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Introduction

A seeminaly paradoxical oeservation

" ..an equation is only interesting or useful to the extent that
the two sides are different!”

B Raez, John and Dolan, James (200D. "From finite sets to
Feynman diaarams”. In: Mathematies Unlimited — 200I and Be-
yond. Ed By Bjdrn Enaauist and Wilfried Schmid. Sprinaer
Verlag, pp. 29—50. ar™iv: 0004133 [math.QA].


https://arxiv.org/abs/0004133
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Examples

op

1. Reagarding Priest
(= a regular epi)?

~ DL. Is every epimorphism in DL surjective

No since
(X7:7T) e (X,S,T)

is 8 MONO N Priest which is Not reaular if < is Nnot discrete.

2. Reaarding BooSp’ ~ BA.
- A Boolean space is extremally disconnected if and only i£
its Boolean alaeBra is complete.
- A Boolean space is projective if and only if it is extremally
disconnected.
- Hence: a Boolean slaerrsa is injective if and only if it is
complete.

op

3. Reaardina CompHausAb™ ~ Ab. An Aerelian aroup is
torsion-free i£ and only i its correspondina compact
Hausdor$$ Arelian aroup is connected.
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(Fpand Z9) = F(p V)

Prooéf.

- First recall: E § means [0] = T, for all interpretations [—] in
(finite) Heyting alaerras H.

- Hence our joB is: |§ there are Heyting alaerras H; and H, so
that [¢]m, < T and [¢]n, < T, construct a Heyting slaerrs H
and an interpretation in H so that ¢ V ¢ fails. ..

- ... does Not seem to re easieril?
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Returning to ¢ V¢

Theorem
Foand lFyp = I (oV )
Proo#f.
[£ ¢ £ails in C; and ¢ $ails In Cp, then ¢ V9 fails iIn C = (C, <, IH)
where 'C=G + G+ 1" O

Why "Kripke=-Heyting"?
- Kripke semanttics in C = Heyting semantics in {upsets of C}.
clkp < cely]
- Every finite Heyting algerra is of this form.
- In $act: Pos?® ~ HAg, (~ DLgy).
X —— U(X) H —— spec(H)

fl Tu(f) gl TspeC(g)

Y —— U(Y) K —— spec(K)
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"A cardinal principle of modern mathematical research may re
stated as a8 maxim: One must always topoloaize.”

Examples
- Spec ~ DL°P (certain compact spaces vs. distrigutive lattices).
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- EsaSp ~ HA®P (certain certain ordered spaces vs. Heyting
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One more example

Theorem
Ab ~ CompHausAb°’.

B Pontrijaain, Lev Semenovich (1I934). "The theory of topoloaical
commutative aroups”’ In: The Annals of Mathematics 3S(2),
p. 34l

Remark

"That fact is a8 theorem of topoloaical aroups. That character
Groups yield an adjoint connection is a theorem of catecory
theory.”

B Iseell, John R (I972). "General functorial semarttics, I In: Amer-
ican Journal of Mathematics 94-(2), pp. S35-59L.
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INitial ifts

Definition

Let F: A— B Be a functor. A cone C = (fi: C — Xj)ic/ In A is said
1o Be initial with respect to F i$ for every cone

D= (gi: D— Xi)ici and every morphism h: FD — FC such that

FD = FC - h, there exists a8 uniQue A-morphism h: D — C with
D=C-hand h= Fh

C FC — FX;
i h — hT

1 Fgi

D FD

Definition

A functor F: A — X is topoloaical whenever every cone

(fi: X — UB;)ic) With a £amily (B;)ic; Of A-oBjects admits an initial
[ifting, that is, an initial cone (gi: A — B;)ic; with UA= X and
Ugi=f forall iel
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EQuivalences

Definition

An equivalence retween catecories A and B consists of
functors f: A— B and G: B — A together with natural
iIsOMOrPhismvs 7: 1a —> GF and ¢: FG — 1g.

