Duality theory

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk
Praia de Mira, June 14, 2022 - June 18, 2022

Introduction
A seemingly paradoxical observation
"... an equation is only interesting or useful to the extent that the two sides are different!"

Baez, John and Dolan, James (2001). "From finite sets to Feynman diagrams". In: Mathematics Unlimited - 2001 and Beyong. Ed. By Björn EnGquist and Wilfried Schmid. Springer Verlag, pp. 29-50. ar Xiv: 0004133 [math. QA].

Introduction

A seemingly paradoxical observation
"... an equation is only interesting or useful to the extent that the two sides are different!"

Just compare: Numbers: $\quad 3=3 \quad$ vs. $\quad e^{i \omega}=\cos (\omega)+i \sin (\omega)$.

Introduction

A seeminaly paradoxical OBservation
"... an equation is only interesting or useful to the extent that the two sides are different!"

Just compare:

Numbers:	$3=3$	vs.	$e^{i \omega}=\cos (\omega)+i \sin (\omega)$.
Spaces:	$\mathbb{R} \simeq \mathbb{R}$	vs.	Cantor space $\simeq 2^{\mathbb{N}}$.

Introduction

A seemincly paradoxical observation
"... an equation is only interesting or useful to the extent that the two sides are different!"

Just compare:
Numbers: $\quad 3=3 \quad$ vs. $e^{i \omega}=\cos (\omega)+i \sin (\omega)$.
Spaces: $\quad \mathbb{R} \simeq \mathbb{R} \quad$ vs. Cantor space $\simeq 2^{\mathbb{N}}$.
Catecories: Top \sim Top vs. Vecrd \sim Mat.

Introduction

A seemincly paradoxical observation
"... an equation is only interesting or useful to the extent that the two sides are different!"

Just compare:
Numbers: $\quad 3=3 \quad$ vs. $e^{i \omega}=\cos (\omega)+i \sin (\omega)$.
Spaces: $\quad \mathbb{R} \simeq \mathbb{R}$ vs. Cantor space $\simeq 2^{\mathbb{N}}$.
Categories: Top \sim Top vs. DL \sim Priest ${ }^{\text {op }}$.

Examples

1. Regardina Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epi)?

Examples

1. Regarding Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epis)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.

Examples

1. Regarding Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epis)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.
2. Regarding BooSt ${ }^{\mathrm{op}} \sim B A$.

Examples

1. Regarding Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epis)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.
2. Regarding BooSt ${ }^{\mathrm{op}} \sim B A$.

- A Boolean space is extremally disconnected if and only if its Boolean algebra is complete.

Examples

1. Regarding Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epis)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.
2. Regarding BooSt ${ }^{\mathrm{op}} \sim B A$.

- A Boolean space is extremally disconnected if and only if its Boolean algebra is complete.
- A Boolean space is projective if and only if it is extremally disconnected.

Examples

1. Regarding Priest ${ }^{\text {op }} \sim$ DL. Is every epimorphism in DL surjective (= a regular epi)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.
2. Regarding BooSt ${ }^{\text {op }} \sim B A$.

- A Boolean space is extremally disconnected if and only if its Boolean algebra is complete.
- A Boolean space is projective if and only if it is extremally disconnected.
- Hence: a Boolean algebra is injective if and only if it is complete.

Examples

1. Regarding Priest ${ }^{\mathrm{op}} \sim$ DL. Is every epimorphism in DL surjective (= a regular epi)?

No since

$$
(X,=, \tau) \longrightarrow(X, \leq, \tau)
$$

is a mono in Priest which is not regular if \leq is not discrete.
2. Regarding BooSt ${ }^{\text {op }} \sim B A$.

- A Boolean space is extremally disconnected if and only if its Boolean algebra is complete.
- A Boolean space is projective if and only if it is extremally disconnected.
- Hence: a Boolean algebra is injective if and only if it is complete.

3. Regarding CompHausAb ${ }^{\text {op }} \sim$ Ab. An ABelian Group is torsion-free if and only if its corresponding compact Hausdorff Abelian Group is connected.

ABout intuitionistic logic

Question

$$
(\forall \varphi \text { and } \forall \psi) \Longrightarrow \forall(\varphi \vee \psi) \text { ? }
$$

About intuitionistic logic

Question

$$
(\forall \varphi \text { and } \forall \psi) \Longrightarrow \forall(\varphi \vee \psi) \text { ? }
$$

Better arque semantically

$$
(\nexists \varphi \text { and } \not \forall \psi) \Longrightarrow \nexists(\varphi \vee \psi) \text {. }
$$

About intuitionistic logic

Question

$$
(\forall \varphi \text { and } \forall \psi) \Longrightarrow \forall(\varphi \vee \psi) \text { ? }
$$

Better ar cue semantically

$$
(\nexists \varphi \text { and } \not \forall \psi) \Longrightarrow \nexists(\varphi \vee \psi) \text {. }
$$

Proof.

- First recall: $: \theta$ means $\llbracket \theta \rrbracket=T$, for all interpretations $\llbracket-\rrbracket$ in (finite) Heyting algebras H.

About intuitionistic logic

Question

$$
(\forall \varphi \text { and } \forall \psi) \Longrightarrow \forall(\varphi \vee \psi) \text { ? }
$$

Better argue semantically

$$
(\nexists \varphi \text { and } \not \forall \psi) \Longrightarrow \nexists(\varphi \vee \psi) \text {. }
$$

Proof.

- First recall: $=\theta$ means $\llbracket \theta \rrbracket=T$, for all interpretations $\llbracket-\rrbracket$ in (finite) Heyting algebras H.
- Hence our jOB is: If there are Heyting algebras H_{1} and H_{2} so that $\llbracket \varphi \rrbracket_{H_{1}}<T$ and $\llbracket \psi \rrbracket_{H_{2}}<T$, construct a Heyting algebra H and an interpretation in H so that $\varphi \vee \psi$ fails...

About intuitionistic logic

Question

$$
(\forall \varphi \text { and } \forall \psi) \Longrightarrow \forall(\varphi \vee \psi) \text { ? }
$$

Better argue semantically

$$
(\nexists \varphi \text { and } \not \forall \psi) \Longrightarrow \nexists(\varphi \vee \psi) \text {. }
$$

Proof.

- First recall: $=\theta$ means $\llbracket \theta \rrbracket=T$, for all interpretations $\llbracket-\rrbracket$ in (finite) Heyting algebras H.
- Hence our jOB is: If there are Heyting algebras H_{1} and H_{2} so that $\llbracket \varphi \rrbracket_{H_{1}}<T$ and $\llbracket \psi \rrbracket_{H_{2}}<T$, construct a Heyting algeBra H and an interpretation in H so that $\varphi \vee \psi$ fails...
- ... does not seem to Be easier!!?

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \|)$ where (C, \leq) is a partially ordered set and \Vdash is a Binary relation Between elements of C and propositional variables so that:
if $c \leq c^{\prime}$ and $c \Vdash p$ then $c^{\prime} \Vdash p$.

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \Vdash)$ where (C, \leq) is a partially ordered set and \Vdash is a Binary relation Between elements of C and propositional variables so that:

$$
\text { if } c \leq c^{\prime} \text { and } c \Vdash p \text { then } c^{\prime} \Vdash p \text {. }
$$

Definition
For a Kripke model $\mathcal{C}=(C, \leq, \Vdash)$:

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \Vdash)$ where (C, \leq) is a partially ordered set and $I t$ is a Binary relation Between elements of C and propositional variables so that:

$$
\text { if } c \leq c^{\prime} \text { and } c \Vdash p \text { then } c^{\prime} \Vdash p \text {. }
$$

Definition
For a Kripke model $\mathcal{C}=(C, \leq, \Vdash)$:

- $c \| \varphi \vee \psi$ whenever $c \Vdash \varphi$ or $c \Vdash \psi$.

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \Vdash)$ where (C, \leq) is a partially ordered set and $I t$ is a Binary relation Between elements of C and propositional variables so that:

$$
\text { if } c \leq c^{\prime} \text { and } c \Vdash p \text { then } c^{\prime} \Vdash p \text {. }
$$

Definition
For a Kripke model $\mathcal{C}=(C, \leq, \Vdash)$:

- $c \Vdash \varphi \vee \psi$ whenever $c \Vdash \varphi$ or $c \Vdash \psi$.
- ...
- c $\Vdash \varphi \rightarrow \psi$ whenever $c^{\prime} \Vdash \psi$, for all $c \leq c^{\prime}$ where $c^{\prime} \Vdash \varphi$.

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \Vdash)$ where (C, \leq) is a partially ordered set and $I t$ is a Binary relation Between elements of C and propositional variables so that:

$$
\text { if } c \leq c^{\prime} \text { and } c \Vdash p \text { then } c^{\prime} \Vdash p \text {. }
$$

Definition
For a Kripke model $\mathcal{C}=(C, \leq, \Vdash)$:

- c $\Vdash \varphi \vee \psi$ whenever $c \Vdash \varphi$ or $c \Vdash \psi$.
- ...
- c $\Vdash \varphi \rightarrow \psi$ whenever $c^{\prime} \Vdash \psi$, for all $c \leq c^{\prime}$ where $c^{\prime} \Vdash \varphi$.

Furthermore, $\mathcal{C} \Vdash \varphi$ whenever $c \Vdash \varphi$ for all $c \in \mathcal{C}$ and $\Vdash \varphi$ whenever $\mathcal{C} \| \varphi$ for all \mathcal{C}.

Kripke semantics
Definition
A Kripke model is a triple of the form $\mathcal{C}=(C, \leq, \Vdash)$ where (C, \leq) is a partially ordered set and \Vdash is a Binary relation Between elements of C and propositional variables so that:

$$
\text { if } c \leq c^{\prime} \text { and } c \Vdash p \text { then } c^{\prime} \Vdash p \text {. }
$$

Definition
For a Kripke model $\mathcal{C}=(C, \leq, \Vdash)$:

- c $\Vdash \varphi \vee \psi$ whenever $c \Vdash \varphi$ or $c \Vdash \psi$.
-...
- c $\Vdash \varphi \rightarrow \psi$ whenever $c^{\prime} \Vdash \psi$, for all $c \leq c^{\prime}$ where $c^{\prime} \Vdash \varphi$.

Furthermore, $\mathcal{C} \Vdash \varphi$ whenever $c \Vdash \varphi$ for all $c \in \mathcal{C}$ and $\Vdash \varphi$ whenever $\mathcal{C} \| \varphi$ for all \mathcal{C}.
Theorem

$$
\vDash \varphi \Longleftrightarrow \Vdash \varphi
$$

Returning to $\varphi \vee \psi$
Theorem

$$
\nvdash \varphi \text { and } \Vdash \psi \Longrightarrow \nVdash(\varphi \vee \psi) \text {. }
$$

Returning to $\varphi \vee \psi$
Theorem

$$
\| \vdash \varphi \text { and } \forall \psi \Longrightarrow \forall(\varphi \vee \psi) \text {. }
$$

Proof.
If φ fails in \mathcal{C}_{1} and ψ fails in \mathcal{C}_{2}, then $\varphi \vee \psi$ fails in $\mathcal{C}=(C, \leq, \mid \vdash)$ where " $C=C_{1}+C_{2}+1$."

Returning to $\varphi \vee \psi$

Theorem

$$
\nvdash \varphi \text { and } \Vdash \psi \Longrightarrow \mathbb{H}(\varphi \vee \psi) \text {. }
$$

Proof.
If φ fails in \mathcal{C}_{1} and ψ fails in \mathcal{C}_{2}, then $\varphi \vee \psi$ fails in $\mathcal{C}=(C, \leq, \Vdash)$ where " $C=C_{1}+C_{2}+1$."

Fi. Sorensen, Morten Heine and Urzyczyn, Pawel (2006). Lectures on the Curry-Howard isomorphism. Vol. 149. Studies in Logic and the Foundations of Mathematics. Elsevier. eprint: https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard. pdf.

Returning to $\varphi \vee \psi$
Theorem

$$
\nVdash \varphi \text { and } \forall \psi \Longrightarrow \forall(\varphi \vee \psi) \text {. }
$$

Proof.
If φ fails in \mathcal{C}_{1} and ψ fails in \mathcal{C}_{2}, then $\varphi \vee \psi$ fails in $\mathcal{C}=(C, \leq, \Vdash)$ where " $C=C_{1}+C_{2}+1$."
Why "Kripke=Heyting"?

- Kripke semantics in $\mathcal{C}=$ Heytinc semantics in \{upsets of C \}.

$$
c \Vdash \varphi \Longleftrightarrow c \in \llbracket \varphi \rrbracket .
$$

Returning to $\varphi \vee \psi$
Theorem

$$
\nVdash \varphi \text { and } \forall \psi \Longrightarrow \forall(\varphi \vee \psi) \text {. }
$$

Proof.
If φ fails in \mathcal{C}_{1} and ψ fails in \mathcal{C}_{2}, then $\varphi \vee \psi$ fails in $\mathcal{C}=(C, \leq, \mid)$ where " $C=C_{1}+C_{2}+1$."
Why "Kripke=Heyting"?

- Kripke semantics in $\mathcal{C}=$ Heyting semantics in \{upsets of C\}.

$$
c \Vdash \varphi \Longleftrightarrow c \in \llbracket \varphi \rrbracket .
$$

- Every finite Heyting algebra is of this form.

Returning to $\varphi \vee \psi$
Theorem

$$
\forall \varphi \text { and } \forall \psi \Longrightarrow \Downarrow(\varphi \vee \psi) \text {. }
$$

Proof.
If φ fails in \mathcal{C}_{1} and ψ fails in \mathcal{C}_{2}, then $\varphi \vee \psi$ fails in $\mathcal{C}=(C, \leq, \Vdash)$ where " $C=C_{1}+C_{2}+1$."

Why "Kripke=Heyting"?

- Kripke semantics in $\mathcal{C}=$ Heyting semantics in \{upsets of C \}.

$$
c \Vdash \varphi \Longleftrightarrow c \in \llbracket \varphi \rrbracket .
$$

- Every finite Heyting algebra is of this form.
- In fact: Pos $_{\mathrm{fin}}^{\mathrm{op}} \sim \mathrm{HA}_{\mathrm{fin}} \quad\left(\sim L_{\text {fin }}\right)$.

What about the infinite case?

Stone's slogan:

"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topolocize."

- Stone, Marshall Harvey (1938). "The representation of Boolean alcebras". In: Bulletin of the American Mathematical Society $44.12)$, pp. 807-816.

What about the infinite case?

Stone's slogan:

"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topolocize."

Examples

- Spec $\sim D^{\text {op }}$ (certain compact spaces vs. distriButive lattices).
- Stone, Marshall Harvey (1938). "Topolocical representations of distributive lattices and Brouwerian logics". In: Easopis pro pastování matematiky a fysiky 67.(I), pp. 1-25.

What about the infinite case?

Stone's slogan:

"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topolocize."

Examples

- Spec ~ DL ${ }^{\text {op }}$ (certain compact spaces vs. distributive lattices).
- BooSp ~ BA ${ }^{\text {op }}$ (certain compact T2 spaces vs. Boolean alcebras).

Etone, Marshall Harvey (1936). "The theory of representations for Boolean algebras". In: Transactions of the American Mathematical Society 4O.(I), pp. 37-II.

What about the infinite case?

Stone's slogan:
"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topolocize."

Examples

- Spec ~ DL ${ }^{\text {op }}$ (certain compact spaces vs. distributive lattices).
- BooSp ~ BA ${ }^{\text {op }}$ (certain compact $T 2$ spaces vs. Boolean alcebras).
- Priest \sim DL $^{\text {op }}$ (certain ordered spaces vs. distriButive lattices).
E. Priestley, Hilary A. (1970). "Representation of distributive lattices By means of ordered Stone spaces". In: Bulletin of the London Mathematical Society 2(2), pp. 186-190.

What about the infinite case?

Stone's slogan:
"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topolocize."

Examples

- Spec ~ DL ${ }^{\text {op }}$ (certain compact spaces vs. distributive lattices).
- BooSp ~ BA ${ }^{\text {op }}$ (certain compact T2 spaces vs. Boolean alcebras).
- Priest ~ DL ${ }^{\text {op }}$ (certain ordered spaces vs. distributive lattices).
- EsaSp ~ HA ${ }^{\text {op }}$ (certain certain ordered spaces vs. Heyting algebras).

Esakia, Leo (1974). "Topolocical Kripke models". In: Doklady Akademii Nauk SSSR 214, pp. 298-301.

What about the infinite case?
Stone's slogan:
"A cardinal principle of modern mathematical research may Be stated as a maxim: One must always topologize."

Examples

- Spec $\sim D^{\text {op }}$ (certain compact spaces vs. distributive lattices).
- BooSp ~ BA ${ }^{\text {op }}$ (certain compact $T 2$ spaces vs. Boolean algebras).
- Priest \sim LL $^{\text {op }}$ (certain ordered spaces vs. distributive lattices).
- EsaSp ~ HA ${ }^{\text {op }}$ (certain certain ordered spaces vs. Heyting algebras).
- CompHaus ~ C* -Alg ${ }^{\text {op }}$ (compact T2 spaces vs. certain Banach algebras).

E- Gelfand, Izrail (1941). "Normierte Ringe". In: Recueil Mathématique. Nouvelle Série 9.(I), pp. 3-24.

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow \mathrm{BA}^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow \mathrm{BA}^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow \mathrm{BA}^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B A^{\text {op }} \longrightarrow$ BooSp

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$ $G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B A^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$
$G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \rightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen subsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ Boosp
$G X=\{$ maximal ideals of $X\}$
$G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \longrightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.
$-\varepsilon_{x}: X \longrightarrow F G X$, $x \longmapsto\{I \mid x \in I\}$.

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen sußsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$
$G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \rightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.
$-\varepsilon_{x}: X \longrightarrow F G X$, $x \longmapsto\{I \mid x \in I\}$.

Version 2

- $F: B o o S p \longrightarrow B^{\text {op }}$ $F X=\operatorname{BooSp}(X, 2)$ $F f: F Y \rightarrow F X, \varphi \mapsto \varphi \cdot f$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen sußsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$ $G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \rightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.
$-\varepsilon_{x}: X \longrightarrow F G X$, $x \longmapsto\{I \mid x \in I\}$.

Version 2

- F: BooSp $\longrightarrow \mathrm{BA}^{\mathrm{op}}$
$F X=\operatorname{BooSp}(X, 2)$
$F f: F Y \rightarrow F X, \varphi \mapsto \varphi \cdot f$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\mathrm{BA}(X, 2)$
$G f: G Y \rightarrow G X, \psi \mapsto \psi \cdot f$

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen sußsets of $X\}$
$F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$
$G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \longrightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.
$-\varepsilon_{x}: X \longrightarrow F G X$, $x \longmapsto\{I \mid x \in I\}$.

Version 2

- F: BooSp $\longrightarrow \mathrm{BA}^{\mathrm{op}}$
$F X=\operatorname{BooSp}(X, 2)$
$F f: F Y \rightarrow F X, \varphi \mapsto \varphi \cdot f$
- $G: \mathrm{BA}^{\mathrm{op}} \longrightarrow \mathrm{BooSp}$
$G X=\mathrm{BA}(X, 2)$
$G f: G Y \rightarrow G X, \psi \mapsto \psi \cdot f$
- $\eta_{X}: X \rightarrow G F X$,
$x \longmapsto\left(\mathrm{ev}_{x}: F X \rightarrow 2\right)$.

How does this work?

Regarding BooSp ~ $\mathrm{BA}^{\mathrm{op}}$:

Version I

- F: BooSp $\longrightarrow B A^{\text {op }}$
$F X=\{$ clopen sußsets of $X\}$ $F f: F Y \rightarrow F X, B \mapsto f^{-1}(B)$
- $G: B^{\text {op }} \longrightarrow$ BooSp
$G X=\{$ maximal ideals of $X\}$
$G f: G Y \rightarrow G X, I \mapsto f^{-1}(I)$
- $\eta_{X}: X \rightarrow G F X$, $x \longmapsto\{A \mid x \in A\}$.
$-\varepsilon_{X}: X \longrightarrow F G X$, $x \longmapsto\{I \mid x \in I\}$.

Version 2

- $F: B o o S p \longrightarrow B^{\text {op }}$
$F X=\operatorname{BooSp}(X, 2)$
$F f: F Y \rightarrow F X, \varphi \mapsto \varphi \cdot f$
- $G: \mathrm{BA}^{\mathrm{op}} \longrightarrow \mathrm{BooSp}$
$G X=\mathrm{BA}(X, 2)$
$G f: G Y \rightarrow G X, \psi \mapsto \psi \cdot f$
- $\eta_{X}: X \rightarrow G F X$,
$x \longmapsto\left(\mathrm{ev}_{x}: F X \rightarrow 2\right)$.
$-\varepsilon_{x}: X \longrightarrow F G X$, $x \longmapsto\left(\mathrm{ev}_{x}: G X \rightarrow 2\right)$.

