence j is an isomorphism and we obtain TopV ≃ SFrmop∨ .
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Priestley spaces

We consider now:

- the lower Vietoris monad V = (V ,m, e) on Spec,

- the Sierpiński space 2 with
∨
: V 2 −→ 2,

- the induced map (̂−) : Spec(X , 2) −→ Spec(VX , 2) is the

restriction of the corresponding map of the previous

Example and therefore preserves finite suprema,

- the cone (ĥ : VX −→ 2)h∈Spec(X ,2) is point-separating and VX has

the initial topology (= initial Spec-structure).

The monad morphism j is given by

jX : VX −→ FinSupDL(FX , 2), A 7−→ (B 7→ JA ∩ B ̸= ∅K),

Compactness guarantees that jX is surjective, hence

SpecV ∼ FinSupop
DL.
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8. Idempotent split completion



Splitting idempotents

Definition
An arrow e : C −→ C in a category C is idempotent if e · e = e .

Example
If r · s = 1, then e = s · r is idempotent.

Definition
A category C is idempotent split complete if every idempotent is

of this form.

Remark

- C complete =⇒ C idempotent split complete.

- C idempotent split complete =⇒ Cop idempotent split

complete.

Example
The category Rel is not idempotent split complete.
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Idempotent split completion

The idempotent split completion kar(C) of C is given by the

following data.

- Objects: (C , e) with e idempotent.

- An arrow f : (C , e) −→ (C ′, e′) is an arrow in C so that

f · e = f = e′ · f .
The category C is fully embedded into kar(C) via C 7−→ (C , 1C ).

The category kar(C) is idempotent split complete and C −→ kar(C)
has the expected universal property.

Lemma
Let A be a full subcategory of B and assume that idempotents

split in B. Let A be the full subcategory of B defined by the

retracts of the objects in A. Then idempotents split in A and

A→ A is the free idempotent split completion of A.
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Continuous relations

Remark
We consider the category StablyCompDist of stably compact spaces

and spectral distributors, it becomes a 2-category via the

inclusion order of relations (which is dual to the order from VX).

Proposition
Let X and Y be stably compact spaces and f : X −→ Y be a map.

Then f is spectral if and only if f∗ is a spectral distributor.

Theorem
For a morphism f : X −→ Y in StablyComp, the following assertions

are equivalent.

(i) f is down-wards open.

(ii) The spectral distributor f∗ : X −◦−→ Y has a right adjoint in

StablyCompDist.

(iii) the distributor f ∗ : Y −◦−→ X is a spectral distributor.
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Esakia spaces

Remark
The Priestley spaces corresponding to Heyting algebras are the

Esakia spaces: those Priestley spaces X where the down-closure

of every open subset of X is again open.

Esakia, Leo (1974). “Topological Kripke models”. In: Doklady

Akademii Nauk SSSR 214, pp. 298–301.

Definition
A stably compact space X is called an Esakia space whenever, for

every open subset A of the patch space Xp of X , its down-closure

↓A is open in X .

We write GEsaDist to denote the full subcategory of

StablyCompDist defined by all Esakia spaces, and EsaDist stands for

the full subcategory of GEsaDist defined by all spectral spaces.
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We write GEsaDist to denote the full subcategory of

StablyCompDist defined by all Esakia spaces, and EsaDist stands for

the full subcategory of GEsaDist defined by all spectral spaces.
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Esakia spaces split Boolean spaces

Theorem
For a stably compact space X , the following assertions are

equivalent.

(i) X is an Esakia space.

(ii) The spectral map i : Xp −→ X , x 7−→ x is down-wards open.

(iii) The spectral distributor i∗ : Xp −◦−→ X has a right adjoint

(necessarily given by i∗).

(iv) X is a split subobject of a compact Hausdorff space Y in

StablyCompDist.
If X is spectral, then the space Y in the last assertion can be

chosen as a Stone space.



Easkia spaces are idempotent split complete

Remark
Recall that SpecDist ≃ FinSupop

DL . Moreover, the category FinSupDL
is idempotent split complete

, and therefore SpecDist is idempotent

split complete.

Corollary

The category EsaDist is the idempotent split completion of

BooSpRel.



Easkia spaces are idempotent split complete

Remark
Recall that SpecDist ≃ FinSupop

DL . Moreover, the category FinSupDL
is idempotent split complete, and therefore SpecDist is idempotent

split complete.

Corollary

The category EsaDist is the idempotent split completion of

BooSpRel.



Easkia spaces are idempotent split complete

Remark
Recall that SpecDist ≃ FinSupop

DL . Moreover, the category FinSupDL
is idempotent split complete, and therefore SpecDist is idempotent

split complete.

Corollary

The category EsaDist is the idempotent split completion of

BooSpRel.



co-Heyting algebras

Remark
For a distributive lattice L, we consider its Booleanisation

j : L −→ B which is given by any epimorphic embedding in DL of L
into a Boolean algebra B .

Theorem
For a distributive lattice L, the following assertions are

equivalent.

1. L is a co-Heyting algebra.

2. The lattice homomorphism j : L −→ B has a left adjoint in

FinSupDL j+ : B −→ L.

3. L is a split subobject of a Boolean algebra in FinSupDL .
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co-Heyting algebras
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Corollary
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Esakia duality

Theorem
The equivalence SpecDist ∼ FinSupop

DL restricts to an equivalence

EsaDist ∼ FinSupop
coHeyt.

Remark
A lattice homomorphism f : L1 −→ L2 between co-Heyting

algebras preserves the co-Heyting operation if and only if
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Esakia duality

Theorem
The equivalence SpecDist ∼ FinSupop

DL restricts to an equivalence

EsaDist ∼ FinSupop
coHeyt.

Remark
A lattice homomorphism f : L1 −→ L2 between co-Heyting

algebras preserves the co-Heyting operation if and only if

the corresponding spectral map g : X1 −→ X2 makes the diagram of

spectral distributors

X1 X2

(X1)p (X2)p

o
g∗

oi∗1

o i∗2

o
g

commutative. Element-wise: for all x ∈ X1 and y ∈ X2 with g(x) ≤ y ,
there is some x ′ ∈ X1 with x ≤ x ′ and g(x ′) = y .



One more . . .

Rosebrugh, Robert and Wood, Richard J. (1994).

“Constructive complete distributivity IV”. In: Applied Categorical

Structures 2.(2), pp. 119–144.

Rosebrugh, Robert and Wood, Richard J. (2004). “Split

structures”. In: Theory and Applications of Categories 13.(12),

pp. 172–183.

Theorem
kar(Dist) ∼ kar(Rel) ∼ CCDsup .

Theorem
Dist ∼ TALsup .

Theorem
Posop ∼ TAL.
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