We write A ~ B if there is an equivalence retween A and B.
Proposition

A functor F: A — B is (part of) an equivalence if and only i£ F is
$ull, faithful and essentially surjective on ogjects.
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Adjunctions

Recall ...
For functors F: A— B and G: B— A, there is a Bijection
Between

1. pairs of natural transformations n: 1o —> GF and ¢: FG — 13

satisfying
F(A) 2" FGR(a) G(B) =©, GFG(B)
\ Jeron lam\) Jste
F(A) G(B)

for all A and B, and
2. natural isomorphisms

B(F—,—) — A(—, G—).

An adjunction is a choice of (N or (), and we write F - G to
indicate that there is an adjunction
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Restricting adjunctions

We consider an adjunction
F:A—B, G:B— A, n:lan— GF, e: FG— 1, (%)
and the full supcatecories
Fix(n) and Fix(g)

of A (resp. B) defined By all oBjects A in A (resp. B in B) where 7,4
(resp. ) is 8N isOoMmOrpPhism.
Theorem

1. The adjunction (*) restricts to an equivalence Fix(n) ~ Fix(e).

2. The followina assertions are equivalent.

(i) Fix(n) = A is riaht adjoint with left adjoint GF (the
monad (GF,n, Ger) is idempotent).
(ii) ng Is 8N iIsOMOrPhism.
(iii) Fix(e) = A'is left adjoint with riaht adjoint FG.
(iv) e¢ is an isomorphism.
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Dual adjunctions

Notation
In the sequel we typically consider adjunctions

F:A—B®, G:B® — A, n:1p— GF, e:1g — FG,

F(A) % FGF(A) G(B) 25 GFG(B)

1F(A>\ lF(nA) and 1G<B>\ lc(fs)
F(A) G(B)

Example ~
For a catecory A with an ogject A with argitrary powers, we
have the adjunction defined gy

A(—,A): A°® — Set AD): GetP A
Nna: A— ANAA) ex: X — A(ZX, Z\)
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Theorem
Assume that conerete catecories (A, U) and (B, V) with
U~ A(Ag,—) and V ~ B(Bp, —) and a dual adjunction

F:A—B® G:B® — A, n:1lp— GF, e:1g — FG

are aiven Put A = F(B;) and B = G(Ay). Then the followina
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Dual adjunctions come £rom duslising oBjects

Theorem
Assume that conerete catecories (A, U) and (B, V) with
U~ A(Ag,—) and V ~ B(Bp, —) and a dual adjunction

F:A—B® G:B® — A, n:1lp— GF, e:1g — FG

are aiven Put A = F(B;) and B = G(Ay). Then the followina
assertions hold.

1. U(A) = V(B).
2. VF ~ A(—,A) and UG ~ B(—, B).

Remark - %
We say that the adjunction is represented By (A, B).



Units are evaluation
We assume now
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Lnits are evaluation
We assume Nnow

VF = A(—,A) and UG =B(-,B)

and consider the "evaluation maps” (writing U= |—| = V)

eva.: A(A A) = |FA| — |A|
o — |p|(a)

and

[nz]

Al —
Theorem

T-evaa, = |nal(a), o-evgp=|eg|(b), T=0

evF(ﬁ),l; - = \
|GF(A)] —' |B], |B] —= |FG(B)] — |B|.
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Units are evaluation

Proo#. v
Arout the first affirmation For ¢: A — A:

T-evaa(p) = evea 1 - 114l - evaa(p)
= (Inzl - evaa(#))(13)
= (Inz - ¢l(a))(13)
= (IGF[(Inal(2)))(15)
lInal(a) - Fel(17)
[nal(a)l(15 - »)
= [|nal(a)|(¢)-
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Summing up
For concrete catecories (A, |—|) and (B, |—|) with representarle
foraetbul functors and a dual adjunction

F:A—B® G:B® — A, n:1lp— GF, e:1g — FG,

there are ogjects A and B with |A| = |B| and, assuminea for
sivplicity that “all isomorphisms arove are identtities”,

|F| o A(fa’z\v)7 |G| — B(77 B)a |T]A‘(a) = €&Va,, |€B|(B) = €VBb -

Remark
We have
A ™0 B(Fa, B), -
1l e \ l
A f(a).
Theretore:

Na Is MONO <= (f: A — A)r is mono.