One more example

Theorem
$\mathrm{Ab} \sim$ CompHausAb ${ }^{\mathrm{op}}$.
E. Pontrjacin, Lev Semenovich (1934). "The theory of topolocical commutative Groups". In: The Annals of Mathematics 35.(2), p. 36.

One more example

Theorem

$$
\mathrm{Ab} \sim \text { CompHausAb }{ }^{\text {op }} .
$$

E. Pontrjacin, Lev Semenovich (1934). "The theory of topolocical commutative Groups". In: The Annals of Mathematics 35.(2), p. 3bl.

Remark
"That fact is a theorem of topolocical Groups.
E. Issell, John R. (1972). "General functorial semantics, I". In: American Journal of Mathematics 94.(2), pp. 535-596.

One more example

Theorem

$$
\mathrm{Ab} \sim \text { CompHausAb }{ }^{\mathrm{op}} .
$$

E. Pontrjacin, Lev Semenovich (1934). "The theory of topolocical commutative groups". In: The Annals of Mathematics 35.(2), p. 361.

Remark
"That fact is a theorem of topolocical groups. That character groups yield an adjoint connection is a theorem of catecory theory."
E. IsBell, John R. (1972). "General functorial semantics, I". In: American Journal of Mathematics 94.(2), pp. 535-596.

Overview

PARTI: Dual Adjunctions
PART2: Stone-type dualities
PART3: Kleisli categories, Splitting idempotents, and all that

Part 1
 Dual Adjunctions

References

LamBek, Joachim and Rattray, Basil A. (1979). "A General Stone-Gelfand duality". In: Transactions of the American Mathematical Society 248 .(I), pp. 1-35.
E. Dimov, Georai D. and Tholen, Walter (1989). "A characterization of representable dualities". In: Categorical topology and its relation to analysis, algebra and combinatorics: Pracue, Czechoslovakia, 22-27 Aucust 1988. Ed. By Ji.' Adámek and Saunders Maclane. World Scientific, pp. 336-357.
E- Porst, Hans-Eberhard and Tholen, Walter (1991). "Concrete dualities". In: Category theory at work. Ed. By Horst Herrlich and Hans-Eberhard Porst. Vol. 18. Research and Exposition in Mathematics. Berlin: Heldermann Verlag, pp. III-136. With Cartoons by Marcel Erné.

Table of content

I. The structure of dual adjunction

2 How to construct dual adjunctions
3. Gelfand-duality
4. Stone-Weierstraß condition

l. The structure of dual adjunction

Initial lifts

Definition

Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F

$$
C \quad F C \xrightarrow{F f_{i}} F X_{i}
$$

Initial lifts

Definition

Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in l}$ and every morphism $h: F D \longrightarrow F C$ such that $F D=F \mathcal{C} \cdot h$

Initial lifts

Definition

Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F \mathcal{D}=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Initial lifts
Definition
Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F \mathcal{D}=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Example

- In Top, a cone is initial if and only if the domain has the initial topology.

Initial lifts
Definition
Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F D=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Example

- In Top, a cone is initial if and only if the domain has the initial topology.
- A cone $\left(f_{i}: X \longrightarrow X_{i}\right)_{i \in I}$ in Ord is initial if and only if, for all $x, y \in X$,

$$
x \leq y \Longleftrightarrow \text { for all } i \in I: f_{i}(x) \leq f_{i}(y)
$$

Initial lifts
Definition
Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F D=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Example

- In Top, a cone is initial if and only if the domain has the initial topology.
- A cone $\left(f_{i}: X \longrightarrow X_{i}\right)_{i \in I}$ in Ord is initial if and only if, for all $x, y \in X$,

$$
x \leq y \Longleftrightarrow \text { for all } i \in I: f_{i}(x) \leq f_{i}(y)
$$

- In Krp, Ring, ..., every mono-cone is initial.

Initial lifts

Definition

Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F \mathcal{D}=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Definition

For a limit preserving faithful functor $|-|: A \longrightarrow$ Set, a morphism $m: A \longrightarrow B$ in A is an embedding whenever $|m|$ is injective and m is initial.

Initial lifts
Definition
Let $F: \mathrm{A} \longrightarrow \mathrm{B}$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone
$\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F \mathcal{D}=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Theorem
Let $F: A \longrightarrow B$ Be a limit preserving faithful functor and $D: I \longrightarrow$ A a diagram. A cone C for D is a limit of D if and only if the cone $F C$ is a limit of $F D$ and \mathcal{C} is initial with respect to F.

Initial lifts
Definition
Let $F: A \longrightarrow B$ Be a functor. A cone $\mathcal{C}=\left(f_{i}: C \longrightarrow X_{i}\right)_{i \in I}$ in A is said to Be initial with respect to F if for every cone $\mathcal{D}=\left(g_{i}: D \longrightarrow X_{i}\right)_{i \in I}$ and every morphism $h: F D \longrightarrow F C$ such that $F \mathcal{D}=F C \cdot h$, there exists a unique A-morphism $\bar{h}: D \longrightarrow C$ with $\mathcal{D}=\mathcal{C} \cdot \bar{h}$ and $h=F \bar{h}$.

Definition
A functor $F: A \longrightarrow X$ is topolocical whenever every cone $\left(f_{i}: X \longrightarrow U B_{i}\right)_{i \in I}$ with a family $\left(B_{i}\right)_{i \in I}$ of A-OBjects admits an initial lifting, that is, an initial cone $\left(g_{i}: A \longrightarrow B_{i}\right)_{i \in l}$ with $U A=X$ and $U g_{i}=f_{i}$ for all $i \in I$.

Equivalences

Definition

An equivalence Between categories A and B consists of functors $f: A \longrightarrow B$ and $G: B \longrightarrow A$ together with natural isomorphisms $\eta: 1_{A} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{B}$.

Equivalences

Definition
An equivalence Between categories A and B consists of functors $f: A \longrightarrow B$ and $G: B \longrightarrow A$ together with natural isomorphisms $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$.
We write $A \sim B$ if there is an equivalence Between A and B.

Equivalences

Definition
An equivalence Between categories A and B consists of functors $f: A \longrightarrow B$ and $G: B \longrightarrow A$ together with natural isomorphisms $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$.
We write $A \sim B$ if there is an equivalence Between A and B.
Proposition
A functor $F: A \longrightarrow B$ is (part of) an equivalence if and only if F is full, faithful and essentially surjective on objects.

Adjunctions

Recall ...

For functors $F: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{G}: \mathrm{B} \longrightarrow \mathrm{A}$, there is a Bijection Between

1. pairs of natural transformations $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$ satisfying

for all A and B, and
2. natural isomorphisms

$$
\mathrm{B}(F-,-) \longrightarrow \mathrm{A}(-, G-) .
$$

Adjunctions

Recall...

For functors $F: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{G}: \mathrm{B} \longrightarrow \mathrm{A}$, there is a Bijection Between

1. pairs of natural transformations $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$ satisfying

for all A and B, and
2. natural isomorphisms

$$
\begin{aligned}
\mathrm{B}(F-,-) & \longrightarrow \mathrm{A}(-, G-) . \\
h & \longmapsto G f \cdot \eta_{-}
\end{aligned}
$$

Adjunctions

Recall ...

For functors $F: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{G}: \mathrm{B} \longrightarrow \mathrm{A}$, there is a Bijection Between

1. pairs of natural transformations $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$ satisfying

for all A and B, and
2. natural isomorphisms

$$
\mathrm{B}(F-, F-) \longrightarrow \mathrm{A}(-, G F-) .
$$

Adjunctions

Recall ...
For functors $F: A \rightarrow B$ and $G: B \longrightarrow A$, there is a Bijection Between

1. pairs of natural transformations $\eta: 1_{\mathrm{A}} \longrightarrow G F$ and $\varepsilon: F G \longrightarrow 1_{\mathrm{B}}$ satisfying

for all A and B, and
2. natural isomorphisms

$$
\mathrm{B}(F-,-) \longrightarrow \mathrm{A}(-, G-) .
$$

An adjunction is a choice of (1) or (2), and we write $F \dashv G$ to indicate that there is an adjunction.

Restricting adjunctions

We consider an adjunction

$$
\begin{equation*}
F: \mathrm{A} \longrightarrow \mathrm{~B}, \quad G: \mathrm{B} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: F G \longrightarrow 1_{\mathrm{B}}, \tag{*}
\end{equation*}
$$

and the full subcategories
Fix (η) and $\operatorname{Fix}(\varepsilon)$
of $A\left(\right.$ resp. B) defined $B y$ all objects A in $A\left(r e s p . ~ B\right.$ in B) where η_{A} (resp. ε_{B}) is an isomorphisM.

Restricting adjunctions
We consider an adjunction

$$
\begin{equation*}
F: \mathrm{A} \longrightarrow \mathrm{~B}, \quad G: \mathrm{B} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: F G \longrightarrow 1_{\mathrm{B}} \tag{*}
\end{equation*}
$$

and the full subcategories

$$
\operatorname{Fix}(\eta) \text { and } \operatorname{Fix}(\varepsilon)
$$

Of $A\left(\right.$ resp. B) defined $B y$ all objects A in $A\left(r e s p . ~ B\right.$ in B) where η_{A} (resp. ε_{B}) is an isomorphism.
Theorem

1. The adjunction $(*)$ restricts to an equivalence $\operatorname{Fix}(\eta) \sim \operatorname{Fix}(\varepsilon)$.
2. The following assertions are equivalent.
(i) Fix $(\eta) \hookrightarrow \mathrm{A}$ is right adjoint with left adjoint GF (the monad ($G F, \eta, G \varepsilon_{F}$) is idempotent).
(ii) η_{G} is an isomorphisM.
(iii) $\operatorname{Fix}(\varepsilon) \hookrightarrow \mathrm{A}$ is left adjoint with right adjoint $F G$.
(iv) ε_{G} is an isomorphism.

Dual adjunctions

Notation
In the sequel we typically consider adjunctions

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: F G \longrightarrow 1_{\mathrm{Bop}},
$$

Dual adjunctions

Notation
In the sequel we typically consider adjunctions

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

Dual adjunctions

Notation
In the sequel we typically consider adjunctions

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

Dual adjunctions

Notation
In the sequel we typically consider adjunctions

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

Example

For a category A with an OBject \tilde{A} with arBitrary powers, we have the adjunction defined By

$$
\begin{array}{rr}
\mathrm{A}(-, \widetilde{A}): A^{\mathrm{op}} \longrightarrow \text { Set } & \widetilde{A}^{(-)}: \operatorname{Set}^{\mathrm{op}} \longrightarrow \mathrm{~A} \\
\eta_{A}: A \longrightarrow \widetilde{A}^{\mathrm{A}(A, \widetilde{A})} & \varepsilon_{X}: X \longrightarrow \mathrm{~A}\left(\widetilde{A}^{X}, \widetilde{A}\right) .
\end{array}
$$

Dual adjunctions come from dualising OBjects

Theorem
Assume that concrete catecories (A, U) and (B, V) with $U \simeq A\left(A_{0},-\right)$ and $V \simeq B\left(B_{0},-\right)$ and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

are given. Put $\widetilde{A}=F\left(B_{0}\right)$ and $\widetilde{B}=G\left(A_{0}\right)$. Then the following assertions hold.

Dual adjunctions come from dualising OBjects

Theorem
Assume that concrete catecories (A, U) and (B, V) with $U \simeq A\left(A_{0},-\right)$ and $V \simeq B\left(B_{0},-\right)$ and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

are given. Put $\widetilde{A}=F\left(B_{0}\right)$ and $\widetilde{B}=G\left(A_{0}\right)$. Then the following assertions hold.

$$
\text { 1. } U(\tilde{A}) \cong V(\tilde{B}) \text {. }
$$

Dual adjunctions come from dualising OBjects

Theorem
Assume that concrete catecories (A, U) and (B, V) with $U \simeq A\left(A_{0},-\right)$ and $V \simeq B\left(B_{0},-\right)$ and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

are given. Put $\widetilde{A}=F\left(B_{0}\right)$ and $\widetilde{B}=G\left(A_{0}\right)$. Then the following assertions hold.

1. $U(\tilde{A}) \cong V(\tilde{B})$.
2. $V F \simeq A(-, \tilde{A})$ and $U G \simeq B(-, \tilde{B})$.

Dual adjunctions come from dualisina objects

Theorem
Assume that concrete categories (A, U) and (B, V) with $U \simeq A\left(A_{0},-\right)$ and $V \simeq B\left(B_{0},-\right)$ and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

are given. Put $\widetilde{A}=F\left(B_{0}\right)$ and $\widetilde{B}=G\left(A_{0}\right)$. Then the following assertions hold.

1. $U(\tilde{A}) \cong V(\tilde{B})$.
2. $V F \simeq A(-, \tilde{A})$ and $U G \simeq B(-, \tilde{B})$.

Remark
We say that the adjunction is represented $B y(\widetilde{A}, \widetilde{B})$.

Units are evaluation

we assume now

$$
V F=\mathrm{A}(-, \tilde{A}) \quad \text { and } \quad U G=\mathrm{B}(-, \tilde{B})
$$

and consider the "evaluation maps" (writing $U=|-|=V$)

$$
\begin{aligned}
\mathrm{ev}_{\mathrm{A}, \mathrm{a}}: \mathrm{A}(\mathrm{~A}, \widetilde{A})=|F A| & \longrightarrow|\widetilde{A}| \\
\varphi & \longmapsto|\varphi|(a)
\end{aligned}
$$

and

Units are evaluation

we assume now

$$
V F=\mathrm{A}(-, \tilde{A}) \quad \text { and } \quad U G=\mathrm{B}(-, \tilde{B})
$$

and consider the "evaluation maps" (writing $U=|-|=V$)

$$
\begin{aligned}
\mathrm{ev}_{\mathrm{A}, \mathrm{a}}: \mathrm{A}(\mathrm{~A}, \widetilde{A})=|F A| & \longrightarrow|\widetilde{A}| \\
\varphi & \longmapsto|\varphi|(a)
\end{aligned}
$$

and

Units are evaluation

we assume now

$$
V F=\mathrm{A}(-, \tilde{A}) \quad \text { and } \quad U G=\mathrm{B}(-, \tilde{B})
$$

and consider the "evaluation maps" (writing $U=|-|=V$)

$$
\begin{aligned}
\mathrm{ev}_{\mathrm{A}, \mathrm{a}}: \mathrm{A}(\mathrm{~A}, \widetilde{A})=|F A| & \longrightarrow|\widetilde{A}| \\
\varphi & \longmapsto|\varphi|(a)
\end{aligned}
$$

and

Theorem

$$
\tau \cdot \mathrm{ev}_{A, a}=\left|\eta_{A}\right|(a), \quad \sigma \cdot \mathrm{ev}_{B, b}=\left|\varepsilon_{B}\right|(b), \quad \tau=\sigma^{-1}
$$

Units are evaluation

Proof.

ABout the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

$$
\tau \cdot \mathrm{ev}_{\mathrm{A}, \mathrm{a}}(\varphi)=e v_{F\left(\widetilde{A}, 1_{\widetilde{A}}\right)} \cdot\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{\mathrm{A}, \mathrm{a}}(\varphi)
$$

Units are evaluation

Proof.
ABOut the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

$$
\begin{aligned}
\tau \cdot \mathrm{ev}_{A, a}(\varphi) & =e v_{F\left(\widetilde{A}, 1_{\tilde{A}}\right)} \cdot\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi) \\
& =\left(\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi)\right)\left(1_{\widetilde{A}}\right)
\end{aligned}
$$

Units are evaluation

Proof.
ABout the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

$$
\begin{aligned}
\tau \cdot \mathrm{ev}_{A, a}(\varphi) & =e v_{F\left(\widetilde{A}, 1_{\widetilde{A}}\right)} \cdot\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi) \\
& =\left(\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi)\right)\left(1_{\widetilde{A}}\right) \\
& =\left(\left|\eta_{\widetilde{A}} \cdot \varphi\right|(a)\right)\left(1_{\widetilde{A}}\right)
\end{aligned}
$$

Units are evaluation

Proof.
ABOut the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

$$
\begin{aligned}
\tau \cdot \mathrm{ev}_{A, a}(\varphi) & =e v_{F\left(\widetilde{A}, 1_{\widetilde{A}}\right)} \cdot\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi) \\
& =\left(\left|\eta_{\widetilde{A}}\right| \cdot \mathrm{ev}_{A, a}(\varphi)\right)\left(1_{\widetilde{A}}\right) \\
& =\left(\left|\eta_{\widetilde{A}} \cdot \varphi\right|(a)\right)\left(1_{\widetilde{A}}\right) \\
& =\left(|G F \varphi|\left(\left|\eta_{A}\right|(a)\right)\right)\left(1_{\widetilde{A}}\right)
\end{aligned}
$$

Units are evaluation

Proof.

ABout the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

Units are evaluation

Proof.

ABout the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

Units are evaluation

Proof.

ABout the first affirmation. For $\varphi: A \longrightarrow \widetilde{A}$:

Summing up

For concrete catecories $(\mathrm{A},|-|)$ and $(\mathrm{B},|-|)$ with representable forsetful functors and a dual adjunction

$$
F: A \longrightarrow B^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

there are objects \widetilde{A} and \widetilde{B} with $|\widetilde{A}|=|\widetilde{B}|$

Summing up

For concrete catecories $(\mathrm{A},|-|)$ and $(\mathrm{B},|-|)$ with representable forsetful functors and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

there are objects \widetilde{A} and \widetilde{B} with $|\widetilde{A}|=|\widetilde{B}|$ and, assuming for simplicity that "all isomorphisms above are identities",

$$
|F|=\mathrm{A}(-, \widetilde{A}), \quad|G|=\mathrm{B}(-, \widetilde{B}), \quad\left|\eta_{A}\right|(a)=\mathrm{ev}_{A, a}, \quad\left|\varepsilon_{B}\right|(B)=\mathrm{ev}_{B, b} .
$$

Summing up
For concrete categories $(\mathrm{A},|-|)$ and $(\mathrm{B},|-|)$ with representable forgetful functors and a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G,
$$

there are OBjects \widetilde{A} and \widetilde{B} with $|\widetilde{A}|=|\widetilde{B}|$ and, assuming for simplicity that "all isomorphisms above are identities",

$$
|F|=\mathrm{A}(-, \widetilde{A}), \quad|G|=\mathrm{B}(-, \widetilde{B}), \quad\left|\eta_{\mathrm{A}}\right|(a)=\mathrm{ev}_{A, a}, \quad\left|\varepsilon_{B}\right|(B)=\mathrm{ev}_{B, b} .
$$

Remark
We have

Therefore:
η_{A} is mono $\Longleftrightarrow(f: A \longrightarrow \widetilde{A})_{f}$ is mono.

Regular cogenerators

Remark
Assume that \widetilde{C} is a regular cogenerator in a catecory C with arBitrary powers of \widetilde{C}. It follows that, for each object C in C, there exists an equalizer diacram

$$
C \longrightarrow \widetilde{C}^{x} \longrightarrow \widetilde{C}^{y} .
$$

Regular cogenerators

Remark
Assume that \widetilde{C} is a regular cogenerator in a catecory C with arsitrary powers of \widetilde{C}. It follows that, for each object C in C, there exists an equalizer diacram

$$
C \longrightarrow \widetilde{C}^{x} \longrightarrow \widetilde{C}^{y} .
$$

Hence, a right adjoint, full and faithful functor $F: B \longrightarrow C$ is an equivalence provided that \widetilde{C} is, up to isomorphism, contained in the imace of F.

2 How to construct dual adjunctions

Dualising objects

How can we construct a dual adjunction Between given concrete categories $(\mathrm{A},|-|)$ and $(\mathrm{B},|-|)$ over Set?

Dualising OBjects
How can we construct a dual adjunction Between Given concrete categories $(A,|-|)$ and $(B,|-|)$ over Set? Certainly we have to find OBjects \widetilde{A} in A and \widetilde{B} in B with $|\widetilde{A}|=|\widetilde{B}|$

Dualising objects
How can we construct a dual adjunction Between Given concrete categories $(A,|-|)$ and $(B,|-|)$ over Set? Certainly we have to find OBjects \widetilde{A} in A and \widetilde{B} in B with $|\widetilde{A}|=|\widetilde{B}|$ such that

1. for each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: \mathrm{A}(A, \widetilde{A}) \longrightarrow|\widetilde{B}|\right)_{a \in|A|}
$$

admits a lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|}
$$

such that, for each $f: A \longrightarrow A^{\prime}$ in A, the map $A(f, \tilde{A})$ is a B-morphism $F(f)$,

Dualising objects
How can we construct a dual adjunction Between Given concrete categories $(A,|-|)$ and $(B,|-|)$ over Set? Certainly we have to find OBjects \widetilde{A} in A and \widetilde{B} in B with $|\widetilde{A}|=|\widetilde{B}|$ such that

1. for each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: \mathrm{A}(A, \widetilde{A}) \longrightarrow|\widetilde{B}|\right)_{a \in|A|}
$$

admits a lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|}
$$

such that, for each $f: A \longrightarrow A^{\prime}$ in A, the map $A(f, \tilde{A})$ is a B-morphism $F(f)$,
2. for each object B in B, \ldots.

Dualisina objects

How can we construct a dual adjunction Between Given concrete categories $(A,|-|)$ and $(B,|-|)$ over Set? Certainly we have to find objects \widetilde{A} in A and \widetilde{B} in B with $|\widetilde{A}|=|\widetilde{B}|$ such that 1. for each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: \mathrm{A}(A, \widetilde{A}) \longrightarrow|\widetilde{B}|\right)_{a \in|A|}
$$

admits a lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|}
$$

such that, for each $f: A \longrightarrow A^{\prime}$ in A, the map $A(f, \tilde{A})$ is a B-morphism $F(f)$,
2. for each object B in B, \ldots
3. for each object A in A, the map

$$
\begin{aligned}
\eta_{A}:|A| & \longrightarrow|G F(A)|=\mathrm{B}(F(A), \widetilde{B}) \\
a & \longmapsto \mathrm{ev}_{A, a}
\end{aligned}
$$

is actually an A-morphism $\eta_{A}: A \longrightarrow G F(A)$ and

Dualisina objects

How can we construct a dual adjunction Between Given concrete categories $(A,|-|)$ and $(B,|-|)$ over Set? Certainly we have to find objects \widetilde{A} in A and \widetilde{B} in B with $|\widetilde{A}|=|\widetilde{B}|$ such that 1. for each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: \mathrm{A}(A, \widetilde{A}) \longrightarrow|\widetilde{B}|\right)_{a \in|A|}
$$

admits a lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|}
$$

such that, for each $f: A \longrightarrow A^{\prime}$ in A, the map $A(f, \tilde{A})$ is a B-morphism $F(f)$,
2. for each object B in B, \ldots
3. for each object A in A, the map

$$
\begin{aligned}
\eta_{A}:|A| & \longrightarrow|G F(A)|=\mathrm{B}(F(A), \widetilde{B}) \\
a & \longmapsto \mathrm{ev}_{A, a}
\end{aligned}
$$

is actually an A-morphism $\eta_{A}: A \longrightarrow G F(A)$ and 4. for each object B in B, \ldots

How to Guarantee this?

Theorem

If the following two conditions are satisfied:
(A) For each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: A(A, \widetilde{A}) \longrightarrow|\tilde{B}|\right)_{a \in U(A)}
$$

admits an initial lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|},
$$

(B) For each object B in B, the cone

$$
\left(\mathrm{ev}_{B, b}: \mathrm{B}(B, \widetilde{B}) \longrightarrow|\widetilde{A}|\right)_{b \in|B|}
$$

admits an initial lifting

$$
\left(\mathrm{ev}_{B, a}: G(B) \longrightarrow \widetilde{A}\right)_{b \in|B|},
$$

How to Guarantee this?

Theorem

If the following two conditions are satisfied:
(A) For each object A in A, the cone

$$
\left(\mathrm{ev}_{A, a}: A(A, \widetilde{A}) \longrightarrow|\tilde{B}|\right)_{a \in U(A)}
$$

admits an initial lifting

$$
\left(\mathrm{ev}_{A, a}: F(A) \longrightarrow \widetilde{B}\right)_{a \in|A|},
$$

(B) For each object B in B, the cone

$$
\left(\mathrm{ev}_{B, b}: \mathrm{B}(B, \widetilde{B}) \longrightarrow|\widetilde{A}|\right)_{b \in|B|}
$$

admits an initial lifting

$$
\left(\mathrm{ev}_{B, a}: G(B) \longrightarrow \widetilde{A}\right)_{b \in|B|},
$$

then $(\widetilde{A}, \widetilde{B})$ induce a (natural) dual adjunction.

And how to get this?

Proposition

1. If $|-|: A \longrightarrow$ Set is topological, then (A).

And how to get this?

Proposition

1. If $|-|: A \longrightarrow$ Set is mono-topolocical, then (A).

And how to get this?

Proposition

1. If $|-|: A \longrightarrow$ Set is mono-topological, then (A).
2. Assume that
2.1 all powers of \tilde{A} exist in A and are preserved By

I-|: A \longrightarrow Set, and
$2.2|-|: B \longrightarrow$ Set is "algeBraic" and all operations $|\widetilde{B}|^{n} \longrightarrow|\widetilde{B}|$ are A -morphisms $\widetilde{A}^{n} \longrightarrow \widetilde{A}$.
Then (B).

And how to get this?

Proposition

1. If $|-|: A \longrightarrow$ Set is mono-topolocical, then (A).
2. Assume that
2.1 all powers of \tilde{A} exist in A and are preserved By

$2.2|-|: B \longrightarrow$ Set is "algeBraic" and all operations $|\widetilde{B}|^{n} \longrightarrow|\widetilde{B}|$ are A -morphisms $\widetilde{A}^{n} \longrightarrow \widetilde{A}$.
Then (B).

Proof.
Let A Be an object of A and θ Be an operation symBol with arity n. We define

$$
\mathrm{A}(A, \widetilde{A})^{n} \longrightarrow \mathrm{~A}(A, \widetilde{A}), \quad\left(h_{i}\right)_{i} \longmapsto\left(A \xrightarrow{\left\langle h_{i}\right\rangle} \widetilde{A}^{n} \xrightarrow{\theta^{\widetilde{B}}} \widetilde{A}\right) .
$$

Then put $F(A)=(A(A, \widetilde{A}), \ldots$ these operations $\ldots)$; hence $F(A)$ is a subalgebra of $\widetilde{B}^{|A|}$.

And how to Get this?

Proposition

1. If $|-|: A \longrightarrow$ Set is mono-topolocical, then (A).
2. Assume that
2.1 all powers of \tilde{A} exist in A and are preserved $B y$

$2.2|-|: \mathrm{B} \longrightarrow$ Set is "algeBraic" and all operations $|\widetilde{B}|^{n} \longrightarrow|\widetilde{B}|$
are A -morphisms $\widetilde{A}^{n} \longrightarrow \widetilde{A}$.
Then (B). If, moreover, A is concretely \tilde{A}-complete, then also (A).

Definition

The category A is concretely \tilde{A}-complete if all powers of \tilde{A} and all equalisers of pairs of parallel maps Between powers of \widetilde{A} exist in A , and these limits are preserved By $|-|: \mathrm{A} \longrightarrow$ Set.

Proof of the last affirmation

A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

$$
\begin{aligned}
& |B|^{n} \xrightarrow{f^{n}}|\widetilde{B}|^{n} \\
& { }_{\theta^{B}} \downarrow \\
& |B| \longrightarrow|\widetilde{B}|
\end{aligned}
$$

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$.

Proof of the last affirmation

A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

$$
\begin{aligned}
& |B|^{n} \xrightarrow{f^{n}}|\widetilde{B}|^{n} \\
& { }_{\theta^{B}} \downarrow \underset{\theta^{\bar{B}}}{ } \\
& |B| \longrightarrow|\widetilde{B}|
\end{aligned}
$$

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

$$
\mathrm{B}(B, \widetilde{B}) \longleftrightarrow|\widetilde{B}|^{|B|}
$$

Proof of the last affirmation

A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

$$
\begin{aligned}
& |B|^{n} \xrightarrow{f^{n}}|\widetilde{B}|^{n} \\
& { }_{\theta^{B}} \downarrow \underset{\theta^{\bar{B}}}{ } \\
& |B| \longrightarrow|\widetilde{B}|
\end{aligned}
$$

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

$$
\mathrm{B}(B, \widetilde{B}) \longleftrightarrow|\widetilde{A}|^{|B|}
$$

Proof of the last affirmation

A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

$$
\begin{aligned}
& |B|^{n} \xrightarrow{f^{n}}|\widetilde{B}|^{n} \\
& { }_{\theta^{B}} \downarrow \\
& |B| \longrightarrow|\widetilde{B}|
\end{aligned}
$$

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

$$
\mathrm{B}(B, \widetilde{B}) \longleftrightarrow|\widetilde{A}|^{|B|}
$$

$|\widetilde{A}|$

Proof of the last affirmation
A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

$$
\mathrm{B}(B, \widetilde{B}) \longleftrightarrow|\widetilde{A}|^{|B|} \longrightarrow|\widetilde{A}|
$$

Proof of the last affirmation
A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

$$
\mathrm{B}(B, \widetilde{B}) \longleftrightarrow|\widetilde{A}|^{|B|} \longrightarrow|\widetilde{A}|
$$

Proof of the last affirmation
A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

Proof of the last affirmation
A map $f:|B| \longrightarrow|\widetilde{B}|$ is an algebra homomorphism if and only if, for every operation symBol θ (with arity n), the diacram

commutes, that is: $f \cdot \theta^{B}(h)=\theta^{\widetilde{B}} \cdot f^{n}(h)$ for all $h \in|B|^{n}$. Consider

Initial cogenerators
Remark
We consider a natural dual adjunction

$$
F: A \longrightarrow B^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \quad(*)
$$

induced By \widetilde{A} and \widetilde{B}. Then
η_{A} is an emBedding $\Longleftrightarrow(f: A \rightarrow \widetilde{A})_{f}$ is point-separating and initial.

Initial cogenerators
Remark
We consider a natural dual adjunction

$$
\begin{equation*}
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \tag{*}
\end{equation*}
$$

induced By \widetilde{A} and \widetilde{B}. Then
η_{A} is an embedding $\Longleftrightarrow(f: A \rightarrow \widetilde{A})_{f}$ is point-separating and initial.
Definition
Let $(\mathrm{A},|-|)$ Be a concrete category over Set and let \tilde{A} an object in A. Then \tilde{A} is called initial cogenerator if, for each object A in A, the cone $(f: A \longrightarrow \widetilde{A})_{f}$ is point separating and initial.

Initial cogenerators
Remark
We consider a natural dual adjunction

$$
\begin{equation*}
F: A \longrightarrow B^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \tag{*}
\end{equation*}
$$

induced $B y \widetilde{A}$ and \widetilde{B}. Then
η_{A} is an embedding $\Longleftrightarrow(f: A \rightarrow \widetilde{A})_{f}$ is point-separating and initial.
Definition
Let $(A,|-|)$ Be a concrete category over Set and let \widetilde{A} an object in A. Then \tilde{A} is called initial cogenerator if, for each object A in A, the cone $(f: A \longrightarrow \widetilde{A})_{f}$ is point separating and initial.
Remark
The adjunction $(*)$ restricts to the full subcategories $\operatorname{Init} \operatorname{Cog}(\widetilde{A})$ and $\operatorname{Init} \operatorname{Cog}(\widetilde{B})$ "initially cogenerated By \widetilde{A} and \widetilde{B} ".
3. Gelfand-duality

C*-algebras

Definition

A C*-algesra is a commutative unital \mathbb{C}-algebra with norm $\|-\|$ and involution (-$)^{*}$ which is complete with respect to $\|-\|$ and satisfies (Besides the "expected" axioms)

$$
\left\|x \cdot x^{*}\right\|=\|x\|^{2} .
$$

C*-algebras

Definition

A C*-algesra is a commutative unital \mathbb{C}-algebra with norm $\|-\|$ and involution $(-)^{*}$ which is complete with respect to $\|-\|$ and satisfies (Besides the "expected" axioms)

$$
\left\|x \cdot x^{*}\right\|=\|x\|^{2} .
$$

Example
For each topolocical space X,

$$
C^{*}(X)=\{f: X \longrightarrow \mathbb{C} \text { continuous and Bounded }\}
$$

is a C^{*}-algebra.

C*-algebras

Definition

A C*-algesra is a commutative unital \mathbb{C}-algebra with norm $\|-\|$ and involution $(-)^{*}$ which is complete with respect to $\|-\|$ and satisfies (Besides the "expected" axioms)

$$
\left\|x \cdot x^{*}\right\|=\|x\|^{2} .
$$

C*-Alg denotes the category of C*-alcebras and identity and involution preserving \mathbb{C}-algebra homomorphisms as morphisms.

Example
For each topolocical space X,

$$
C^{*}(X)=\{f: X \longrightarrow \mathbb{C} \text { continuous and Bounded }\}
$$

is a C^{*}-algebra.

C*-algebras
Definition
A C^{*}-algebra is a commutative unital \mathbb{C}-algebra with norm $\|-\|$ and involution $(-)^{*}$ which is complete with respect to $\|-\|$ and satisfies (Besides the "expected" axioms)

$$
\left\|x \cdot x^{*}\right\|=\|x\|^{2} .
$$

C*-Alg denotes the category of C*-alcebras and identity and involution preserving \mathbb{C}-algebra homomorphisms as morphisms.
Proposition
For each C^{*}-algebra B and each element $x \in B$,

$$
\|x\|=\sup \left\{|\varphi(x)| \mid \varphi \in C^{*}-\operatorname{Alg}(B, \mathbb{C})\right\}
$$

Gelfand, Izrail (1941). "Normierte Rince". In: Recueil Mathématique. Nouvelle Série 9.(I), pp. 3-24.

C*-algebras

Definition

A C*-algesra is a commutative unital \mathbb{C}-algebra with norm $\|-\|$ and involution $(-)^{*}$ which is complete with respect to $\|-\|$ and satisfies (Besides the "expected" axioms)

$$
\left\|x \cdot x^{*}\right\|=\|x\|^{2} .
$$

C*-Alg denotes the category of C*-alcebras and identity and involution preserving \mathbb{C}-algebra homomorphisms as morphisms.

Proposition
For each C^{*}-algebra B and each element $x \in B$,

$$
\|x\|=\sup \left\{\mid \varphi(x) \| \varphi \in C^{*}-\operatorname{Alg}(B, \mathbb{C})\right\} .
$$

Remark
Hence, every homomorphism of C^{*}-algeBras satisfies $\|f(x)\| \leq\|x\|$ and \mathbb{C} is a cogenerator in C^{*}-Alg.

The concrete catecory C*-Alg We consider the unit-Ball functor $|-|=\bigcirc: C^{*}-$ Alg \longrightarrow Set.

The concrete category C*-Alg
We consider the unit-Ball functor $|-|=\bigcirc: C^{*}-$ Alg \longrightarrow Set.
Remark
The functor above is even monadic.
Negrepontis, Joan Wick (1971). "Duality in analysis from the point of view of triples". In: Journal of Algebra 19.(2), pp. 228253.

The concrete category C*-Alg
We consider the unit-Ball functor $|-|=\bigcirc: C^{*}-A l g \longrightarrow$ Set. Remark
The functor above is even monadic.
Remark
For a topolocical space X,

$$
C^{*}(X)=\{f: X \longrightarrow \mathbb{C} \text { continuous and Bounded }\}
$$

defines the initial lift of the cone

$$
\left(\mathrm{ev} \mathrm{v}_{x, a}: \operatorname{Top}(X, \mathbb{D}) \longrightarrow \mathbb{D}=|\mathbb{C}|\right)_{x \in X} .
$$

The concrete category C*-Alg
We consider the unit-Ball functor $|-|=O: C^{*}-A l g \longrightarrow$ Set. Remark
The functor above is even monadic.
Remark
For a topolocical space X,

$$
C^{*}(X)=\{f: X \longrightarrow \mathbb{C} \text { continuous and Bounded }\}
$$

defines the initial lift of the cone

$$
\left(\mathrm{ev}_{X, a}: \operatorname{Top}(X, \mathbb{D}) \longrightarrow \mathbb{D}=|\mathbb{C}|\right)_{x \in X} .
$$

Corollary

The pair (D, \mathbb{C}) induce a natural dual adjunction

$$
C^{*}: \text { Top }{ }^{\mathrm{op}} \longrightarrow C^{*} \text {-Alg, } \quad S: C^{*}-\mathrm{Alg} \longrightarrow \mathrm{Top}^{\mathrm{op}} .
$$

The concrete category C*-Alg
We consider the unit-Ball functor $1-1=\bigcirc: C^{*}-A l g \longrightarrow$ Set. Remark
The functor above is even monadic.
Remark
For a topological space X,

$$
C^{*}(X)=\{f: X \longrightarrow \mathbb{C} \text { continuous and Bounded }\}
$$

defines the initial lift of the cone

$$
\left(\mathrm{ev} \mathrm{v}_{X, a}: \operatorname{Top}(X, \mathbb{D}) \longrightarrow \mathbb{D}=|\mathbb{C}|\right)_{x \in X}
$$

Corollary
The pair (\mathbb{D}, \mathbb{C}) induce a natural dual adjunction

$$
C^{*}: \text { Top }{ }^{\mathrm{op}} \longrightarrow C^{*}-\text { Alg }, \quad S: C^{*}-\text { Alg } \longrightarrow \text { Top }^{\mathrm{op}}
$$

Remark
For each C^{*}-algebra B, the space $S(B)$ is compact Hausdorff (Being en equaliser of a pair of continuous maps between powers of \mathbb{D}).

Cogenerator properties

Proposition

η_{X} is an embedding if and only of X is completely regular.

Cogenerator properties

Proposition

η_{X} is an emBedding if and only of X is completely recular.

Proposition

For each C^{*}-algebra B, ε_{B} is an embedding.

Obtaining the equivalence

Theorem (Stone-Weierstrass)
Let A Be a compact Hausdorff space and let $M \subseteq C^{*}(A)$ Be a C^{*}-subalcesra of $C^{*}(A)$ such that the cone $(f: A \longrightarrow \mathbb{D})_{f \in O(M)}$ separates the points of A. Then $M=C^{*}(A)$.

Obtaining the equivalence

Theorem (Stone-Weierstrass)
Let A Be a compact Hausdorff space and let $M \subseteq C^{*}(A)$ Be a C^{*}-subalcesra of $C^{*}(A)$ such that the cone $(f: A \longrightarrow \mathbb{D})_{f \in O(M)}$ separates the points of A. Then $M=C^{*}(A)$.

Corollary

For every C^{*}-alceBra $B, \varepsilon_{B}: B \longrightarrow C^{*}(S(B))$ is surjective.

Obtaining the equivalence

Theorem (Stone-Weierstrass)

Let A be a compact Hausdorff space and let $M \subseteq C^{*}(A)$ Be a C^{*}-subalcesra of $C^{*}(A)$ such that the cone $(f: A \longrightarrow \mathbb{D})_{f \in O(M)}$ separates the points of A. Then $M=C^{*}(A)$.

Corollary

For every C^{*}-alcesra $B, \varepsilon_{B}: B \longrightarrow C^{*}(S(B))$ is surjective.

Theorem

Let B Be a C^{*}-algeBra and let $M \subseteq S(B)$ Be a closed subspace of $S(B)$ such that the cone $(f: B \longrightarrow \mathbb{C})_{f \in M}$ separates the points of B. Then $M=S(B)$.

Obtaining the equivalence

Theorem (Stone-Weierstrass)

Let A Be a compact Hausdorff space and let $M \subseteq C^{*}(A)$ Be a C^{*}-subalcesra of $C^{*}(A)$ such that the cone $(f: A \longrightarrow \mathbb{D})_{f \in O(M)}$ separates the points of A. Then $M=C^{*}(A)$.

Corollary

For every C^{*}-alcesra $B, \varepsilon_{B}: B \longrightarrow C^{*}(S(B))$ is surjective.

Theorem

Let B Be a C^{*}-algeBra and let $M \subseteq S(B)$ Be a closed subspace of $S(B)$ such that the cone $(f: B \longrightarrow \mathbb{C})_{f \in M}$ separates the points of B. Then $M=S(B)$.

Corollary

For every compact Haudorff space $A, \eta_{A}: A \longrightarrow S\left(C^{*}(A)\right)$ is surjective.

Obtaining the equivalence

Theorem (Stone-Weierstrass)

Let A be a compact Hausdorff space and let $M \subseteq C^{*}(A)$ Be a C^{*}-subalcesra of $C^{*}(A)$ such that the cone $(f: A \longrightarrow \mathbb{D})_{f \in O(M)}$ separates the points of A. Then $M=C^{*}(A)$.

Corollary

For every C^{*}-alceBra $B, \varepsilon_{B}: B \longrightarrow C^{*}(S(B))$ is surjective.

Theorem

Let B Be a C^{*}-alcerra and let $M \subseteq S(B)$ Be a closed subspace of $S(B)$ such that the cone $(f: B \longrightarrow \mathbb{C})_{f \in M}$ separates the points of B. Then $M=S(B)$.

Corollary

For every compact Haudorff space $A, \eta_{A}: A \longrightarrow S\left(C^{*}(A)\right)$ is surjective.
Theorem
CompHaus ${ }^{\text {op }} \sim C^{*}$-Alg (and CompHaus \rightarrow Top is reflective).