Reaular cocenerators

Remark

Assume that C is a reaular coaenerator in a cateaory C with
arsitrary powers of C. it follows that, for each orject C in C,
there exists an equalizer diaaram

G e cv.



Reaular cocenerators

Remark

Assume that C is a reaular coaenerator in a cateaory C with
arsitrary powers of C. it follows that, for each orject C in C,
there exists an equalizer diaaram

G e cv.

Hence, a right adjoint, full and $aithful functor F: B — Cis an
eQuivalence provided that C is, up to isomorphism, contained in
the image of F.



7. How to construct dual
adjunctions
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Duaslising orjects

How can we construct a dual adjunction Between aiven

conerete catecories (A, |—[) and (B,[—[) over Set? Certainly we

have to £ind oBjects Ain A and B in B with |A| = |B| such that
1. for each orject Ain A, the cone

(evaa: A(A,A) — |B|)aca

admwits a lifting e
(evA,a: F(A) — B)a€|A\

such that, for each f: A— A in A, the map A(f,A) is a
B-morphiswv F(f),

2. for each crject Bin B, ...

3. for each ogject Ain A, the map

na: |Al — |GF(A)| = B(F(A), B)
at——>€&VA,

is actually an A-morphism na: A — GF(A) and
4. for each crject Bin B, ...



How to guarantee this?

Theorem
I$ the following two conditions are satisfied:

(A) For each orject A in A, the cone
(eva,a: A(A,A) — |B])acuia)
admits an initial lifting
(evaa: F(A) — §)36|A\7
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How to guarantee this?

Theorem
I$ the following two conditions are satisfied:
(A) For each orject A in A, the cone

(eva,a: A(A,A) — |B])acuia)
admits an initial lifting
(evaa: F(A) — §)36|A\7
(B) For each ogject B in B, the cone

(evgp: B(B, B) — |A])seis

admits an initial lifting

(evB7a: G(B) — A)b€|3‘,

then (A, B) induce a (natural) dual adjunction
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2. Assume that
2.1 all powers of A exist in A and are preserved By
|—|: A —> Set, and
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And how to et this?

Proposition

1. I# |—|: A — Set is mono—topoloaical, then (A).
2. Assume that
2.1 all powers of A exist in A and are preserved By
|—|: A —> Set, and
22 |—|: B —> Set is "slaesraic” and all operations |B|" — |B|
are A-morphisms A" —s A

Then (B). |#, moreover, A is coneretely A-complete, then also
(AN

Definition " 3

The cateaory A is concretely A-complete i# all powers of A and all
eualisers of pairs of parallel maps Retween powers of A exist in
A, and these limits are preserved By |—|: A — Set.



Proo$ of the last affirmation
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Initial cogenerators

Remark
We consider a natural dual adjunction

F:A— B°, G:B® — A, n:1ln— GF, e:1lg— FG (%)

induced By A and B. Then

nals an emBedding < (f: A — A)r is point-separatina and initial.

Definition N
Let (A,|—]|) Be 8 conerete catecory over Set and let A an oBject in
A. Then A is called initial cocenerator i£, for each orject A in A,

the cone (f: A— A)r is point separating and initial.

Remark o
The adjunction (x) restricts to the full suscateaories InitCog(A)
and InitCog(B) "initislly cocenerated gy A and B"



3. Gelfand-duality
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Definition
A C*-alceBra is a commutative unital C-alaerra with norm ||—||
and involution (—)* which is complete with respect to ||—|| and

satisfies (resides the "expected” axioms)
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C*-algerras

Definition
A C*-alceBra is a commutative unital C-alaerra with norm ||—||
and involution (—)* which is complete with respect to ||—|| and

satisfies (resides the "expected” axioms)
[lx - x*|| = [Ix]|.

C*-Alg denotes the catecory of C*-algerras and identity and
involution preserving C-alaerra homomorphisms as morphisms.

Proposition
For each C*-alaerra B and each element x € B,

IxI[ = sup{le(x)[ | ¢ € C*-Alg(B, C)}.

Remark
Hence, every homomorphism of C*-alaerras satisfies ||f(x)| < [x||
and C is a coaenerator in C*-Alg.
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The concrete cateaory C*-Alg
We consider the unit-gall functor |—| = O: C*-Alg — Set.

R.emark
The functor arove is even monadic.

Remark
For a topoloaical space X,

C*(X)={f: X — C corntinuous and rounded}

defines the initial lift of the cone
(evx,s: Top(X,D) — D = |C|)xex-
Corollary
The pair (D, C) induce a natural dual adjunction
C*: Top®® — C*-Alg, S: C*-Alg — Top®®.

R.emark

For each C*-alaerra B,the space S(B) is compact Hausdorff
(reing en equaliser Of a pair of continuous maps Between
powers of D).
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Proposition
For each C*-alaekra B, cg is an emieddinG.
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Theorem (Stone-Weierstrass)

Let A Be a compact Hausdorff space and let M C C*(A) re a
C*-suralaesra of C*(A) such that the cone (f: A — D)rcoym)
separates the points of A Then M = C*(A).

Corollary
For every C*-slaeBra B, eg: B — C*(S(B)) is surjective.

Theorem

Let B re a C*-alaerra and let M C S(B) Be a closed susspace Of
S(B) such that the cone (f: B — C)rem separates the points of
B. Then M = S(B).

Corollary

For every compact Haudorff space A, na: A — S(C*(A)) is
surjective.

Theorem
CompHaus®®? ~ C*-Alg (and CompHaus < Top is reflective).
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- CompHaus®? Set is monadic

B Duskin, John (1I969). "Variations on Beck’s tripleasility crite-
rion" In: Reports of the Midwest Cateaory Seminar . Ed. By
Saunders Maclane. Springer Berlin Heidelgera, pp. TH—129.
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B Goaerriel, Peter and Uimer, Friedrich (I97D). Lokal prasentiersare
kKategorien. Vol. 221 Lecture Notes in Mathematics. Berlin:
Sprineer-Verlaa. v + 200.
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operations.
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was OBtain By V. Marra and L. Reaaio rased on the theory of
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E Marrs, Vincenzo and Reaaio, Luca (20M. "Stone duality arove
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Advances in Mathematics 307, pp. 253281 ar™iv: 1508.07750
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- [0,1] is Ny—copresentarle in CompHaus.

- The algesraic theory of CompHaus® can Be generated By S
operations.

- A complete description of the alcerraic theory of CompHaus®
was OBtain By V. Marra and L. Reaaio rased on the theory of
MV-alcerras.

- Similarly, PosComp®? is a8 Quasivariety.
- Even retter, PosComp® is a variety.

- CompHaus®?

E Agradini, Marco (202D. "On the axiomatisarility of the dual of
compact ordered spaces" PhD thesis. Universitd deali Studi di
Milano.

B Aeradini, Marco and Reaaio, Luca (2020). "On the axioma-
tisarility of the dual of compact ordered spaces” In: Applied
Categorical Structures 28(6), pp. 921-934. ar™iv: 1909.01631
[math.CT].
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The setting

Let C Be a complete cateaory and let M Be a class of C-morphisms
satisfying the following conditions:

1. ReaMono(C) € M c Mono(C),
2. M is closed under composition, starle under pullgacks and

3. for each family (m;: A;i — A)ic) Of M-morphisms, there exist
an intersection d: D — Aand d € ML

Examples
M = {emreddinas} or M = {reaular monos}.

R.emark
M is part of a factorization structure (M-ExtrEpi, M) for
MOrPhisms in C.

B Addvek, Jimi, Herrlich, Horst, and Strecker, Georae E. (1990). As-
stract and concrete catecories: The joy of cats. Pure and Applied
Mathematics (New MYork). New Nork: John Wiley =+ Sons Ine. xiv +
482 Repuslished in: Reprints in Theory and Applications of Cate-
gories, No. [T (2006) pp. I-S01.
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Some notation

We define the following class of small cones of C:

M={(fi: C — G)ics | I is a set and (f;)ic; € M}.

R.emark
Each limit cone relonas to M and a8 swall cone Belonas to M if
and only i it contains a M-cone.

M is closed under composition i£ and only if M is starle under
products.

Definition ol
Let C e a C-opject. C is called an M-cocenerator of Cif, for
each ogject C in C, the cone (f: C — C)r relonas to M.