Some history

- CompHaus ${ }^{\text {op }} \xrightarrow{\text { hom }(-,[0,1])}$ Set is monadic.

Div Duskin, John (1969). "Variations on Beck's tripleasility criterion". In: Reports of the Midwest Category Seminar III. Ed. By Saunders Madane. Sprincer Berlin HeidelBerg, pp. 74-129.

Some history

- CompHaus ${ }^{\text {op }} \xrightarrow{\text { hom }(-,[0,1])}$ Set is monadic.
- $[0,1]$ is \aleph_{1}-copresentaBle in CompHaus.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierBare Kategorien. Vol. 221. Lecture Notes in Mathematics. Berlin: Springer-Verlag. $v+200$.

Some history

- CompHaus ${ }^{\mathrm{op}} \xrightarrow{\text { hom }(-,[0,1])}$ Set is monadic.
- $[0,1]$ is \aleph_{1}-copresentaBle in CompHaus.
- The algebraic theory of CompHaus ${ }^{\text {op }}$ can Be Generated By 5 operations.
E. IsBell, John R (1982). "Generating the alceBraic theory of $C(X)$ ". In: Algebra Universalis 15.(2), pp. 153-155.

Some history

- CompHaus ${ }^{\mathrm{op}} \xrightarrow{\text { hom }(-,[0,1])}$ Set is monadic.
- $[0,1]$ is \aleph_{1}-copresentaBle in CompHaus.
- The algebraic theory of CompHaus ${ }^{\text {op }}$ can Be Generated By 5 operations.
- A complete description of the alceBraic theory of CompHaus ${ }^{\text {op }}$ was OBtain By V. Marra and L. Regaio Based on the theory of MV-algebras.
E. Marra, Vincenzo and Reccio, Luca (2O17). "Stone duality above dimension zero: Axiomatising the algebraic theory of $C(X)^{\prime \prime}$. In: Advances in Mathematics 301, pp. 253-287. ar Xiv: 1508.07750 [math.LO].

Some history

- CompHaus ${ }^{\text {op }} \xrightarrow{\text { hom }(-,[0,1])}$ Set is Monadic.
- $[0,1]$ is \aleph_{1}-copresentable in CompHaus.
- The alcebraic theory of CompHaus ${ }^{\text {op }}$ can Be cenerated By 5 operations.
- A complete description of the algebraic theory of CompHaus ${ }^{\text {op }}$ was OBtain By V. Marra and L. Reccio based on the theory of MV-algebras.
- Similarly, PosComp ${ }^{\text {op }}$ is a Quasivariety.

Hofmann, Dirk, Neves, Renato, and Nora, Pedro (2018). "Generating the alcebraic theory of $C(X)$: the case of partially ordered compact spaces". In: Theory and Applications of Categories 33.(12), pp. 276-295. ar Xiv: 1706.05292 [math.CT].

Some history

- CompHaus ${ }^{\text {op }} \xrightarrow{\text { hom }(-,[0,1])}$ Set is Monadic.
- $[0,1]$ is \aleph_{1}-copresentable in CompHaus.
- The alcebraic theory of CompHaus ${ }^{\text {op }}$ can Be cenerated By 5 operations.
- A complete description of the algebraic theory of CompHaus ${ }^{\text {op }}$ was OBtain By V. Marra and L. Reccio based on the theory of MV-algebras.
- Similarly, PosComp ${ }^{\text {op }}$ is a Quasivariety.
- Even Better, PosComp ${ }^{\text {op }}$ is a variety.

F- Abradini, Marco (2O21). "On the axiomatisability of the dual of compact ordered spaces". PhD thesis. Università degli Studi di Milano.

- Absadini, Marco and Regcio, Luca (2020). "On the axiomatisability of the dual of compact ordered spaces". In: Applied Categorical Structures 28.(6), pp. 921-934. arXiv: 1909.01631 [math.CT].

4. Stone-Weierstraß condition

The setting
Let C Be a complete category and let \mathbb{M} Be a class of C-morphisms satisfying the following conditions:

1. RegMono(C) $\subseteq \mathbb{M} \subset$ Mono(C),
2. \mathbb{M} is closed under composition, stable under pullBacks and
3. for each family $\left(m_{i}: A_{i} \longrightarrow A\right)_{i \in I}$ of \mathbb{M}-morphisms, there exist an intersection $d: D \longrightarrow A$ and $d \in \mathbb{M}$.

The setting
Let C Be a complete category and let \mathbb{M} Be a class of C-morphisms satisfying the following conditions:

1. RegMono(C) $\subseteq \mathbb{M} \subset$ Mono (C),
2. \mathbb{M} is closed under composition, stable under pullbacks and
3. for each family $\left(m_{i}: A_{i} \longrightarrow A\right)_{i \in l}$ of \mathbb{M}-morphisms, there exist an intersection $d: D \longrightarrow A$ and $d \in \mathbb{M}$.

Examples
$\mathbb{M}=\{$ embeddings $\}$ or $\mathbb{M}=\{$ regular monos $\}$.

The setting
Let C Be a complete category and let \mathbb{M} Be a class of C-morphisms satisfying the following conditions:

1. ReaMono(C) $\subseteq \mathbb{M} \subset$ Mono (C),
2. \mathbb{M} is closed under composition, stable under pullbacks and
3. for each family $\left(m_{i}: A_{i} \longrightarrow A\right)_{i \in I}$ of \mathbb{M}-Morphisms, there exist an intersection $d: D \longrightarrow A$ and $d \in \mathbb{M}$.

Examples
$\mathbb{M}=\{$ embeddings $\}$ or $\mathbb{M}=\{$ regular monos $\}$.
Remark
\mathbb{M} is part of a factorization structure (M-ExtrEpi, M) for morphisms in C.

Adámek, Jimí, Herrlich, Horst, and Strecker, George E. (I990). ABstract and concrete categories: The joy of cats. Pure and Applied Mathematics (New York). New York: John Wiley $\frac{1}{\top}$ Sons Inc. xiv + 482 Republished in: Reprints in Theory and Applications of CateGories, No. 17 (2006) pp. 1-501.

Some notation

We define the following class of small cones of C :

$$
\mathcal{M}=\left\{\left(f_{i}: C \longrightarrow C_{i}\right)_{i \in I} \mid l \text { is a set and }\left\langle f_{i}\right\rangle_{i \in I} \in \mathbb{M}\right\} .
$$

Some notation

We define the following class of small cones of C :

$$
\mathcal{M}=\left\{\left(f_{i}: C \longrightarrow C_{i}\right)_{i \in I} \mid l \text { is a set and }\left\langle f_{i}\right\rangle_{i \in I} \in \mathbb{M}\right\} .
$$

Remark
Each limit cone belonas to \mathcal{M} and a small cone Belonas to \mathcal{M} if and only if it contains a \mathcal{M}-cone.
\mathcal{M} is closed under composition if and only if \mathbb{M} is stable under products.

Some notation

We define the following class of small cones of C :

$$
\mathcal{M}=\left\{\left(f_{i}: C \longrightarrow C_{i}\right)_{i \in I} \mid I \text { is a set and }\left\langle f_{i}\right\rangle_{i \in I} \in \mathbb{M}\right\} .
$$

Remark
Each limit cone belonas to \mathcal{M} and a small cone belonas to \mathcal{M} if and only if it contains a \mathcal{M}-cone.
\mathcal{M} is closed under composition if and only if \mathbb{M} is stable under products.

Definition
Let \widetilde{C} be a C-object. \widetilde{C} is called an \mathbb{M}-cogenerator of C if, for each OBject C in C, the cone $(f: C \longrightarrow \widetilde{C})_{f}$ Belonas to \mathcal{M}.

More setting

We consider a dual adjunction

$$
F: A \longrightarrow B^{\text {op }}, \quad G: B^{\text {op }} \longrightarrow A, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$ induced By \widetilde{A} and \widetilde{B}.

More setting

We consider a dual adjunction

$$
F: A \longrightarrow B^{\text {op }}, \quad G: B^{\text {op }} \longrightarrow A, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

induced By \widetilde{A} and \widetilde{B}.
Furthermore, there are classes \mathbb{M}_{A} and \mathbb{M}_{B} of A-Morphisms resp. B-morphisms satisfying... (see Before)... and so that the cones

$$
\left(\mathrm{ev}_{A, a}: G(A) \longrightarrow \widetilde{B}\right)_{a \in A} \text { and }\left(\mathrm{ev}_{B, b}: F(B) \longrightarrow \widetilde{A}\right)_{b \in B}
$$

Belong to \mathcal{M}_{B} resp. \mathcal{M}_{A}.

More setting

We consider a dual adjunction

$$
F: A \longrightarrow B^{\text {op }}, \quad G: B^{\text {op }} \longrightarrow A, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G
$$

induced By \widetilde{A} and \widetilde{B}.
Furthermore, there are classes \mathbb{M}_{A} and \mathbb{M}_{B} of A-Morphisms resp. B-morphisms satisfying... (see Before)... and so that the cones

$$
\left(\mathrm{ev}_{A, a}: G(A) \longrightarrow \widetilde{B}\right)_{a \in A} \text { and }\left(\mathrm{ev}_{B, b}: F(B) \longrightarrow \widetilde{A}\right)_{b \in B}
$$

Belong to \mathcal{M}_{B} resp. \mathcal{M}_{A}.
Finally, \widetilde{A} is a \mathbb{M}_{A}-cogenerator of A and \widetilde{B} is a \mathbb{M}_{B}-cogenerator of B.

Injectivity

Assume that our given adjunction is already and equivalence.

Injectivity

Assume that our given adjunction is already and equivalence.

Proposition

1. The following are equivalent.
$1.1 F\left(\mathbb{M}_{A}\right) \subseteq M_{B}$-ExtrEpi.
$1.2 \quad G\left(\mathbb{M}_{B}\right) \subseteq \mathbb{M}_{A}$-ExtrEpi.
2. The following are equivalent.
$2.1 F\left(\mathbb{M}_{A}-\right.$ ExtrEpi $) \subseteq \mathbb{M}_{B}$.
$2.2 G\left(\mathbb{M}_{\mathrm{B}}-\right.$ ExtrEpi $) \subseteq \mathbb{M}_{\mathrm{A}}$.

Injectivity

Assume that our given adjunction is already and equivalence.

Proposition

1. The following are equivalent.
$1.1 F\left(\mathbb{M}_{A}\right) \subseteq M_{B}$-ExtrEpi.
$1.2 \quad G\left(\mathbb{M}_{B}\right) \subseteq \mathbb{M}_{A}$-ExtrEpi.
2. The following are equivalent.
2.1 $F\left(\mathbb{M}_{A}-E x \operatorname{tr} E_{p i}\right) \subseteq \mathbb{M}_{B}$.
$2.2 G\left(\mathbb{M}_{\mathrm{B}}-\right.$ ExtrEpi $) \subseteq \mathbb{M}_{\mathrm{A}}$.
Remark
If

$$
\mathbb{M}_{B}-\text { ExtrEpi }=\{\text { Surjections }\}=\mathbb{M}_{A}-\text { ExtrEpi }
$$

then \widetilde{A} is \mathbb{M}_{A}-injective if and only if \widetilde{B} is \mathbb{M}_{B}-injective.

The Stone-Weierstraß condition

Definition
F satisfies the Stone-Weierstraß condition provided that (SW)

For each object A in A, a \mathbb{M}_{B}-Morphism $m: M \longrightarrow F(A)$ is an isomorphism provided that the cone $(m(f): A \longrightarrow \widetilde{A})_{f \in M} \in \mathcal{M}_{\mathrm{A}}$.

The Stone-Weierstraß condition

Definition
F satisfies the Stone-Weierstraß condition provided that (SW)

For each OBject A in A, a $\mathbb{M}_{B}-$ Morphism $m: M \longrightarrow F(A)$ is an isomorphism provided that the cone $(m(f): A \longrightarrow \widetilde{A})_{f \in M} \in \mathcal{M}_{\mathrm{A}}$.

Proposition
If F satisfies (SW) then $F\left(M_{A}\right) \subseteq M_{B}-$ ExtrEpi.

The Stone-Weierstraß condition

Definition

F satisfies the Stone-Weierstraß condition provided that (SW)

For each OBject A in A, a M_{B}-Morphism $m: M \longrightarrow F(A)$ is an isomorphism provided that the cone $(m(f): A \longrightarrow \widetilde{A})_{f \in M} \in \mathcal{M}_{\mathrm{A}}$.

Proposition
If F satisfies (SW) then $F\left(\mathbb{M}_{A}\right) \subseteq M_{B}$ - ExtrEpi.
Proposition
Assume that our dual adjunction is a dual equivalence and $F\left(\mathbb{M}_{A}\right) \subseteq \mathbb{M}_{B}$-ExtrEpi. Then F satisfies (SW).

The Stone-Weierstraß condition

Definition

F satisfies the Stone-Weierstraß condition provided that (SW) For each OBject A in A, a M_{B}-Morphism $m: M \longrightarrow F(A)$ is an isomorphism provided that the cone $(m(f): A \longrightarrow \widetilde{A})_{f \in M} \in \mathcal{M}_{\mathrm{A}}$.

Proposition
If F satisfies (SW) then $F\left(M_{A}\right) \subseteq M_{B}$ - ExtrEpi.

Proposition

Assume that our dual adjunction is a dual equivalence and $F\left(\mathbb{M}_{A}\right) \subseteq \mathbb{M}_{B}$-ExtrEpi. Then F satisfies (SW).

Corollary

If we have a dual equivalence, G satisfies (SW) if and only if F satisfies (SW).

The clone condition

Definition

F satisfies the clone-condition provided that the following holds:
(Cl) For each set X, every $M_{B}-$ Morphism $m: M \longrightarrow F\left(\widetilde{A}^{X}\right)$ is an isomorphism provided that the cone $\left(m(f): \widetilde{A}^{X} \longrightarrow \widetilde{A}\right)_{f \in|M|}$ contains all projections.

The clone condition

Definition

F satisfies the clone-condition provided that the following holds: For each set X, every \mathbb{M}_{B}-Morphism $m: M \longrightarrow F\left(\widetilde{A}^{X}\right)$ is an isomorphism provided that the cone $\left(m(f): \widetilde{A}^{X} \longrightarrow \widetilde{A}\right)_{f \in|M|}$ contains all projections.

Remark
If B is a category of algebras, then the condition above means that

$$
\mid \text { Clonex }_{x}(\widetilde{B})\left|=\left|\mathrm{A}\left(\widetilde{A}^{x}, \widetilde{A}\right)\right| .\right.
$$

The clone condition

Definition

F satisfies the clone-condition provided that the following holds:
(Cl)

For each set X, every \mathbb{M}_{B}-Morphism $m: M \longrightarrow F\left(\widetilde{A}^{X}\right)$ is an isomorphism provided that the cone $\left(m(f): \widetilde{A}^{X} \longrightarrow \widetilde{A}\right)_{f \in|M|}$ contains all projections.

Remark
If B is a category of algebras, then the condition above means that

$$
\mid \text { Clonex }_{x}(\widetilde{B})\left|=\left|\mathrm{A}\left(\widetilde{A}^{x}, \widetilde{A}\right)\right| .\right.
$$

Proposition

If the given dual adjunction is an equivalence, then F satisfies $(C l)$.

Relation with Stone-Weierstrass

Proposition
If F satisfies $(C I)$ and $F\left(\mathbb{M}_{A}\right) \subseteq \mathbb{M}_{B}$ - ExtrEpi, then F satisfies ($S W$).

Relation with Stone-Weierstrass

Proposition

If F satisfies $(C I)$ and $F\left(\mathbb{M}_{A}\right) \subseteq \mathbb{M}_{B}$ - ExtrEpi, then F satisfies ($S W$).

Theorem

Assume that B is the category of Σ-algebras and homomorphisms (for a signature Σ), here $\mathbb{M}_{B}=\{$ monos $\}$ and
$\mathbb{M}_{\mathrm{A}}=\{$ recular monos $\}$. Then the following assertions are equivalent
(i) The dual adjunction is an equivalence.
(ii) The following three conditions are fulfilled.
(a) A is concretely \widetilde{A}-complete.
(b) \widetilde{A} is a recular injective regular cogenerator of A.
(c) For each set X,

$$
\mid \text { Clone }_{X}(\widetilde{B})\left|=\left|\mathrm{A}\left(\widetilde{A}^{x}, \widetilde{A}\right)\right| .\right.
$$

Part 2
 Stone-type dualities

Some references

E. Clark, David M. and Davey, Brian A. (1998). Natural dualities for the working algebraist. Vol. 57. CamBridge Studies in Advanced Mathematics. CamBridge: CamBridge University Press. xii +356 .
E Johnstone, Peter T. (1986). Stone spaces. Vol. 3. CamBridge Studies in Advanced Mathematics. CamBridge: CamBridge University Press. xxii +370 . Reprint of the 1982 edition.

The idea

Let C and D Be small categories. If

$$
C^{\mathrm{op}} \sim \mathrm{D}
$$

then

$$
\operatorname{Ind}(C)^{\mathrm{op}} \sim \operatorname{Pro}(D) .
$$

The idea

Let C and D be small categories. If

$$
\mathrm{C}^{\mathrm{op}} \sim \mathrm{D}
$$

then

$$
\operatorname{Ind}(C)^{\mathrm{op}} \sim \operatorname{Pro}(D) .
$$

Ind(C) is the free cocompletion of C under filtered colimits.

The idea

Let C and D Be small categories. If

$$
C^{\mathrm{op}} \sim \mathrm{D}
$$

then

$$
\operatorname{Ind}(C)^{\mathrm{op}} \sim \operatorname{Pro}(D) .
$$

$\operatorname{Ind}(C)$ is the free cocompletion of C under filtered collimits.

Pro(D) is the free cocompleion of D under cofiltered limits.

Our stratecy

We consider a dual adjunction

$$
F: A \longrightarrow B^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \quad(*)
$$ induced By \widetilde{A} and \widetilde{B}.

Our stratecy
We consider a dual adjunction

$$
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \quad(*)
$$

induced By \widetilde{A} and \widetilde{B}. Furthermore, we assume that the adjunction (*) restricts to an equivalence Between the full subcategories of A and B defined By all finite objects.

Our strategy
We consider a dual adjunction

$$
\begin{equation*}
F: A \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \tag{*}
\end{equation*}
$$

induced By \widetilde{A} and \widetilde{B}. Furthermore, we assume that the adjunction (*) restricts to an equivalence Between the full subcategories of A and B defined By all finite objects.
Then the adjunction (*) is actually an equivalence provided that

- Each object B in B is a filtered colimit of finite objects.
- F sends cofiltered limits of finite objects to colimits.
- Each object A in A is a cofiltered limit of finite objects.

Our strategy
We consider a dual adjunction

$$
\begin{equation*}
F: \mathrm{A} \longrightarrow \mathrm{~B}^{\mathrm{op}}, \quad G: \mathrm{B}^{\mathrm{op}} \longrightarrow \mathrm{~A}, \quad \eta: 1_{\mathrm{A}} \longrightarrow G F, \quad \varepsilon: 1_{\mathrm{B}} \longrightarrow F G \tag{*}
\end{equation*}
$$

induced By \widetilde{A} and \widetilde{B}. Furthermore, we assume that the adjunction (*) restricts to an equivalence between the full subcategories of A and B defined By all finite objects.
Then the adjunction (*) is actually an equivalence provided that

- Each object B in B is a filtered colimit of finite objects.
- F sends cofiltered limits of finite objects to colimits.
- Each object A in A is a cofiltered limit of finite objects.

Remark
Under the conditions above, the endofunctor $F G: B \longrightarrow B$ preserves filtered colimits of finite objects and, dually, $G F: A \longrightarrow A$ preserves cofiltered limits of finite objects.

Table of content

5. Locally presentable categories

6. Models in Boolean spaces

5. Locally presentable categories

Limit sketches
Definition
A finitary limit sketch is a triple $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ consisting of

- a small category C,
- a set \mathcal{L} of diagrams in C with finite shape, and
- a function σ which assigns to each diagram of \mathcal{L} a cone.

Limit sketches

Definition

A finitary limit sketch is a triple $S=(\mathrm{C}, \mathcal{L}, \sigma)$ consisting of

- a small category C,
- a set \mathcal{L} of diacrams in C with finite shape, and
- a function σ which assigns to each diagram of \mathcal{L} a cone.

A model of a finitary limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ in a category A is a functor $M: C \longrightarrow A$ which sends each diacram $D: I \longrightarrow C$ of \mathcal{L} to a limit $\sigma(D)$ of $F D$.

Limit sketches
Definition
A finitary limit sketch is a triple $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ consisting of

- a small category C,
- a set \mathcal{L} of diagrams in C with finite shape, and
- a function σ which assigns to each diagram of \mathcal{L} a cone.