More setting

\We consider a dual adjunction
F:A—B® G:B® —A n:lp— GF, e:1g — FG

induced Ry A and B.



More setting

\We consider a dual adjunction
F:A—B® G:B® —A n:lp— GF, e:1g — FG

induced Ry A and B.

Furthermore, there are classes M and Mg of A-morphisms resp.
B-morphismvis satisfying ... (see Before) ... and so that the cones

(evaa: G(A) — B)aca and (evsp: F(B) — A)ses

gelona to Mg resp. Ma.



More setting

\We consider a dual adjunction
F:A—B® G:B® —A n:lp— GF, e:1g — FG

induced Ry A and B.

Furthermore, there are classes M and Mg of A-morphisms resp.
B-morphismvis satisfying ... (see Before) ... and so that the cones

(evaa: G(A) — B)aca and (evep: F(B) — A)pes

gelona to Mg resp. Ma.

Finally, A is 8 Ma-comenerator of A and B is a Mg-coaenerator
of B
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Injectivity

Assume that our aiven adjunction is already and equivalence.

Proposition
1. The followina are equivalent.
1.1 F(Ma) C Mp-ExtrEpi.
1.2 G(Mg) C Ma-ExctrEpi.
2. The following are equivalent.
2.1 F(Ma-ExtrEpi) C Mg.
2.2 G(Mp-ExtrEpi) C Ma.

Remark
£
Mg-ExtrEpi = {Surjections} = Ma-ExtrEpi

then A is Ma-injective i# and only if B is Mg-injective.
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Definition
F satistfies the Stone-\Welerstral condition provided that
(SW) For each ogject Ain A, 8 Mg-morphism m: M — F(A)
Is an iIsOMOrPhism provided that the cone
(m(f): A— A)rem € Ma.

Proposition
I# F satisfies (SW) then F(Mpa) C Mg-ExtrEpi.

Proposition
Assume that our dual adjunction is a dual equivalence and
F(Mpa) C Mg-ExtrEpi. Then F satisfies (SW).

Corollary

I£ we have a dual equivalence, G satisfies (SW) i£ and only i$ F
satisfies (SW).
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The clone condition

Definition
F satisfies the clone-condition provided that the following holds:
(cn For each set X, every Mg-morphism m: M —s F(AX) is
an i1somorphism provided that the cone
(m(f): AX — A)rejm) contains all projections.

Remark
£ B is a catecory of algerras, then the condition agove means
that _ e

|Clonex(B)| = |A(AX, A)|.

Proposition
[ the aiven dual adjunction is an equivalence, then F satisties (CD.
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R_elation with Stone-\Welerstrass

Proposition
I# F satisfies (C) and F(Mp) C Mg-ExtrEpi, then F satisfies (SW).

Theorem

Assume that B is the cateaory of Y-alaerras and homomorphisms
(for a sianature X)), here Mg = {monos} and

Ma = {reaular monos}. Then the following assertions are
eQuivalent

(i) The dual adjunction is an equivalence.
(ii) The following three conditions are fulfilled.
(a) A is coneretely A-complete.

(b) Alis a reaular injective reaular cocenerator of A
(c) For each set X,

|Clonex (B)| = |A(AX, A)].



Part 2L
Stone—type duslities



Some references

B Clark, David M. and Davey, Brian A. (1998). Natural dualities £or
the working alaepraist. Vol S1. Cameridae Studies in
Advanced Mathematics. Campridae: Cameridae University
Press. xii + 356

B Johnstone, Peter T (1I98L). Stone spaces. Vol. 3. Cameridae
Studies in Advanced Mathematics. Campridae: Campridae
University Press. xxii + 370. Reprint of the 982 edition.
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CP? ~D
then
Ind(C)°P ~ Pro(D).
Ind(C) is the free cocomple- Pro(D) is the free cocomple-
tion of C under filtered col- tion of D under cofittered
iMmits. limits.
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Our strateay

We consider a dual adjunction
F:A— B G:B® — A, n:1pn— GF, e:1g— FG (%)

induced By A and B. Furthermore, we assume that the adjunction
(%) restricts to an eaquivalence Between the full suscatecories
of A and B defined ry all finite orjects.

Then the adjunction (k) is actually an eQuivalence provided that
- Each oBject B in B is a filtered colimit of finite orjects.
- F sends cofiltered limits of finite orjects to colimits.

- BEach oBject Ain A is a cofittered limit of finite orjects.

Remark

Under the conditions arove, the endofunctor FG: B — B
preserves fitered colimits of finite orjects and, dually,
GF: A — A preserves cofiitered limits of finite ogjects.
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Limit sketches
Detinition
A finitary limit sketch is 8 triple S = (C, £,0) consistina of
- 8 small catecory C,
- a set L of diaarams in C with finite shape, and
- a8 function o which assians to each diagram of L a cone.

A model of a finitary limit sketch S = (C,£,0) in a category A is a
functor M: C — A which sends each diaaram D: | — C of L to a
limit o(D) of FD.

Finally, Mod(S, A) denotes the full surcatecory of the functor
catecory AC defined By all models of S in A

Remark
Mod(S,A) is reflective in AC.

B kennison, John E. (1968). "On limit-preservina functors'. In: llinois
Journal of Mathematics I2.(4H), pp. LI—EI9.

B Freyd, P. J. and Kelly, G. M. (I972). "Cateaories of continuous functors,
I" In: Journal of Pure and Applied Alaerra 2.(3), pp. IL9—9I.
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Example

Consider the following limit sketch S = (C, L, 0):
- Cis the catecory consisting of two oBjects ¢; and ¢ and has,
Resides the identity morphisms, three morphisms
0, pP1,P2: Co — C1.
- L cortains only the discrete diaaram consistinag of two
copies Of c.
- o assians the cone (p1, pa: ¢ — ¢1) tO this diaaram.

Then Mod(S, Set) is the catecory of maamas and macma
homomorphisms, Mod(S, CompHaus) is the catecory of “compact
Hausdorff maamas” and ...
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One more

Consider the following limit sketch S = (C, L, 0):

- Cis the category consisting of three ogjects ¢, o and r and
has, resides the identity morphisms, the morphisms
pP1,pP2: C —» C, M. r —> C2 and p1-m and p2 - m.

- L contains the discrete diaaram consisting of two copies of
c1 and the span r — ¢ «=r.

- o assians the cones

i
&) r——r
ARt |-
C1 C1 rT>C2

to these diaarams.

Then Mod(S, Set) is catecory of sets equipped with a Binary
relation and relation-preserving maps, ...
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And still one more example

For a finitely complete small cateaory C, we may consider the
limit sketch S = (C, £, 0) where

- L is the collection of all finite diaarams in C and

- o0 8ssians a limit to each of these diaarams.

Then Mod(S, Set) ~ Cart(C, Set).
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Locally presentaile catecories

Definition
An oBject B in a cateaory B is called finitely presentarle if the
covariant hom—functor B(B, —) preserves filtered colimits.

A category B is called |ocally finitely presentakle provided that the
following conditions hold:

1. B is cocomplete.

2. There exists, up tO isomorphism, only a set of finitely
presentarle ogjects in B.

3. Each ogject B in B is a filtered colimit of finitely presentasle
OBjects.

R.emark

Locally finitely presentarle cateaories are also complete,
(codwellpowered and have a3 aenerating set. Moreover, each
functor retween |ocally finitely presentarle categories which
preserves limits and filtered colimits has a left adjoint.
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The model cateaories of finitary limit sketches in Set are precisely
(up to equivalence) the locally finitely presentakle catecories.
More precisely, (Set, Set) represent a dual equivalence

FinCompl°® ~ LocFinPres.

B Goaeriel, Peter and Ulmer, Friedrich (I9T). Lokal prasentiersare
kKategorien Vol. 221 Lecture Notes in Mathematics. Berlin:
Springer-Verlaa. v + 200.

B Adéwek, Jiml and R osicky, Jimi (1994). Locally presentasle and
accessikle cateaories. Vol. I89. London Mathematical Society

Lecture Note Series. Campridae: Campridae University Press.
xiv =+ 3l6.
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SHill some more

Examples
- Set is locally finitely presentarle, here the finitely presentarle
OBjects are precisely the finite sets.