A model of a finitary limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ in a category A is a functor $M: C \longrightarrow A$ which sends each diagram $D: I \longrightarrow C$ of \mathcal{L} to a limit $\sigma(D)$ of $F D$.
Finally, $\operatorname{Mod}(S, A)$ denotes the full subcategory of the functor category A^{C} defined By all models of \mathcal{S} in A.
Remark
$\operatorname{Mod}(\mathcal{S}, \mathrm{A})$ is reflective in A^{C}.
Kennison, John F. (1968). "On limit-preserving functors". In: Illinois Journal of Mathematics 12(4), pp. 616-619.
F- Freyd, P. J. and Kelly, G. M. (1972). "Categories of continuous functors, I". In: Journal of Pure and Applied Algebra 2(3), pp. |69-191.

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of two OBjects c_{1} and c_{2} and has, Besides the identity morphisms, three morphisms

$$
o, p_{1}, p_{2}: c_{2} \longrightarrow c_{1}
$$

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of two objects c_{1} and c_{2} and has, Besides the identity morphisms, three morphisms $o, p_{1}, p_{2}: c_{2} \longrightarrow c_{1}$.
- \mathcal{L} contains only the discrete diacram consisting of two copies of c_{1}.

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of two objects c_{1} and c_{2} and has, Besides the identity morphisms, three morphisms $o, p_{1}, p_{2}: c_{2} \longrightarrow c_{1}$.
- \mathcal{L} contains only the discrete diacram consisting of two copies of c_{1}.
- σ assigns the cone $\left(p_{1}, p_{2}: c_{2} \longrightarrow c_{1}\right)$ to this diagram.

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of two objects c_{1} and c_{2} and has, Besides the identity morphisms, three morphisms $o, p_{1}, p_{2}: c_{2} \longrightarrow c_{1}$.
- \mathcal{L} contains only the discrete diacram consisting of two copies of c_{1}.
- σ assians the cone $\left(p_{1}, p_{2}: c_{2} \longrightarrow c_{1}\right)$ to this diacram.

Then $\operatorname{Mod}(\mathcal{S}$, Set $)$ is the catecory of macmas and macma homomorphisms

Example

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of two objects c_{1} and c_{2} and has, Besides the identity morphisms, three morphisms $o, p_{1}, p_{2}: c_{2} \longrightarrow c_{1}$.
- \mathcal{L} contains only the discrete diacram consisting of two copies of c_{1}.
- σ assigns the cone ($p_{1}, p_{2}: c_{2} \longrightarrow c_{1}$) to this diagram.

Then $\operatorname{Mod}(\mathcal{S}$, Set $)$ is the category of macmas and Macma homomorphisms, $\operatorname{Mod}(\mathcal{S}, \mathrm{CompHaus})$ is the category of "compact Hausdorff macmas" and...

One more

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

One more

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of three OBjects c_{1}, c_{2} and r and has, Besides the identity morphisms, the morphisms
$p_{1}, p_{2}: c_{2} \longrightarrow c_{1}, m: r \longrightarrow c_{2}$ and $p_{1} \cdot m$ and $p_{2} \cdot m$.

One more

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of three OBjects c_{1}, c_{2} and r and has, Besides the identity morphisms, the morphisms
$p_{1}, p_{2}: c_{2} \longrightarrow c_{1}, m: r \longrightarrow c_{2}$ and $p_{1} \cdot m$ and $p_{2} \cdot m$.
- \mathcal{L} contains the discrete diagram consisting of two copies of c_{1} and the span $r \xrightarrow{m} c_{2} \stackrel{m}{\longleftrightarrow} r$.

One more

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of three OBjects c_{1}, c_{2} and r and has, Besides the identity morphisms, the morphisms
$p_{1}, p_{2}: c_{2} \longrightarrow c_{1}, m: r \longrightarrow c_{2}$ and $p_{1} \cdot m$ and $p_{2} \cdot m$.
- \mathcal{L} contains the discrete diagram consisting of two copies of c_{1} and the span $r \xrightarrow{m} c_{2} \stackrel{m}{\longleftrightarrow} r$.
- σ assigns the cones

to these diacrams.

One more

Consider the following limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$:

- C is the category consisting of three OBjects c_{1}, c_{2} and r and has, Besides the identity morphisms, the morphisms
$p_{1}, p_{2}: c_{2} \longrightarrow c_{1}, m: r \longrightarrow c_{2}$ and $p_{1} \cdot m$ and $p_{2} \cdot m$.
- \mathcal{L} contains the discrete diagram consisting of two copies of c_{1} and the span $r \xrightarrow{m} c_{2} \stackrel{m}{\longleftrightarrow} r$.
- σ assigns the cones

to these diacrams.
Then $\operatorname{Mod}(\mathcal{S}$, Set $)$ is category of sets equipped with a Binary relation and relation-preserving maps, ...

And still one more example

For a finitely complete small category C, we may consider the limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ where

- \mathcal{L} is the collection of all finite diacrams in C and
- σ assicns a limit to each of these diacrams.

And still one more example

For a finitely complete small category C , we may consider the limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ where

- \mathcal{L} is the collection of all finite diacrams in C and
- σ assicns a limit to each of these diacrams.

Then $\operatorname{Mod}(\mathcal{S}, \operatorname{Set}) \sim \operatorname{Cart}(\mathrm{C}$, Set $)$.

Locally presentable categories

Definition

An object B in a category B is called finitely presentable if the covariant hom-functor $\mathrm{B}(B,-)$ preserves filtered colimits.

Locally presentable categories
Definition
An object B in a category B is called finitely presentable if the covariant hom-functor $\mathrm{B}(B,-)$ preserves filtered colimits.
A category B is called locally finitely presentable provided that the following conditions hold:

1. B is cocomplete.
2. There exists, up to isomorphism, only a set of finitely presentable objects in B.
3. Each Object B in B is a filtered colimit of finitely presentable objects.

Locally presentable categories
Definition
An object B in a category B is called finitely presentable if the covariant hom-functor $\mathrm{B}(B,-)$ preserves filtered colimits.
A catecory B is called locally finitely presentable provided that the following conditions hold:

1. B is cocomplete.
2. There exists, up to isomorphism, only a set of finitely presentable objects in B.
3. Each Object B in B is a filtered colimit of finitely presentable objects.

Remark
Locally finitely presentable categories are also complete, (co)wellpowered and have a cenerating set.

Locally presentable categories
Definition
An object B in a category B is called finitely presentable if the covariant hom-functor $\mathrm{B}(B,-)$ preserves filtered colimits.
A category B is called locally finitely presentable provided that the following conditions hold:

1. B is cocomplete.
2. There exists, up to isomorphism, only a set of finitely presentable objects in B.
3. Each Object B in B is a filtered colimit of finitely presentable objects.

Remark
Locally finitely presentable categories are also complete, (co)wellpowered and have a cenerating set. Moreover, each functor Between locally finitely presentable catecories which preserves limits and filtered colimits has a left adjoint.

Gabriel and Ulmer (I971)

The model categories of finitary limit sketches in Set are precisely (up to equivalence) the locally finitely presentable categories. More precisely, (Set, Set) represent a dual equivalence

FinCompl ${ }^{\text {op }} \sim$ LocFinPres.

Gabriel and Ulmer (I97)

The model categories of finitary limit sketches in Set are precisely (up to equivalence) the locally finitely presentable categories. More precisely, (Set, Set) represent a dual equivalence

FinCompl ${ }^{\text {op }} \sim$ LocFinPres.

Fi. Gabriel, Peter and Ulimer, Friedrich (197). Lokal präsentierBare Katecorien. Vol. 221. Lecture Notes in Mathematics. Berlin: Springer-Verlac. $v+200$.
Ei. Adámek, Jiá and Rosický, Jiuí (1994). Locally presentable and accessible categories. Vol. 189. London Mathematical Society Lecture Note Series. CamBridge: CamBridge University Press. $x i v+316$

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.
- A set X is copresentable in Set if and only if $X=\{*\}$.

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.
- A set X is copresentable in Set if and only if $X=\{*\}$.
- The finitely copresentable compact Hausdorff spaces are precisely the finite ones (same for Boolean spaces).

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.
- A set X is copresentable in Set if and only if $X=\{*\}$.
- The finitely copresentable compact Hausdorff spaces are precisely the finite ones (same for Boolean spaces).
- The \aleph_{1}-copresentable compact Hausdorff spaces are precisely the metrisable ones.

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.
- A set X is copresentable in Set if and only if $X=\{*\}$.
- The finitely copresentable compact Hausdorff spaces are precisely the finite ones (same for Boolean spaces).
- The \aleph_{1}-copresentable compact Hausdorff spaces are precisely the metrisable ones.

Remark

- The category of models of a limit sketch in a locally presentable category is locally presentable.

Still some more
Examples

- Set is locally finitely presentable, here the finitely presentable objects are precisely the finite sets.
- A category of finitary algebras is finitely presentable, here finitely presentable objects are precisely the finitely presented algebras.
- A set X is copresentable in Set if and only if $X=\{*\}$.
- The finitely copresentable compact Hausdorff spaces are precisely the finite ones (same for Boolean spaces).
- The \aleph_{1}-copresentable compact Hausdorff spaces are precisely the metrisable ones.

Remark

- The category of models of a limit sketch in a locally presentable category is locally presentable.
- The category of models of a colimit sketch in a locally presentable category is locally presentable.

Sincle-sorted sketches
For limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$, we define:

Sincle-sorted sketches
For limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$, we define:

- The class of all \mathcal{S}-monomorphisms is defined as the composition closure of the class of all C-morphisms $m: A \longrightarrow B$ such that the span $A \xrightarrow{m} B \stackrel{m}{\leftrightarrows} A$ Belongs to \mathcal{L} and σ assigns the cone

to this diagram.

Sincle-sorted sketches
For limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$, we define:

- The class of all \mathcal{S}-monomorphisms is defined as the composition closure of the class of all C-morphisms $m: A \longrightarrow B$ such that the span $A \xrightarrow{m} B \stackrel{m}{\leftrightarrows} A$ Belongs to \mathcal{L} and σ assigns the cone

to this diagram.
- For a full subcategory C_{0} of C, we put:

1. $\operatorname{Sub}\left(\mathrm{C}_{0}\right)=\left\{C \mid C\right.$ is a \mathcal{S}-subobject of an object in $\left.C_{0}\right\}$,

Sincle-sorted sketches
For limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$, we define:

- The class of all S-monomorphisms is defined as the composition closure of the class of all C-morphisms $m: A \longrightarrow B$ such that the span $A \xrightarrow{m} B \stackrel{m}{\leftrightarrows} A$ Belongs to \mathcal{L} and σ assigns the cone

to this diagram.
- For a full subcategory C_{0} of C, we put:

1. $\operatorname{Sub}\left(C_{0}\right)=\left\{C \mid C\right.$ is a \mathcal{S}-subOBject of an object in $\left.C_{0}\right\}$,
2. $\operatorname{Lim}\left(C_{0}\right)=\left\{C \mid C\right.$ is an \mathcal{S}-limit of an Object in $\left.C_{0}\right\}$,

Sincle-sorted sketches
For limit sketch $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$, we define:

- The class of all \mathcal{S}-monomorphisms is defined as the composition closure of the class of all C-morphisms $m: A \longrightarrow B$ such that the span $A \xrightarrow{m} B \stackrel{m}{\leftrightarrows} A$ Belongs to \mathcal{L} and σ assigns the cone

to this diagram.
- For a full subcategory C_{0} of C, we put:

1. $\operatorname{Sub}\left(C_{0}\right)=\left\{C \mid C\right.$ is a \mathcal{S}-subOBject of an object in $\left.C_{0}\right\}$,
2. $\operatorname{Lim}\left(C_{0}\right)=\left\{C \mid C\right.$ is an \mathcal{S}-limit of an OBject in $\left.C_{0}\right\}$,

- For an object C in C, we define a chain $\mathcal{G}_{n}(C)(n \in \mathbb{N})$ of full subcategories of C in the following way:

1. We put $\mathcal{G}_{0}(C)=\{C\}$ and,
2. for each $n \geq 0, \mathcal{G}_{n+1}(C)=\operatorname{Sub}_{\mathcal{S}}\left(\operatorname{Lim}_{\mathcal{S}}\left(\mathcal{G}_{n}(C)\right)\right)$.

Sincle-sorted sketches

Definition

Let $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ Be a finitary limit sketch. An object C_{0} in C is called sketch-cogenerator of \mathcal{S} if $\mathcal{C}=\bigcup_{n \in \mathbb{N}} \mathcal{G}_{n}\left(C_{0}\right)$. The sketch \mathcal{S} is called sincle-sorted provided that it has a sketch-cogenerator.

Sincle-sorted sketches

Definition

Let $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ Be a finitary limit sketch. An object C_{0} in C is called sketch-cogenerator of \mathcal{S} if $\mathcal{C}=\bigcup_{n \in \mathbb{N}} \mathcal{G}_{n}\left(C_{0}\right)$. The sketch \mathcal{S} is called sincle-sorted provided that it has a sketch-cogenerator.

Lemma
Let $\mathcal{S}=(\mathrm{C}, \mathcal{L}, \sigma)$ Be a finitary, sincle-sorted limit sketch with sketch-cogenerator C_{0}. For each object C in C, there exists a finite subset $M \subseteq C\left(C, C_{0}\right)$ such that, for each model $F: C \longrightarrow A$ of \mathcal{S}, the cone $\left(F(f): F(C) \longrightarrow F\left(C_{0}\right)\right)_{f \in M}$ is a mono-cone in A .

Sincle-sorted sketches
Definition
Let $\mathcal{S}=(C, \mathcal{L}, \sigma)$ Be a finitary limit sketch. An object C_{0} in C is called sketch-cogenerator of \mathcal{S} if $\mathcal{C}=\bigcup_{n \in \mathbb{N}} \mathcal{G}_{n}\left(C_{0}\right)$. The sketch \mathcal{S} is called sincle-sorted provided that it has a sketch-cogenerator.

Lemma
Let $\mathcal{S}=(C, \mathcal{L}, \sigma)$ Be a finitary, sincle-sorted limit sketch with sketch-cogenerator C_{0}. For each object C in C, there exists a finite subset $M \subseteq C\left(C, C_{0}\right)$ such that, for each model $F: C \rightarrow A$ of \mathcal{S}, the cone $\left(F(f): F(C) \longrightarrow F\left(C_{0}\right)\right)_{f \in M}$ is a mono-cone in A .
Corollary
Let $\mathcal{S}=(C, \mathcal{L}, \sigma)$ Be a finitary, sincle-sorted limit sketch with sketch-cogenerator C_{0}.

- The evaluation functor $\operatorname{ev}_{C_{0}}: \operatorname{Mod}(S, A) \longrightarrow A$ is faithful.
- Assume that $|-|: A \longrightarrow$ Set preserves finite mono-cones and let $F: C \longrightarrow A$ Be a model of \mathcal{S} in A. Then $|F(C)|$ is finite for each OBject C in C if and only if $\left|F\left(C_{0}\right)\right|$ is finite.

Our starting point

Let $\mathcal{S}_{A}=\left(C_{A}, \mathcal{L}_{A}, \sigma_{A}\right)$ and $\mathcal{S}_{B}=\left(C_{B}, \mathcal{L}_{B}, \sigma_{B}\right)$ Be sincle sorted, finitary limit sketches with sketch-cogenerators C_{A} and C_{B}.

Our starting point

Let $\mathcal{S}_{A}=\left(C_{A}, \mathcal{L}_{A}, \sigma_{A}\right)$ and $\mathcal{S}_{B}=\left(C_{B}, \mathcal{L}_{B}, \sigma_{B}\right)$ Be sincle sorted, finitary limit sketches with sketch-cogenerators C_{A} and C_{B}.

- The category $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set) is a locally finitely presentable category, hence (co)complete and (co)wellpowered and the forgetful functor $\mathrm{ev}_{C_{B}}: \operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set $) \longrightarrow$ Set has a left adjoint and preserves filtered colimits.

Our starting point

Let $\mathcal{S}_{A}=\left(C_{A}, \mathcal{L}_{A}, \sigma_{A}\right)$ and $\mathcal{S}_{B}=\left(C_{B}, \mathcal{L}_{B}, \sigma_{B}\right)$ Be sincle sorted, finitary limit sketches with sketch-cogenerators C_{A} and C_{B}.

- The category $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set) is a locally finitely presentable category, hence (co)complete and (co)wellpowered and the forcetful functor $\mathrm{ev}_{C_{B}}: \operatorname{Mod}\left(S_{B}\right.$, Set $) \longrightarrow$ Set has a left adjoint and preserves filtered colimits.
- The catecory $\operatorname{Mod}\left(\mathcal{S}_{A}\right.$, BooSp $)$ is locally copresentable and therefore (co)complete and (co)wellpowered and has a cogeneratinc set. Hence, the functor $\mathrm{ev}_{C_{A}}: \operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right) \longrightarrow$ BooSp has a left adjoint as well.

Our starting point

Let $\mathcal{S}_{A}=\left(C_{A}, \mathcal{L}_{A}, \sigma_{A}\right)$ and $\mathcal{S}_{B}=\left(C_{B}, \mathcal{L}_{B}, \sigma_{B}\right)$ Be sincle sorted, finitary limit sketches with sketch-cogenerators C_{A} and C_{B}.

- The category $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set) is a locally finitely presentable category, hence (co)complete and (co)wellpowered and the forcetful functor $\mathrm{ev}_{C_{B}}: \operatorname{Mod}\left(S_{B}\right.$, Set $) \longrightarrow$ Set has a left adjoint and preserves filtered colimits.
- The category $\operatorname{Mod}\left(S_{A}, B o o S p\right)$ is locally copresentable and therefore (co)complete and (co)wellpowered and has a cogenerating set. Hence, the functor $\operatorname{ev}_{C_{A}}: \operatorname{Mod}\left(\mathcal{S}_{A}, B o o S p\right) \longrightarrow$ BooSp has a left adjoint as well.

Furthermore, we consider objects \widetilde{A} in $\operatorname{Mod}\left(\mathcal{S}_{A}\right.$, BooSp $)$ and \widetilde{B} in $\operatorname{Mod}\left(\mathcal{S}_{2}\right.$, Set) with finite underlying set $\left|\widetilde{A}\left(C_{A}\right)\right|=\widetilde{B}\left(C_{B}\right)$ are given.

Our starting point

Let \mathbb{M}_{A} and \mathbb{M}_{B} Be classes of $\operatorname{Mod}\left(\mathcal{S}_{A}\right.$, BooSp)-morphisms resp. $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set)-morphisms closed under composition, pullBack and intersection stable, containing all regular monomorphisms and contained in the class of all embeddings.

Our starting point

Let \mathbb{M}_{A} and \mathbb{M}_{B} Be classes of $\operatorname{Mod}\left(S_{A}\right.$, BooSp)-morphisms resp. $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set)-morphisms closed under composition, pullBack and intersection stable, containing all regular monomorphisms and contained in the class of all embeddinas.
We define A as the full subcategory of $\operatorname{Mod}\left(\mathcal{S}_{A}, B o o S p\right)$ of all \mathbb{M}_{A}-subobjects of powers of \tilde{A}. Likewise, B denotes the full subcategory of $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set) of all \mathbb{M}_{B}-subobjects of powers of \widetilde{B}.

Our starting point

Let \mathbb{M}_{A} and \mathbb{M}_{B} Be classes of $\operatorname{Mod}\left(S_{A}\right.$, BooSp $)$-morphisms resp. $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set)-morphisms closed under composition, pullBack and intersection stable, containing all regular monomorphisms and contained in the class of all embeddinas.
We define A as the full subcategory of $\operatorname{Mod}\left(\mathcal{S}_{A}, B o o S p\right)$ of all \mathbb{M}_{A}-subobjects of powers of \tilde{A}. Likewise, B denotes the full subcategory of $\operatorname{Mod}\left(S_{B}\right.$, Set) of all \mathbb{M}_{B}-SUBOBjects of powers of \widetilde{B}. Remark
A is an \mathbb{M}_{A}-ExtrEpi-reflective subcategory of $\operatorname{Mod}\left(S_{A}\right.$, BooSp $)$ with left adjoint $R_{\widetilde{A}}: \operatorname{Mod}\left(\mathcal{S}_{A}, B o o S p\right) \longrightarrow A$ and B is an \mathbb{M}_{B}-ExtrEpi-reflective subcategory of $\operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set) with left adjoint $R_{\widetilde{B}}: \operatorname{Mod}\left(\mathcal{S}_{B}\right.$, Set $) \longrightarrow \mathrm{B}$.

The "algebraic" side

Proposition
Each object B in B is a filtered colimit of finite objects in B.

The "algebraic" side

Proposition
Each object B in B is a filtered colimit of finite objects in B. Proof.

- An object B in B is finite if and only if $B(B, \widetilde{B})$ is finite.