- A cateaory of finitary alaekras is finitely presentasle, here
finitely presentarle oBjects are precisely the finitely
presented alcerras.

- A set X is copresentagle in Set if and only i£ X = {x}.

- The finitely copresentarle compact Hausdors$ spaces are
precisely the finite ones (same for Boolean spaces).

- The R;-copresentagle compact Hausdor£$ spaces are precisely
the metrisarle ones.

Remark
- The category of models of a limit sketch in a locally
presentarle catecory is locally presentaele.
- The category of models of a colimit sketch in a locally
presentarle catecory is locally presentaele.
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SinGle-sorted sketches

For limit sketch S = (C, £, 0), we define:

- The class of all S-monomorphisms is defined as the
composition closure of the class of all C-morphisms
m: A —s B such that the span A B + A eelonas to £ and

o assians the cone

1
*A> A

A
IAJ m
A —= 15
to this disaaram.
- For a full sugcatecory Cop of C, we put:
1. Sub(Cp) = {C | C is 8 S—surorject of an oBject in Cp},
2. Lim(Cp) = {C | C is an S-limit of an orject in Co},
- For an ogject Cin C, we define a chain G,(C) (n € IN) of $ull
surcateaories of C in the following way:

1. We put Go(C) = {C} and,
2. for each n >0, G,41(C) = Subs(Lims(Gs(C)))-
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Detinition

Let S =(C,L,0) Be 8 finitary limit sketch. An orject G in Cis
called sketch-coaenerator of S if C =,y Gn(Co). The sketech Sis
called sinale-sorted provided that it has a sketch-coaenerator.

Lemma

Let S =(C, L, 0) Be a finitary, sinale-sorted limit sketch with
sketch-cogenerator (. For each ogject C in C, there exists a
finite sueset M C C(C, (p) such that, for each model F: C — A of
S, the cone (F(f): F(C) — F(G))rem is 8 mono-cone in A

Corollary
Let S =(C, L,0) Be a finitary, sinale-sorted limit sketch with
sketch-coaenerator (.
- The evaluation functor eve,: Mod(S,A) — A is faithful.
- Assume that |—|: A — Set preserves finite mono-cones and
let F: C— A Be 8 model of S in A Then |F(C)| is finite for
each ogject C in Cif and only i# |F(G)| Is finite.
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limit sketches with sketch-cogenerators C, and Cg.

- The catecory Mod(Sg, Set) is a locally finitely presentasle
category, hence (codecomplete and (codwellpowered and the
foraetful functor eve,: Mod(Sg, Set) — Set has a left adjoint
and preserves fittered colimits.

- The catecory Mod(Sa, BooSp) is locally copresentarle and
therefore (co)complete and (codwellpowered and has a
cogenerating set. Hence, the functor
evc,: Mod(Sa, BooSp) — BooSp has a left adjoint as well.

Furthermore, we consider osjects A in Mod(Sa, BooSp) and B in

Mod (S5, Set) with finite underlying set |A(Ca)| = B(Cg) are aiven
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Our startina point

Let My and Mg Be classes of Mod(Sa, BooSp)-morphisms resp.
Mod(Sg, Set)-morphisms closed under composition, pullgack and
intersection staele, containing all reaular monomorphisms and
contained in the class of all empreddings.

We define A as the full sugcatecory of Mod(Sa, BooSp) of all
M-suroRrjects of powers of A Likewise, B denotes the $ull
suecatecory of Mod(Sg, Set) of all Mp-sugoBjects of powers of B.

Remark

A is an My-ExtrEpi-reflective suscatecory of Mod(Sa, BooSp) with
left adjoint R;: Mod(Sa, BooSp) — A and B is an
Mpg-ExtrEpi-reflective surcatecory of Mod(Sg, Set) with left
adjoint Rz: Mod(Sg,Set) — B.
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The "alaerraic” side

Proposition
Each orject B in B is a fitered colimit of finite orjects in B.