The "algebraic" side

Proposition
Each object B in B is a filtered colimit of finite objects in B. Proof.

- An object B in B is finite if and only if $B(B, \widetilde{B})$ is finite.
- Each presheaf F in $\mathrm{Set}^{C_{B}}$ is a colimit of representables.

The "algebraic" side

Proposition
Each object B in B is a filtered colimit of finite objects in B.
Proof.

- An object B in B is finite if and only if $B(B, \widetilde{B})$ is finite.
- Each presheaf F in $\mathrm{Set}^{C_{B}}$ is a colimit of representables.
- For a representable presheaf $C_{B}(C,-)$:

$$
\mathrm{B}\left(R_{\widetilde{B}}\left(C_{B}(C,-)\right), \widetilde{B}\right)=\operatorname{Nat}\left(C_{B}(C,-), \widetilde{B}\right)=\widetilde{B}(C)
$$

is finite.
6. Models in Boolean spaces

Copresentable objects

Remark
Since A is a reflective subcategory of $\operatorname{Mod}\left(S_{A}\right.$, BooSp), an object A of A is finitely copresentable in A provided that it is in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$.

Copresentable objects
Remark
Since A is a reflective subcategory of $\operatorname{Mod}\left(\mathcal{S}_{A}\right.$, BooSp $)$, an object A of A is finitely copresentable in A provided that it is in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$.
Lemma
Assume that C_{A} is finitely generated. An object M in $\operatorname{Mod}\left(\mathcal{S}_{A}\right.$, HoSp $)$ is finitely copresentable provided that, for each C in $C_{A}, M(C)$ is a finite discrete space.

Copresentable objects
Remark
Since A is a reflective subcategory of $\operatorname{Mod}\left(\mathcal{S}_{A}, B o o S p\right)$, an OBject A of A is finitely copresentable in A provided that it is in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$.
Lemma
Assume that C_{A} is finitely generated. An OBject M in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$ is finitely copresentable provided that, for each C in $C_{A}, M(C)$ is a finite discrete space.

Ei Zádori, László (1995). "Natural duality via a finite set of relations". In: Bulletin of the Australian Mathematical Society 51.(3), Pp. 469-478.
E. Hofmann, Dirk (2002). "A Generalization of the duality compactness theorem". In: Journal of Pure and Applied Algebra I71.(23), pp. 205-217.

Copresentable objects

Remark
Since A is a reflective subcategory of $\operatorname{Mod}\left(S_{A}\right.$, BooSp), an object A of A is finitely copresentable in A provided that it is in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$.

Lemma

Assume that C_{A} is finitely generated. An object M in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$ is finitely copresentable provided that, for each C in $C_{A}, M(C)$ is a finite discrete space.

Corollary
\widetilde{A} is finitely copresentable in A.

CopresentaBle OBjects

Remark
Since A is a reflective subcategory of $\operatorname{Mod}\left(S_{A}\right.$, BooSp), an object A of A is finitely copresentable in A provided that it is in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$.

Lemma

Assume that C_{A} is finitely generated. An object M in $\operatorname{Mod}\left(\mathcal{S}_{A}, \operatorname{BooSp}\right)$ is finitely copresentable provided that, for each C in $C_{A}, M(C)$ is a finite discrete space.

Corollary
\widetilde{A} is finitely copresentable in A.

The duality compactness theorem

Proposition
Let $D: I \longrightarrow \mathrm{~A}$ Be a diacram in A with limit $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ such that each $\eta_{D(i)}$ is an isomorphism. Then $\left(F\left(p_{i}\right): F(L) \longrightarrow F D(i)\right)_{i \in I}$ is a colimit of $F D: I^{\mathrm{Op}} \longrightarrow$ B provided that hom $(-, \widetilde{A})$ sends $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ to a colimit of $\operatorname{hom}(D(-), \widetilde{A}): I^{\mathrm{op}} \longrightarrow$ Set.

The duality compactness theorem

Proposition
Let $D: I \longrightarrow \mathrm{~A}$ Be a diacram in A with limit $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ such that each $\eta_{D(i)}$ is an isomorphism. Then $\left(F\left(p_{i}\right): F(L) \longrightarrow F D(i)\right)_{i \in I}$ is a colimit of $F D: I^{\mathrm{Op}} \longrightarrow$ B provided that hom $(-, \widetilde{A})$ sends $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ to a colimit of $\operatorname{hom}(D(-), \widetilde{A}): I^{\mathrm{op}} \longrightarrow$ Set.

Theorem
Assume that C_{A} is finitely generated. Then, for each object B in $\mathrm{B}, \varepsilon_{B}$ is an isomorphism.

The duality compactness theorem
Proposition
Let $D: I \longrightarrow$ A Be a diacram in A with limit $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ such that each $\eta_{D(i)}$ is an isomorphism. Then $\left(F\left(p_{i}\right): F(L) \longrightarrow F D(i)\right)_{i \in I}$ is a colimit of $F D: I^{\mathrm{op}} \longrightarrow$ B provided that hom $(-, \widetilde{A})$ sends $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ to a colimit of $\operatorname{hom}(D(-), \widetilde{A}): I^{\text {op }} \longrightarrow$ Set.
Theorem
Assume that C_{A} is finitely Generated. Then, for each object B in $\mathrm{B}, \varepsilon_{B}$ is an isomorphism.
E. Zádori, László (1995). "Natural duality via a finite set of relations". In: Bulletin of the Australian Mathematical Society 51.(3), pp. 469-478.

E Clark, David M. and Davey, Brian A. (1998). Natural dualities for the working algebraist. Vol. 57. Cambridge Studies in Advanced Mathematics. CamBridge: Cambridge University Press. xil +356 .

The "BourBaki-criterion"

Theorem
Let $D: I \longrightarrow$ CompHaus Be a cofiltered diacram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the imace of each p_{i} is as larce as possible".

The "BourBaki-criterion"

Theorem
Let $D: I \longrightarrow$ CompHaus Be a cofiltered diagram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the image of each p_{i} is as large as possible".
Ri- BourBaki, Nicolas (1942). Éléments de mathématique. 3. Pt. I: Les structures fondamentales de l'analyse. Livre 3: Topolocie Générale. Paris: Hermann $\stackrel{1}{T} \mathrm{Ci}$.

The "BourBaki-criterion"

Theorem
Let $D: I \longrightarrow$ CompHaus Be a cofiltered diagram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the image of each p_{i} is as large as possible".
Remark

- If each $p_{i}: L \longrightarrow D(i)$ is surjective, then the second condition is automatically true.

The "BourBaki-criterion"

Theorem
Let $D: I \longrightarrow$ CompHaus Be a cofiltered diagram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=i m p_{i}$.

That is, "the image of each p_{i} is as large as possible".
Remark

- If each $p_{i}: L \longrightarrow D(i)$ is surjective, then the second condition is automatically true.
- This characterisation applies also to BooSp.

The "BourBaki-criterion"

Theorem
Let $D: I \longrightarrow$ CompHaus Be a cofiltered diagram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the image of each p_{i} is as large as possible".
Remark

- If each $p_{i}: L \longrightarrow D(i)$ is surjective, then the second condition is automatically true.
- This characterisation applies also to BooSp.
- Recall that a cone in A is a limit cone if and only if it is initial with respect to $A \longrightarrow$ BooSp and it is a limit in BooSp.

The canonical diacram
For an OBject A in A, we consider the canonical diacram

$$
\begin{aligned}
D_{A}: A / A_{\mathrm{fin}} & \longrightarrow A . \\
\left(A \rightarrow A_{0}\right) & \longmapsto A_{0}
\end{aligned}
$$

and the canonical cone $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$.

The canonical diacram
For an OBject A in A, we consider the canonical diacram

$$
\begin{aligned}
D_{A}: A / A_{\text {fin }} & \longrightarrow A . \\
\left(A \rightarrow A_{0}\right) & \longmapsto A_{0}
\end{aligned}
$$

and the canonical cone $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$.

- $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$ is an initial mono cone since it contains the cone $(f: A \longrightarrow \widetilde{A})_{f}$.

The canonical diagram
For an object A in A, we consider the canonical diacram

$$
\begin{aligned}
D_{A}: A / A_{\mathrm{fin}} & \longrightarrow \mathrm{~A} . \\
\left(A \rightarrow A_{0}\right) & \longmapsto A_{0}
\end{aligned}
$$

and the canonical cone $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$.

- $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$ is an initial mono cone since it contains the cone $(f: A \longrightarrow \widetilde{A})_{f}$.
- $A / A_{\text {fin }}$ is cofiltered.

The canonical diacram
For an OBject A in A, we consider the canonical diacram

$$
\begin{aligned}
D_{A}: A / A_{\mathrm{fin}} & \longrightarrow A . \\
\left(A \rightarrow A_{0}\right) & \longmapsto A_{0}
\end{aligned}
$$

and the canonical cone $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$.

- $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$ is an initial mono cone since it contains the cone $(f: A \longrightarrow \widetilde{A})_{f}$.
- $A / A_{\text {fin }}$ is cofiltered.

The canonical diacram
For an OBject A in A, we consider the canonical diacram

$$
\begin{aligned}
D_{A}: A / A_{\mathrm{fin}} & \longrightarrow A . \\
\left(A \rightarrow A_{0}\right) & \longmapsto A_{0}
\end{aligned}
$$

and the canonical cone $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$.

- $\left(A \longrightarrow A_{0}\right)_{A \rightarrow A_{0}}$ is an initial mono cone since it contains the cone $(f: A \longrightarrow \widetilde{A})_{f}$.
- $A / A_{\text {fin }}$ is cofiltered.

- If A has "image factorisation" then the canonical cone is a limit of the canonical diagram.

finite: $\quad X_{i} \hookleftarrow \operatorname{im}(p)$

Summing up

Theorem
Our dual adjunction is a dual equivalence provided that the following hold:

- \mathcal{C}_{A} is finitely generated and
- A has "image factorisations".

Structure switch

Example

From

$$
\mathrm{Boosp} \sim \mathrm{BA}^{\mathrm{op}}
$$

(induced By $(2,2)$ we Get

$$
\mathrm{Boosp}_{\mathrm{fin}} \sim \mathrm{BA}_{\mathrm{fin}}^{\mathrm{op}},
$$

Structure switch

Example

From

$$
\mathrm{Boosp} \sim \mathrm{BA}^{\mathrm{op}}
$$

(induced By $(2,2)$ we get

$$
\mathrm{BooSp}_{\mathrm{fin}} \sim \mathrm{BA}_{\mathrm{fin}}^{\mathrm{op}},
$$

that is,

$$
\text { Set }_{\mathrm{fin}} \sim \text { BooSpBA }_{\mathrm{fin}}^{\mathrm{op}} .
$$

Structure switch

Example

From

$$
\text { BooSp } \sim B A^{o p}
$$

(induced By $(2,2)$ we Get

$$
\mathrm{BooSp}_{\mathrm{fin}} \sim \mathrm{BA}_{\mathrm{fin}}^{\mathrm{op}},
$$

that is,

$$
\text { Set }_{\mathrm{fin}} \sim \text { BooSpBA }_{\mathrm{fin}}^{\mathrm{op}} .
$$

Therefore $(2,2)$ induces a dual equivalence

$$
\text { Set } \sim \text { BooSpBA }{ }^{\mathrm{op}} \text {. }
$$

Structure switch

Example

From

$$
\text { BooSp } \sim B A^{o p}
$$

(induced By $(2,2)$ we get

$$
\mathrm{BooSp}_{\mathrm{fin}} \sim \mathrm{BA}_{\mathrm{fin}}^{\mathrm{op}},
$$

that is,

$$
\text { Set }_{\mathrm{fin}} \sim \text { BooSpBA }_{\mathrm{fin}}^{\mathrm{op}} .
$$

Therefore $(2,2)$ induces a dual equivalence

$$
\text { Set } \sim \text { BooSpBA }{ }^{\mathrm{op}} \text {. }
$$

Well, if 2 is a cogenerator in BooSpBA ...

Profinite Algebras

Theorem
Consider an algebraic theory containing only "at most" Binary operation symbols (finitely many) so that

- the Binary operations are associative,
- there is a total order on the Binary operation symBols and the distributive laws hold,
- The unitary operations are closed under composition,
- the de Morgan laws hold (for every unary and every Binary operation symBOl, there exist ...).
Then every algebra in Boolean spaces is profinite.
Johnstone, Peter T. (1986). Stone spaces. Vol. 3. CamBridge Studies in Advanced Mathematics. CamBridge: CamBridge University Press. xxii +370 . Reprint of the 1982 edition.

Part 3
Kleisli categories, Splitting idempotents, and all that

Halmos duality

Theorem
BooSpKripke ~ BAO ${ }^{\circ p}$.
Boolean space Kripke frame:

Jónsson, Bjarni and Tarski, Alfred (195I). "Boolean alcebras with operators. I". In: American Journal of Mathematics 13.(4), pp. 891-939.
E. Kupke, Clemens, Kurz, Alexander, and Venema, Yde (2004). "Stone coalcesras". In: Theoretical Computer Science 327.(1-2), pp. 109-134.

Halmos duality

Theorem
BooSpKripke $\sim B A O^{\text {op }}$.
Boolean space Kripke frame:

Theorem
BooSpRel \sim FinSup ${ }_{\mathrm{BA}}^{\mathrm{op}}$.

Jónsson, Bjarni and Tarski, Alfred (1951). "Boolean alcebras with operators. I". In: American Journal of Mathematics 13.(4), pp. 891-939.
E. Kupke, Clemens, Kurz, Alexander, and Venema, Yde (2004). "Stone coalcebras". In: Theoretical Computer Science 327.(1-2), pp. 109-134.
E. Halmos, Paul R (1956). "AlgeBraic locic I. Monadic Boolean akebras". In: Compositio Mathematica 12, pp. 217-249.

Halmos duality (variation)

Theorem
PriestKripke ~ DLO ${ }^{\text {op }}$.
"Priestley Kripke frame":

Theorem
PriestDist ~ FinSup ${ }_{\text {DL }}^{\mathrm{op}}$.

Eienoli, Roberto, Lafalce, S., and Petrovich, Alejandro (1991). "Remarks on Priestley duality for distriButive lattices". In: Order 8.3), pp. 299-315.
E. Petrovich, Alejandro (1996). "Distributive lattices with an operator". In: Studia Locica 56.(1-2), pp. 205-224. Special issue on Priestley duality.
Ei. Bonsancue, Marcello M., Kurz, Alexander, and Rewitzky, Inerid M. (2001). "Coalgesraic representations of distrisutive lattices with operators". In: Topology and its Applications 154.(4), pp. 178-191.

The bigger picture

The powerset monad
The powerset monad $\mathbb{P}=(P, m, e)$ on Set consists of the powerset functor P : Set \longrightarrow Set and

$$
e_{X}: X \longrightarrow P X, \quad x \longmapsto\{x\} \quad \text { and } \quad m_{X}: P P X \longrightarrow P X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

The powerset monad
The powerset monad $\mathbb{P}=(P, m, e)$ on Set consists of the powerset functor $P:$ Set \longrightarrow Set and

$$
e_{x}: X \longrightarrow P X, \quad x \longmapsto\{x\} \quad \text { and } \quad m_{X}: P P X \longrightarrow P X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

Remark
Rel \sim Set. $_{\text {p }}$.

The powerset monad
The powerset monad $\mathbb{P}=(P, m, e)$ on Set consists of the powerset functor $P:$ Set \longrightarrow Set and

$$
e_{x}: X \longrightarrow P X, \quad x \longmapsto\{x\} \quad \text { and } \quad m_{X}: P P X \longrightarrow P X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

Remark
Rel \sim Set. $_{\text {P }}$.
Remark
A relation $r: X \rightarrow Y$ is a function if and only if

The powerset monad
The powerset monad $\mathbb{P}=(P, m, e)$ on Set consists of the powerset functor P : Set \longrightarrow Set and

$$
e_{X}: X \longrightarrow P X, \quad x \longmapsto\{x\} \quad \text { and } \quad m_{X}: P P X \longrightarrow P X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

Remark
Rel \sim Set $_{\text {p }}$.
Remark
A relation $r: X \rightarrow Y$ is a function if and only if

- r has a right adjoint in the ordered category Rel.

The powerset monad
The powerset monad $\mathbb{P}=(P, m, e)$ on Set consists of the powerset functor $P:$ Set \longrightarrow Set and

$$
e_{X}: X \longrightarrow P X, \quad x \longmapsto\{x\} \quad \text { and } m_{X}: P P X \longrightarrow P X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

Remark
Rel \sim Set p. $_{\text {. }}$
Remark
A relation $r: X \rightarrow Y$ is a function if and only if

- r has a right adjoint in the ordered category Rel.
- r is a homomorphism of comonoids in the monoidal category Rel:

The Upset monad

The upset monad $\mathbb{U}=(U, m, e)$ on Ord consists of the upset functor $U:$ Ord \longrightarrow Ord defined By

$$
U X=\{A \subseteq X \mid \uparrow A=A\}, \quad U f: U X \longrightarrow U Y, \quad A \longmapsto \uparrow f(A)
$$

and

$$
e_{X}: X \longrightarrow U X, \quad x \longmapsto \uparrow x \text { and } m_{X}: U U X \longrightarrow U X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

The Upset monad

The upset monad $\mathbb{U}=(U, m, e)$ on Ord consists of the upset functor $U:$ Ord \longrightarrow Ord defined By

$$
U X=\{A \subseteq X \mid \uparrow A=A\}, \quad U f: U X \longrightarrow U Y, \quad A \longmapsto \uparrow f(A)
$$

and

$$
e_{X}: X \longrightarrow U X, \quad x \longmapsto \uparrow x \text { and } m_{X}: U U X \longrightarrow U X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A} .
$$

Remark
Dist \sim Ord $_{\mathbb{U}}$.

Vietoris monads (discrete case)

Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32(1), pp. 258-280.

The functor $V:$ CompHaus \longrightarrow CompHaus is defined By

Vietoris monads (discrete case)

Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32(I), pp. 258-280.

The functor V : CompHaus \longrightarrow CompHaus is defined By

- $V X=\{A \subseteq X \mid A$ closed $\}$ with the "hit-and-miss topology"
$\{A \mid A \cap B \neq \varnothing\}, \quad\left\{A \mid A \cap B^{\complement}=\varnothing\right\} \quad$ (for all B open);

Vietoris monads (discrete case)

Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32(I), pp. 258-280.

The functor V : CompHaus \longrightarrow CompHaus is defined By

- $V X=\{A \subseteq X \mid A$ closed $\}$ with the "hit-and-miss topology"
$\{A \mid A \cap B \neq \varnothing\}, \quad\left\{A \mid A \cap B^{\complement}=\varnothing\right\} \quad$ (for all B open);
$-V f(A)=f(A)$.

Vietoris monads (discrete case)

Vietoris, Leopold (1922). "Bereiche zweiter Ordnunc". In: Monatshefte für Mathematik und Physik 32(I), pp. 258-280.

The functor V : CompHaus \longrightarrow CompHaus is defined By

- $V X=\{A \subseteq X \mid A$ closed $\}$ with the "hit-and-miss topology"
$\{A \mid A \cap B \neq \varnothing\}, \quad\left\{A \mid A \cap B^{\complement}=\varnothing\right\} \quad$ (for all B open);
- $V f(A)=f(A)$.

We obtain a monad $\mathbb{V}=(V, m, e)$ with unit $x \longmapsto\{x\}$ and multiplication given By union.

Vietoris monads (discrete case)

Vietoris, Leopold (1922). "Bereiche zweiter Ordnunc". In: Monatshefte für Mathematik und Physik 32(I), pp. 258-280.

The functor V : CompHaus \longrightarrow CompHaus is defined By

- $V X=\{A \subseteq X \mid A$ closed $\}$ with the "hit-and-miss topology"

$$
\{A \mid A \cap B \neq \varnothing\}, \quad\left\{A \mid A \cap B^{\complement}=\varnothing\right\} \quad \text { (for all } B \text { open); }
$$

$$
-V f(A)=f(A)
$$

We obtain a monad $\mathbb{V}=(V, m, e)$ with unit $x \longmapsto\{x\}$ and multiplication Given By union.

This monad restricts to BooSp and BooSp $\mathbb{V}_{\mathbb{V}} \sim$ BooSpRel.

Vietoris monad (ordered case)
Definition
An orderered compact space is a triple (X, \leq, τ) consisting of a set X, an order \leq on X and a compact Hausdorff topology τ on X so that the set

$$
\{(x, y) \in X \times X \mid x \leq y\}
$$

is closed with respect to the product topology.
NachBin, Leopoldo (1950). Topolocia e Ordem. University of Chicago Press.

Vietoris monad (ordered case)
Definition
An orderered compact space is a triple (X, \leq, τ) consisting of a set X, an order \leq on X and a compact Hausdorff topolocy τ on X so that the set

$$
\{(x, y) \in X \times X \mid x \leq y\}
$$

is closed with respect to the product topolocy.
We consider here V : PosComp \longrightarrow PosComp defined By

- $V X=\{A \subseteq X \mid A$ upper closed $\}$ with the "hit-and-miss topolocy";
- $V f(A)=\uparrow f(A)$.

Vietoris monad (ordered case)
Definition
An orderered compact space is a triple (X, \leq, τ) consisting of a set X, an order \leq on X and a compact Hausdorff topology τ on X so that the set

$$
\{(x, y) \in X \times X \mid x \leq y\}
$$

is closed with respect to the product topolocy.
We consider here V : PosComp \longrightarrow PosComp defined By

- $V X=\{A \subseteq X \mid A$ upper closed $\}$ with the "hit-and-miss topolocy";
- $V f(A)=\uparrow f(A)$.

We obtain a monad $\mathbb{V}=(V, m, e)$ with unit $x \longmapsto \uparrow\{x\}$ and multiplication Given By union.

Vietoris monad (ordered case)
Definition
An orderered compact space is a triple (X, \leq, τ) consisting of a set X, an order \leq on X and a compact Hausdorff topology τ on X so that the set

$$
\{(x, y) \in X \times X \mid x \leq y\}
$$

is closed with respect to the product topolocy.
We consider here V : PosComp \longrightarrow PosComp defined By

- $V X=\{A \subseteq X \mid A$ upper closed $\}$ with the "hit-and-miss topolocy";
- $V f(A)=\uparrow f(A)$.

We obtain a monad $\mathbb{V}=(V, m, e)$ with unit $x \longmapsto \uparrow\{x\}$ and multiplication Given By union.
This monad restricts to Priest and Priest $_{\mathbb{V}} \sim$ PriestDist.

Vietoris monad (ordered case)
Definition
An orderered compact space is a triple (X, \leq, τ) consisting of a set X, an order \leq on X and a compact Hausdorff topology τ on X so that the set

$$
\{(x, y) \in X \times X \mid x \leq y\}
$$

is closed with respect to the product topolocy.
We consider here V : PosComp \longrightarrow PosComp defined By

- $V X=\{A \subseteq X \mid A$ upper closed $\}$ with the "hit-and-miss topolocy";
- $V f(A)=\uparrow f(A)$.

We obtain a monad $\mathbb{V}=(V, m, e)$ with unit $x \longmapsto \uparrow\{x\}$ and multiplication Given By union.
This monad restricts to Priest and Priest $\mathbb{V} \sim$ PriestDist.
More information:
E Schalk, Andrea (1993). "Algebras for Generalized Power Constructions". PhD thesis. Technische Hochschule Darmstadt.

Vietoris monad (the topolocical case)

The lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Top consists of the functor $V:$ Top \longrightarrow Top sendinc a topolocical space X to the space

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated By the sets

$$
B^{\diamond}=\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \subseteq X \text { open })
$$

and $V f: V X \longrightarrow V Y$ sends A to $\overline{f[A]}$, for $f: X \longrightarrow Y$ in Top; and the unit e and the multiplication m of \mathbb{V} are civen By

$$
e_{X}: X \longrightarrow V X, \quad x \longmapsto \overline{\{x\}} \quad \text { and } \quad m_{X}: V V X \longrightarrow V X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A}
$$

Vietoris monad (the topolocical case)

The lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Top consists of the functor $V:$ Top \longrightarrow Top sending a topolocical space X to the space

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated By the sets

$$
B^{\diamond}=\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \subseteq X \text { open })
$$

and $V f: V X \longrightarrow V Y$ sends A to $\overline{f[A]}$, for $f: X \longrightarrow Y$ in Top; and the unit e and the multiplication m of \mathbb{V} are civen By
$e_{x}: X \longrightarrow V X, \quad x \longmapsto \overline{\{x\}} \quad$ and $\quad m_{X}: V V X \longrightarrow V X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A}$
NachBin, Leopoldo (1992). "Compact unions of closed subsets are closed and compact intersections of open subsets are open". In: Portugaliæ Mathematica 49.(4), pp. 403-409.

Vietoris monad (the topolocical case)
The lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Top consists of the functor $V:$ Top \longrightarrow Top sendinc a topolocical space X to the space

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology Generated By the sets

$$
B^{\diamond}=\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \subseteq X \text { open })
$$

and $V f: V X \longrightarrow V Y$ sends A to $\overline{f[A]}$, for $f: X \longrightarrow Y$ in Top; and the unit e and the multiplication m of \mathbb{V} are Given By

$$
e_{X}: X \longrightarrow V X, \quad x \longmapsto \overline{\{x\}} \quad \text { and } \quad m_{X}: V V X \longrightarrow V X, \quad \mathcal{A} \longmapsto \bigcup \mathcal{A}
$$

Remark
The classic Vietoris construction, with closed sets, does not define an OBvious functor on Top. That is, adding the sets U^{\square} to the subbasis of above does not define a functor.

Stone vs. Priestley spaces

Theorem
The category Spec of spectral spaces and spectral maps is dually equivalent to the category DL of distriButive lattices and homomorphisms.

$$
\text { Spec } \simeq D^{\mathrm{op}} .
$$

E. Stone, Marshall Harvey (1938). "Topolocical representations of distributive lattices and Brouwerian locics". In: Easopis pro pastování matematiky a fysiky 67.(I), pp. 1-25.

Stone vs. Priestley spaces
Theorem
The category Spec of spectral spaces and spectral maps is dually equivalent to the category DL of distributive lattices and homomorphisms.

$$
\text { Spec } \simeq \mathrm{DL}^{\mathrm{op}}
$$

Stone, Marshall Harvey (1938). "Topological representations of distributive lattices and Brouwerian locics". In: Easopis pro pastování matematiky a fysiky 67.(I), pp. 1-25.
Definition
A topological space X is spectral whenever X is sober and the compact and open subsets are closed under finite intersections and form a Base for the topology of X.
A continuous map $f: X \longrightarrow Y$ Between spectral spaces is called spectral whenever $f^{-1}(A)$ is compact, for every $A \subseteq Y$ compact and open.

Stone vs. Priestley spaces

Theorem
The category Spec of spectral spaces and spectral maps is dually equivalent to the category DL of distriButive lattices and homomorphisms.

$$
\mathrm{Spec} \simeq \mathrm{DL}^{\mathrm{op}} .
$$

E. Stone, Marshall Harvey (1938). "Topolocical representations of distributive lattices and Brouwerian locics". In: Easopis pro pastování matematiky a fysiky 67.(I), pp. 1-25.

Theorem
The category DL is also dually equivalent to the category Priest.

$$
\text { Priest } \sim \text { DL }^{\text {op }}
$$

F- Priestley, Hilary A. (1970). "Representation of distriButive lattices By means of ordered Stone spaces". In: Bulletin of the London Mathematical Society 2(2), pp. 186-190.

Stone vs. Priestley spaces

Theorem

The category Spec of spectral spaces and spectral maps is dually equivalent to the category DL of distriButive lattices and homomorphisms.

$$
\mathrm{Spec} \simeq \mathrm{DL}^{\mathrm{op}} .
$$

Etone, Marshall Harvey (1938). "Topolocical representations of distributive lattices and Brouwerian locics". In: Easopis pro pastování matematiky a fysiky 67.(I), pp. 1-25.

Theorem
The category DL is also dually equivalent to the category Priest.

$$
\text { Priest } \sim \text { DL }^{\text {op }}
$$

F- Priestley, Hilary A. (1970). "Representation of distributive lattices By means of ordered Stone spaces". In: Bulletin of the London Mathematical Society 2(2), pp. 186-190.

In particular: Spec ~ Priest

Stably compact spaces

Definition

A topolocical space X is stably compact if X is sober, locally compact and finite intersections of compact down-sets are compact.
E. Gierz, Gerhard, Hofmann, Karl Heinrich, Keimel, Klaus, Lawson, Jimmie D., Mislove, Michael W., and Scott, Dana S. (2003). Continuous lattices and domains. Vol. 93. Encyclopedia of Mathematics and its Applications. CamBridge: CamBridge University Press. $x \times x$ vi +59 .

Stably compact spaces
Definition
A topolocical space X is stably compact if X is sober, locally compact and finite intersections of compact down-sets are compact.
A continuous map $f: X \longrightarrow Y$ Between stably compact spaces is spectral whenever $f^{-1}(A)$ is compact, for every $A \subseteq Y$ compact and down-closed.

Gierz, Gerhard, Hofmann, Karl Heinrich, Keimel, Klaus, Lawson, Jimmie D., Mislove, Michael W., and Scott, Dana S. (2OO3). Continuous lattices and domains. Vol. 93. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press. xxxvi + 59l.

Stably compact spaces
Definition
A topolocical space X is stably compact if X is sober, locally compact and finite intersections of compact down-sets are compact.
A continuous map $f: X \longrightarrow Y$ Between stably compact spaces is spectral whenever $f^{-1}(A)$ is compact, for every $A \subseteq Y$ compact and down-closed.
Remark
Here we consider the natural order of a topolocical space X defined as

$$
x \leq y \text { whenever } y \in \overline{\{x\}}
$$

Stably compact spaces
Definition
A topolocical space X is stably compact if X is sober, locally compact and finite intersections of compact down-sets are compact.
A continuous map $f: X \longrightarrow Y$ Between stably compact spaces is spectral whenever $f^{-1}(A)$ is compact, for every $A \subseteq Y$ compact and down-closed.
Remark
Here we consider the natural order of a topolocical space X defined as

$$
x \leq y \text { whenever } y \in \overline{\{x\}}
$$

Remark
Every compact Hausdorff space is stably compact and every continuous map Between compact Hausdorff spaces is spectral:

$$
\text { CompHaus } \longrightarrow \text { StablyComp. }
$$

Connection with ordered compact spaces

Remark
This functor has a right adjoint
StablyComp \longrightarrow CompHaus
which sends a stably compact space X to the compact Hausdorff space with the same underlying set and the patch topology: the topology generated by the open subsets and the complements of the compact down-closed subsets of X.

Connection with ordered compact spaces

Remark
This functor has a right adjoint

$$
\text { StablyComp } \longrightarrow \text { CompHaus }
$$

which sends a stably compact space X to the compact Hausdorff space with the same underlying set and the patch topology: the topolocy Generated By the Open sußsets and the complements of the compact down-closed subsets of X.

Theorem
Every stably compact space X defines an ordered compact Hausdorff space with the patch topology and the underlying order of X,

Connection with ordered compact spaces

Remark
This functor has a right adjoint

$$
\text { StablyComp } \longrightarrow \text { CompHaus }
$$

which sends a stably compact space X to the compact Hausdorff space with the same underlying set and the patch topology: the topolocy Generated By the Open subsets and the complements of the compact down-closed subsets of X.

Theorem

Every stably compact space X defines an ordered compact Hausdorff space with the patch topology and the underlying order of X, and an ordered compact Hausdorff space X Becomes a stably compact space where the topology is given By all down-closed opens of X.
PosComp ~ StablyComp

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-Zö Berlein type, that is, $e_{V X} \leq V e_{x}$ or, equivalently, $e_{V X} \dashv m_{X} \dashv V e_{X}$.

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-Zö Berlein type, that is, $e_{V X} \leq V e_{x}$ or, equivalently, $e_{V X} \dashv m_{X} \dashv V e_{x}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-ZöBerlein type, that is, $e_{V X} \leq V e_{X}$ or, equivalently, $e_{V X} \dashv m_{X} \dashv V e_{X}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".
- If X is stably compact, then so is $V X$.

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-Zö Berlein type, that is, $e_{V X} \leq V e_{X}$ or, equivalently, $e_{V X} \dashv m_{X} \dashv V e_{X}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".
- If X is stably compact, then so is $V X$.
- If X is stably compact, then $e_{X}: X \longrightarrow V X$ and $m_{X}: V V X \longrightarrow V X$ are spectral.

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-Zö Berlein type, that is, $e_{V X} \leq V e_{x}$ or, equivalently, $e_{V X} \dashv m_{X} \dashv V e_{x}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".
- If X is stably compact, then so is $V X$.
- If X is stably compact, then $e_{X}: X \longrightarrow V X$ and $m_{X}: V V X \longrightarrow V X$ are spectral.
- If $f: X \longrightarrow Y$ is a continuous map Between stably compact spaces, then $V f: V X \longrightarrow V Y$ is spectral if and only if $f: X \longrightarrow Y$ is spectral.

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-ZöBerlein type, that is, $e_{V X} \leq V e_{x}$ or, equivalently, $e_{V X} \dashv m_{X}+V e_{x}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".
- If X is stably compact, then so is $V X$.
- If X is stably compact, then $e_{x}: X \rightarrow V X$ and $m_{X}: V V X \rightarrow V X$ are spectral.
- If $f: X \longrightarrow Y$ is a continuous map Between stably compact spaces, then $V f: V X \longrightarrow V Y$ is spectral if and only if $f: X \longrightarrow Y$ is spectral.
- A stably compact space X is spectral if and only if $V X$ is spectral.

Back to Vietoris
Proposition

- The monad $\mathbb{V}=(V, m, e)$ on Top is of Kock-ZöBerlein type, that is, $e_{V x} \leq V e_{x}$ or, equivalently, $e_{V x} \dashv m_{X}+V e_{x}$.
- Let $f: X \longrightarrow Y$ Be in Top. Then $V f$ has a left adjoint if and only if f is "down-wards open".
- If X is stably compact, then so is $V X$.
- If X is stably compact, then $e_{x}: X \rightarrow V X$ and $m_{X}: V V X \rightarrow V X$ are spectral.
- If $f: X \longrightarrow Y$ is a continuous map Between stably compact spaces, then $V f: V X \longrightarrow V Y$ is spectral if and only if $f: X \longrightarrow Y$ is spectral.
- A stably compact space X is spectral if and only if $V X$ is spectral.

Corollary
Consequently, the monad $\mathbb{V}=(V, m, e)$ on Top restricts to Monads on StablyComp and on Spec.

Back to Vietoris

Remark
Using the adjunction Between Stably Comp and CompHaus, we can transfer the monad \mathbb{V} on StablyComp to the Vietoris monad \mathbb{V} on CompHaus.
The topology of $V X$ is the patch topology which is generated By the sets

$$
\begin{aligned}
& U^{\diamond}=\{A \subseteq X \mid A \cap B=\varnothing\} \quad(U \subseteq X \text { open }) \quad \text { and } \\
& \{A \subseteq X \text { closed } \mid A \cap K=\varnothing\} \quad(K \subseteq X \text { compact }) .
\end{aligned}
$$

Back to Vietoris
Remark
Using the adjunction Between StablyComp and CompHaus, we can transfer the monad \mathbb{V} on StablyComp to the Vietoris monad \mathbb{V} on CompHaus.
The topology of $V X$ is the patch topology which is generated By the sets

$$
\begin{aligned}
& U^{\diamond}=\{A \subseteq X \mid A \cap B=\varnothing\} \quad(U \subseteq X \text { open }) \quad \text { and } \\
& \{A \subseteq X \text { closed } \mid A \cap K=\varnothing\} \quad(K \subseteq X \text { compact }) .
\end{aligned}
$$

Proposition
A compact Hausdorff space X is a Stone space if and only if $V X$ is a Stone space.

Back to Vietoris
Remark
Using the adjunction Between StablyComp and CompHaus, we can transfer the monad \mathbb{V} on StablyComp to the Vietoris monad \mathbb{V} on CompHaus.
The topology of $V X$ is the patch topology which is generated By the sets

$$
\begin{aligned}
& U^{\diamond}=\{A \subseteq X \mid A \cap B=\varnothing\} \quad(U \subseteq X \text { open }) \quad \text { and } \\
& \{A \subseteq X \text { closed } \mid A \cap K=\varnothing\} \quad(K \subseteq X \text { compact }) .
\end{aligned}
$$

Proposition
A compact Hausdorff space X is a Stone space if and only if $V X$ is a Stone space.

Therefore the monad \mathbb{V} on CompHaus restricts to a monad on BooSt.

The "monadic strategy"

- Start with $x \frac{F}{G} A^{\text {op }}$.

The "monadic strategy"

- Start with

- If (for instance) F is not full, then the category A has to many morphisms...

The "monadic strategy"

- Start with

- If (for instance) F is not full, then the category A has to many morphisms...
- ... or the category X too few!!

The "monadic strategy"

- Start with

- If (for instance) F is not full, then the category A has to many morphisms...
- ... or the category X too few!!
- With \mathbb{D} being the monad induced By $F \dashv G$ on X,

$$
X_{D} \longrightarrow A^{\mathrm{op}}
$$

is fully faithful.

The "monadic strategy"

- Start with

- If (for instance) F is not full, then the category A has to many morphisms...
- ... or the category X too few!!
- With \mathbb{D} being the monad induced By $F \dashv G$ on X,

$$
X_{D} \longrightarrow A^{\mathrm{op}}
$$

is fully faithful.

- Identify \mathbb{D}, that is, find a "nice" monad isomorphic to \mathbb{D}.

Table of content

7. Halmos dualities
8. Idempotent split completion
9. Halmos dualities

Liftings to Kleisli categories
Theorem
Let X and A Be categories with respresentable forgetful functor to Set, $\mathbb{T}=(T, m, e)$ a monad on X and $F \dashv G$ an adjunction

induced By $(\widetilde{X}, \widetilde{A})$. The following data are in Bijection.
(i) Functors $F: X_{\mathbb{T}} \longrightarrow A^{\text {op }}$ commuting with the left adjoints.
(ii) Monad morphisms $j: \mathbb{T} \longrightarrow \mathbb{D}$ (\mathbb{D} induced By $F \dashv G$).
(iii) \mathbb{I}-algebra structures $\sigma: T \widetilde{X} \longrightarrow \widetilde{X}$ such that the map

$$
\widehat{(-)}: X(X, \widetilde{X}) \longrightarrow X(T X, \widetilde{X}), \quad \psi \longmapsto \sigma \cdot T \psi=: \widehat{\psi}
$$

is an A-Morphism $\kappa x: F X \longrightarrow F T X$.

Litinas to Kleisli categories

For a \mathbb{T}-akeßra structure $\sigma: T \widetilde{X} \longrightarrow \widetilde{X}$ such that the map

$$
X(X, \tilde{X}) \longrightarrow X(T X, \tilde{X}), \quad \psi \longmapsto \sigma \cdot T \psi
$$

is an A-morphism $\kappa x: F X \longrightarrow F T X$:

Litings to Kleisli categories
For a \mathbb{T}-algebra structure $\sigma: T \widetilde{X} \longrightarrow \widetilde{X}$ such that the map

$$
X(X, \widetilde{X}) \longrightarrow X(T X, \widetilde{X}), \quad \psi \longmapsto \sigma \cdot T \psi
$$

is an A-morphism $\kappa x: F X \longrightarrow F T X:$

- We define a functor $F: X_{\mathbb{T}} \longrightarrow A^{\text {op }}$ commuting with the left adjoints By

$$
(\varphi: X \rightarrow T Y) \longmapsto\left(F Y \xrightarrow{\kappa_{Y}} F T Y \xrightarrow{F \varphi} F X\right) .
$$

Litings to Kleisli categories
For a \mathbb{T}-algebra structure $\sigma: T \widetilde{X} \longrightarrow \widetilde{X}$ such that the map

$$
X(X, \widetilde{X}) \longrightarrow X(T X, \widetilde{X}), \quad \psi \longmapsto \sigma \cdot T \psi
$$

is an A-morphism $\kappa x: F X \longrightarrow F T X:$

- We define a functor $F: X_{\mathbb{T}} \longrightarrow A^{\text {op }}$ commuting with the left adjoints By

$$
(\varphi: X \rightarrow T Y) \longmapsto\left(F Y \xrightarrow{\kappa_{Y}} F T Y \xrightarrow{F \varphi} F X\right) .
$$

- The induced monad morphism $j: \mathbb{T} \longrightarrow \mathbb{D}$ is Given By the family of maps

$$
j X:|T X| \longrightarrow \mathrm{A}(F X, \widetilde{A}), \quad \mathfrak{x} \longmapsto(\psi \mapsto \sigma \cdot T \psi(\mathfrak{x})) .
$$

Litings to Kleisli categories
For a \mathbb{T}-algebra structure $\sigma: T \widetilde{X} \longrightarrow \widetilde{X}$ such that the map

$$
X(X, \widetilde{X}) \longrightarrow X(T X, \widetilde{X}), \quad \psi \longmapsto \sigma \cdot T \psi
$$

is an A-morphism $\kappa x: F X \longrightarrow F T X$:

- We define a functor $F: X_{\mathbb{T}} \longrightarrow A^{\text {op }}$ commuting with the left adjoint By

$$
(\varphi: X \rightarrow T Y) \longmapsto\left(F Y \xrightarrow{\kappa_{Y}} F T Y \xrightarrow{F \varphi} F X\right) .
$$

- The induced monad morphism $j: \mathbb{T} \longrightarrow \mathbb{D}$ is Given By the family of maps

$$
j X:|T X| \longrightarrow \mathrm{A}(F X, \widetilde{A}), \quad \mathfrak{x} \longmapsto(\psi \mapsto \sigma \cdot T \psi(\mathfrak{x})) .
$$

Remark

For every X in X :

Hence, $j x$ is an embedding if and only if the cone

$$
(\widehat{\psi}: T X \longrightarrow \widetilde{X})_{\psi}
$$

is point-separating and initial.

Some simplification

If $\widetilde{X}=T X_{0}$ with \mathbb{T}-algebra structure $m_{X_{0}}$, then

- the functor $F: X_{T} \longrightarrow A^{\text {op }}$ is a lifting of the hom-functor $X\left(-, X_{0}\right): X_{\mathbb{T}} \longrightarrow$ Set $^{\text {op }}$,

Some simplification

If $\widetilde{X}=T X_{0}$ with \mathbb{T}-algebra structure $m_{X_{0}}$, then

- the functor $F: X_{\mathbb{T}} \rightarrow A^{\text {op }}$ is a lifting of the hom-functor X $\left(-, X_{0}\right): X_{\mathbb{T}} \longrightarrow$ Set $^{\text {op }}$,
- interpreting the elements of $T X$ as morphisMs $\varphi: X_{0} \rightarrow X$ in the Kleisli category $X_{\mathbb{T}}$ allows to describe the components of the monad morphism j using composition in $X_{\mathbb{T}}$:

$$
j x:|T X| \longrightarrow \operatorname{hom}(F X, \widetilde{A}), \quad \varphi \longmapsto(\psi \mapsto \psi \cdot \varphi) .
$$

Frames

Example

We consider now:

- the category SFrm V of spatial frames and suprema preserving maps,
- the Vietoris monad \mathbb{V} on Top,

Frames

Example

We consider now:

- the category SFrm V of spatial frames and suprema preserving maps,
- the Vietoris monad \mathbb{V} on Top,
- With 2 Being the Sierpinski space with $V: V 2 \longrightarrow 2$, the map

$$
\widehat{(-)}: \operatorname{Top}(X, 2) \rightarrow \operatorname{Top}(V X, 2)
$$

sends $B \subseteq X$ open to B^{\diamond}.

Frames

Example

We consider now:

- the category SFrm V of spatial frames and suprema preserving maps,
- the Vietoris monad \mathbb{V} on Top,
- With 2 Being the Sierpiński space with $V: V 2 \longrightarrow 2$, the map

$$
\widehat{(-)}: \operatorname{Top}(X, 2) \rightarrow \operatorname{Top}(V X, 2)
$$

sends $B \subseteq X$ open to B^{\diamond}.

- Therefore (-) preserves all suprema.

Frames

Example

We consider now:

- the category SFrm V of spatial frames and suprema preserving maps,
- the Vietoris monad \mathbb{V} on Top,
- With 2 Being the Sierpinski space with $V: V 2 \longrightarrow 2$, the Map

$$
\widehat{(-)}: \operatorname{Top}(X, 2) \rightarrow \operatorname{Top}(V X, 2)
$$

sends $B \subseteq X$ open to B^{\diamond}.

- Therefore (-) preserves all suprema.
- VX has by definition the initial topology with respect to the point-separating source $(\widehat{h}: V X \rightarrow 2)_{h \in \operatorname{Top}(X, 2)}$.

Frames
Example
We consider now:

- the category SFrmv of spatial frames and suprema preserving maps,
- the Vietoris monad \mathbb{V} on Top,
- With 2 being the Sierpinski space with $V: V 2 \longrightarrow 2$, the Map

$$
\widehat{(-)}: \operatorname{Top}(X, 2) \rightarrow \operatorname{Top}(V X, 2)
$$

sends $B \subseteq X$ open to B^{\diamond}.

- Therefore (-) preserves all suprema.
- VX has by definition the initial topology with respect to the point-separating source $(\widehat{h}: V X \rightarrow 2)_{h \in \operatorname{Top}(X, 2)}$.
The monad morphism j is Given By

$$
j x: V X \longrightarrow \operatorname{SFrm}_{V}(F X, 2), \quad A \longmapsto(B \mapsto \llbracket A \cap B \neq \varnothing \rrbracket)
$$

hence j is an isomorphism and we OBtain $\mathrm{Top}_{\mathbb{V}} \simeq \mathrm{SFrm}_{\mathbb{V}}^{\mathrm{op}}$.

Priestley spaces

We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,

Priestley spaces

We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,
- the Sierpinski space 2 with $V: V 2 \longrightarrow 2$,

Priestley spaces

We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,
- the Sierpinski space 2 with $V: V 2 \longrightarrow 2$,
- the induced map $\widehat{(-)}: \operatorname{Spec}(X, 2) \longrightarrow \operatorname{Spec}(V X, 2)$ is the restriction of the corresponding Map of the previous Example and therefore preserves finite suprema,

Priestley spaces
We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,
- the Sierpinski space 2 with $V: V 2 \longrightarrow 2$,
- the induced map $\widehat{(-)}: \operatorname{Spec}(X, 2) \longrightarrow \operatorname{Spec}(V X, 2)$ is the restriction of the corresponding map of the previous Example and therefore preserves finite suprema,
- the cone $(\widehat{h}: V X \longrightarrow 2)_{h \in \operatorname{Spec}(X, 2)}$ is point-separating and $V X$ has the initial topology (= initial Spec-structure).

Priestley spaces

We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,
- the Sierpinski space 2 with $V: V 2 \longrightarrow 2$,
- the induced map $\widehat{(-)}: \operatorname{Spec}(X, 2) \longrightarrow \operatorname{Spec}(V X, 2)$ is the restriction of the corresponding Map of the previous Example and therefore preserves finite suprema,
- the cone $(\widehat{h}: V X \longrightarrow 2)_{h \in \operatorname{Spec}(X, 2)}$ is point-separating and $V X$ has the initial topology (= initial Spec-structure).

The monad morphism j is given By

$$
j x: V X \longrightarrow \operatorname{FinSup}_{\mathrm{DL}}(F X, 2), \quad A \longmapsto(B \mapsto \llbracket A \cap B \neq \varnothing \rrbracket),
$$

Priestley spaces
We consider now:

- the lower Vietoris monad $\mathbb{V}=(V, m, e)$ on Spec,
- the Sierpinski space 2 with $V: V 2 \longrightarrow 2$,
- the induced $\operatorname{Map} \widehat{(-)}: \operatorname{Spec}(X, 2) \longrightarrow \operatorname{Spec}(V X, 2)$ is the restriction of the corresponding map of the previous Example and therefore preserves finite suprema,
- the cone $(\widehat{h}: V X \longrightarrow 2)_{h \in \operatorname{Spec}(X, 2)}$ is point-separating and $V X$ has the initial topology (= initial Spec-structure).

The monad morphism j is given By

$$
j x: V X \longrightarrow \operatorname{FinSup}_{\mathrm{DL}}(F X, 2), \quad A \longmapsto(B \mapsto \llbracket A \cap B \neq \varnothing \rrbracket),
$$

Compactness guarantees that $j x$ is surjective, hence

$$
\text { Spec }_{\mathbb{V}} \sim \text { FinSup }_{\mathrm{DL}}^{\mathrm{op}}
$$

8. Idempotent split completion

Splitting idempotents

Definition
An arrow $e: C \longrightarrow C$ in a category C is idempotent if $e \cdot e=e$.

Splitting idempotents

Definition
An arrow $e: C \longrightarrow C$ in a category C is idempotent if $e \cdot e=e$.
Example
If $r \cdot s=1$, then $e=s \cdot r$ is idempotent.

Splitting idempotents
Definition
An arrow $e: C \longrightarrow C$ in a catecory C is idempotent if $e \cdot e=e$.
Example
If $r \cdot s=1$, then $e=s \cdot r$ is idempotent.
Definition
A catecory C is idempotent split complete if every idempotent is of this form.

Splitting idempotents
Definition
An arrow $e: C \longrightarrow C$ in a category C is idempotent if $e \cdot e=e$.
Example
If $r \cdot s=1$, then $e=s \cdot r$ is idempotent.
Definition
A category C is idempotent split complete if every idempotent is of this form.
Remark

- C complete \Longrightarrow C idempotent split complete.

Splitting idempotents
Definition
An arrow $e: C \longrightarrow C$ in a category C is idempotent if $e \cdot e=e$.
Example
If $r \cdot s=1$, then $e=s \cdot r$ is idempotent.
Definition
A category C is idempotent split complete if every idempotent is of this form.
Remark

- C complete \Longrightarrow C idempotent split complete.
- C idempotent split complete $\Longrightarrow C^{\circ p}$ idempotent split complete.

Splitting idempotents
Definition
An arrow $e: C \longrightarrow C$ in a category C is idempotent if $e \cdot e=e$.
Example
If $r \cdot s=1$, then $e=s \cdot r$ is idempotent.
Definition
A category C is idempotent split complete if every idempotent is of this form.
Remark

- C complete \Longrightarrow C idempotent split complete.
- C idempotent split complete \Longrightarrow C $^{\text {op }}$ idempotent split complete.

Example
The category Rel is not idempotent split complete.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(C)$ of C is Given By the following data.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(C)$ of C is given By the following data.

- Objects: (C, e) with e idempotent.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(C)$ of C is given $B y$ the following data.

- Objects: (C, e) with e idempotent.
- An arrow $f:(C, e) \longrightarrow\left(C^{\prime}, e^{\prime}\right)$ is an arrow in C so that $f \cdot e=f=e^{\prime} \cdot f$.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(C)$ of C is given By the following data.

- Objects: (C, e) with e idempotent.
- An arrow $f:(C, e) \longrightarrow\left(C^{\prime}, e^{\prime}\right)$ is an arrow in C so that $f \cdot e=f=e^{\prime} \cdot f$.
The category C is fully emBedded into $\operatorname{kar}(C)$ via $C \longmapsto\left(C, 1_{C}\right)$.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(\mathrm{C})$ of C is given By the following data.

- Objects: (C, e) with e idempotent.
- An arrow $f:(C, e) \longrightarrow\left(C^{\prime}, e^{\prime}\right)$ is an arrow in C so that $f \cdot e=f=e^{\prime} \cdot f$.
The category C is fully emBedded into $\operatorname{kar}(\mathrm{C})$ via $C \longmapsto\left(C, 1_{C}\right)$.
The catecory $\operatorname{kar}(\mathrm{C})$ is idempotent split complete and $\mathrm{C} \longrightarrow \operatorname{kar}(\mathrm{C})$ has the expected universal property.

Idempotent split completion

The idempotent split completion $\operatorname{kar}(C)$ of C is given By the following data.

- Objects: (C, e) with e idempotent.
- An arrow $f:(C, e) \longrightarrow\left(C^{\prime}, e^{\prime}\right)$ is an arrow in C so that $f \cdot e=f=e^{\prime} \cdot f$.
The category C is fully emBedded into $\operatorname{kar}(C)$ via $C \longmapsto\left(C, 1_{C}\right)$.
The category $\operatorname{kar}(\mathrm{C})$ is idempotent split complete and $\mathrm{C} \longrightarrow \operatorname{kar}(\mathrm{C})$ has the expected universal property.

Lemma

Let A Be a full subcategory of B and assume that idempotents split in B. Let \bar{A} Be the full subcategory of B defined By the retracts of the OBjects in A. Then idempotents split in \bar{A} and $\mathrm{A} \rightarrow \overline{\mathrm{A}}$ is the free idempotent split completion of A .

Continuous relations

Remark

We consider the category StablyCompDist of stably compact spaces and spectral distriButors, it Becomes a 2 -category via the inclusion order of relations (which is dual to the order from $V X$).

Continuous relations

Remark

We consider the category StablyCompDist of stably compact spaces and spectral distributors, it Becomes a 2 -category via the inclusion order of relations (which is dual to the order from $V X$).

Proposition

Let X and Y Be stably compact spaces and $f: X \longrightarrow Y$ Be a map. Then f is spectral if and only if f_{*} is a spectral distributor.

Continuous relations

Remark

We consider the category StablyCompDist of stably compact spaces and spectral distributors, it becomes a 2-category via the inclusion order of relations (which is dual to the order from VX).

Proposition

Let X and Y Be stably compact spaces and $f: X \longrightarrow Y$ Be a map. Then f is spectral if and only if f_{*} is a spectral distributor.

Theorem

For a morphism $f: X \longrightarrow Y$ in StablyComp, the following assertions are equivalent.
(i) f is down-wards open.
(ii) The spectral distributor $f_{*}: X \rightarrow Y$ has a right adjoint in StablyCompDist.
(iii) the distributor $f^{*}: Y \leftrightarrow X$ is a spectral distributor.

Esakia spaces

Remark
The Priestley spaces corresponding to Heyting algebras are the Esakia spaces: those Priestley spaces X where the down-closure of every open subset of X is again open.
E. Esakia, Leo (1974). "Topological Kripke models". In: Doklady Akademil Nauk SSSR 214, pp. 298-30l.

Esakia spaces

Remark
The Priestley spaces corresponding to Heyting algebras are the Esakia spaces: those Priestley spaces X where the down-closure Of every open subset of X is again open.
E. Esakia, Leo (1974). "Topological Kripke models". In: Doklady Akademil Nauk SSSR 214, pp. 298-30l.

Definition
A stably compact space X is called an Esakia space whenever, for every open subset A of the patch space X_{p} of X, its down-closure $\downarrow A$ is open in X.

Esakia spaces

Remark
The Priestley spaces corresponding to Heyting algebras are the Esakia spaces: those Priestley spaces X where the down-closure of every open subset of X is again open.

Esakia, Leo (1974). "Topological Kripke models". In: Doklady Akademii Nauk SSSR 214, pp. 298-30I.

Definition
A stably compact space X is called an Esakia space whenever, for every open subset A of the patch space X_{p} of X, its down-closure $\downarrow A$ is open in X.

We write GEsaDist to denote the full subcategory of StablyCompDist defined By all Esakia spaces, and EsaDist stands for the full subcategory of GEsaDist defined By all spectral spaces.

Esakia spaces split Boolean spaces

Theorem

For a stably compact space X, the following assertions are equivalent.
(i) X is an Esakia space.
(ii) The spectral map $i: X_{p} \longrightarrow X, \quad x \longmapsto x$ is down-wards open.
(iii) The spectral distriButor $i_{*}: X_{p} \rightarrow X$ has a right adjoint (necessarily Given By i^{*}).
(iv) X is a split subOBject of a compact Hausdorff space Y in StablyCompDist.
If X is spectral, then the space Y in the last assertion can Be chosen as a Stone space.

Easkia spaces are idempotent split complete

Remark
Recall that SpecDist \simeq FinSup ${ }_{\mathrm{DL}}^{\mathrm{op}}$. Moreover, the catecory FinSup ${ }_{\mathrm{DL}}$ is idempotent split complete

Easkia spaces are idempotent split complete

Remark
Recall that SpecDist \simeq FinSup ${ }_{\text {op }}^{\mathrm{D}}$. Moreover, the catecory FinSup ${ }_{\text {DL }}$ is idempotent split complete, and therefore SpecDist is idempotent split complete.

Easkia spaces are idempotent split complete

Remark
Recall that SpecDist \simeq FinSup ${ }_{\text {DL }}^{\text {op }}$. Moreover, the catecory FinSup ${ }_{\text {DL }}$ is idempotent split complete, and therefore SpecDist is idempotent split complete.

Corollary

The category EsaDist is the idempotent split completion of BooSpRel.
co-Heyting algebras
Remark
For a distributive lattice L, we consider its Booleanisation $j: L \longrightarrow B$ which is given By any epimorphic embedding in DL of L into a Boolean algeBra B.
co-Heyting algebras
Remark
For a distributive lattice L, we consider its Booleanisation $j: L \longrightarrow B$ which is given By any epimorphic embedding in DL of L into a Boolean algebra B.

Theorem
For a distributive lattice L, the following assertions are equivalent.

1. L is a co-Heyting algebra.
2. The lattice homomorphism $j: L \longrightarrow B$ has a left adjoint in FinSup $_{\text {LL }} j^{+}: B \longrightarrow L$.
3. L is a split subobject of a Boolean algebra in FinSup ${ }_{D L}$.

Mckinsey, John C. C. and Tarski, Alfred (1946). "On closed alements in closure algebras". In: Annals of Mathematics. Second Series 47.(1), pp. 122-162.
co-Heyting algebras
Remark
For a distributive lattice L, we consider its Booleanisation $j: L \longrightarrow B$ which is given By any epimorphic embedding in DL of L into a Boolean algebra B.

Theorem
For a distributive lattice L, the following assertions are equivalent.

1. L is a co-Heyting algebra.
2. The lattice homomorphism $j: L \longrightarrow B$ has a left adjoint in FinSup $_{\text {LL }} j^{+}: B \longrightarrow L$.
3. L is a split subobject of a Boolean algebra in FinSup ${ }_{\text {LL }}$.

Corollary
The category FinSup ${ }_{\text {coHeyt }}$ is the idempotent split completion of FinSup ${ }_{B A}$.

Esakia duality

Theorem
The equivalence SpecDist \sim FinSup Op restricts to an equivalence

EsaDist \sim FinSup $_{\text {coHeyt }}^{\text {op }}$.

Esakia duality
Theorem
The equivalence SpecDist \sim FinSup ${ }_{D L}^{\text {op }}$ restricts to an equivalence

$$
\text { EsaDist } \sim \text { FinSup }{ }_{\text {coHeyt }}^{\text {op }}
$$

Remark
A lattice homomorphism $f: L_{1} \longrightarrow L_{2}$ Between co-Heyting algebras preserves the co-Heyting operation if and only if

Esakia duality

Theorem
The equivalence SpecDist \sim FinSup ${ }_{D L}^{\text {Op }}$ restricts to an equivalence

$$
\text { EsaDist } \sim \text { FinSup }_{\text {coHeyt }}^{\text {op }}
$$

Remark
A lattice homomorphism $f: L_{1} \longrightarrow L_{2}$ Between co-Heyting algeBras preserves the co-Heyting operation if and only if the diacram

$$
\begin{aligned}
& B_{1} \xrightarrow{\bar{f}} B_{2} \\
& j_{1}^{+} \downarrow \quad \downarrow^{j_{2}^{+}} \\
& L_{1} \xrightarrow[f]{ } L_{2}
\end{aligned}
$$

commutes.

Esakia duality

Theorem

The equivalence SpecDist \sim FinSup Op restricts to an equivalence

EsaDist \sim FinSup $_{\text {coHeyt }}^{\mathrm{op}}$.

Remark
A lattice homomorphism $f: L_{1} \longrightarrow L_{2}$ Between co-Heyting algeBras preserves the co-Heyting operation if and only if the corresponding spectral map $g: X_{1} \longrightarrow X_{2}$ makes the diacram of spectral distributors

commutative. Element-wise: for all $x \in X_{1}$ and $y \in X_{2}$ with $g(x) \leq y$, there is some $x^{\prime} \in X_{1}$ with $x \leq x^{\prime}$ and $g\left(x^{\prime}\right)=y$.

One more...

R. Rosebruch, Robert and Wood, Richard J. (1994).
"Constructive complete distriButivity IV". In: Applied Categorical Structures 2(2), pp. I19-144.
E- RosebruGh, Robert and Wood, Richard J. (2004). "Split structures". In: Theory and Applications of Categories 13.(12), pp. 172-183.

Theorem

$\operatorname{kar}($ Dist $) \sim \operatorname{kar}($ Rel $) \sim$ CCD $_{\text {sup }}$.

One more...

R. Rosebruch, Robert and Wood, Richard J. (1994).
"Constructive complete distriButivity IV". In: Applied Categorical Structures 2(2), pp. |19-144.

E- RosebruGh, Robert and Wood, Richard J. (2004). "Split structures". In: Theory and Applications of Categories 13.(12), pp. 172-183.

Theorem

$\operatorname{kar}($ Dist $) \sim \operatorname{kar}($ Rel $) \sim$ CCD $_{\text {sup }}$.
Theorem
Dist \sim TAL $_{\text {sup }}$.

One more...

R. Rosebruch, Robert and Wood, Richard J. (1994). "Constructive complete distriButivity IV". In: Applied Categorical Structures 2(2), pp. |19-144.

E- RosebruGh, Robert and Wood, Richard J. (2004). "Split structures". In: Theory and Applications of Categories 13.(12), pp. 172-183.

Theorem

$\operatorname{kar}($ Dist $) \sim \operatorname{kar}(\operatorname{Rel}) \sim$ CCD $_{\text {sup }}$.
Theorem
Dist \sim TAL $_{\text {sup }}$.
Theorem
Pos ${ }^{\mathrm{op}} \sim$ TAL.