Proo#.
- An oeject B in B is finite if and only i# B(B, B) is finite.
- Each preshea$ F in Set“t is a colimit Of representaeles.
- For a representaele presheat Cg(C,—):

B(R5(Cs(C, —)), B) = Nat(Cs(C, ), B) = B(C)

is finite.



L. Models In Boolean spaces
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Copresentaple oBjects

Remark
Since A is a reflective sugcatecory of Mod(Sa, BooSp), an ogject A

of A is finitely copresentarle in A provided that it is in
Mod(Sa, BooSp).

Lemma

Assume that Cjp is finitely generated. An orject M in

Mod(Sa, BooSp) is finitely copresentarle provided that, for each C
in Ca, M(C) is a finite discrete space.

B Zadori, LésziS (1995). "Natural duality via a finite set of rela-
tions" In: Bulletin of the Australian Mathematical Society SI(3),
pp. +69—418.

B Hofmann, Dirk (2002). "A aeneralization of the duslity com-
pactness theorem" In: Journal of Pure and Applied Alaerra (2~
3), pp. 205211
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R.emark

Since A is a reflective sugcatecory of Mod(Sa, BooSp), an ogject A
of A is finitely copresentarle in A provided that it is in

Mod(Sa, BooSp).

Lenmma

Assume that C, is finitely cenerated. An ogject M in

Mod(Sa, BooSp) is finitely copresentarle provided that, for each C
in Ca, M(C) is a finite discrete space.

Corollary
Ais finitely copresentarle in A

Ar —F , B

A(f% lH
Set



The duality compactness theorem

Proposition
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Proposition

Let D: | — A Be a disaram in A with limit (pi: L — D(i))ics such
that each 7p(j) Is an isomorphism. Then (F(p;): F(L) — FD(i))ies is
a colimit of FD: [°° —; B provided that hom(—, A) sends

(pi: L — D(i))ie; t0 8 colimit of hom(D(—),A): 1P —s Set.

Theorem

Assume that Cy is finitely generated. Then, for each oRject B in
B, eg is an isomorphismw.

B Zadori, L4sz2I& (1995). "Natural duality via a finite set of

relations”. In: Bulletin of the Australian Mathematical Society
SI(3), pp. +9—+H18.

E Clark, David M. and Davey, Brian A. (1998). Natural dualities for
the working alaegraist. Vol. ST Cameridae Studies in

Advanced Mathematics. Campridae: Cameridae University
Press. xii + 356.
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B Roureski, Nicolas (I942). E éments de mathématique. 3. Pt.

l: Les structures fondamentales de l'analyse. Livre 3: Topoloaie
aénérale. Paris: Hermann < Cie.
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The "Bourraki-eriterion”

Theorem
Let D: | — CompHaus Be a cofittered diaaram. Then a cone
(pi: L — D(i))ici #or D is a limit cone i£ and only i$

1. (pi: L — D(i))ier is mono and,

2. foreveryicl: ()imD(j = i)=imp;
Jj—i
That is, “the image of each p; is as larae as possigle”

Remark
- 1§ each p;: L — D(i) is surjective, then the second condition

Iis automatically true.
- This characterisation applies also to BooSp.

- Recall that a cone in A is a3 limit cone if and only if it is initial
with respect to A — BooSp and it is a limit in BooSp.
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The canonical diaaram

For an oeject A in A, we consider the canonical diaaram

Da: A/Agn — A.
(A — Ao) == Ao
and the canonical cone (A — Ao)a—a,-

- (A — Ap)asa, Is 8N initial MONO cone since it contains the
cone (f: A— A)r.

- A/Agy is cofittered. - I# A has "imace factorisation’
then the canonical cone is a limit
/\) A o#f the canonical diaaram.
/ X

A*>A1XA2
p
Az J\

finite: X; < im(p)

C



Summing up

Theorem
Our dual adjunction is a dusl equivalence provided that the
following hold:

- Ca Is finitely generated and
- A has "iImace factorisations”
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Structure switch

Example
From
BooSp ~ BA°P

(induced By (2,2) we cet
BooSpg, ~ BAZY,

that is,
Setgi, ~ BooSpBALY.

Therefore (2,2) induces a dual equivalence
Set ~ BooSpBA°P.

Well, i$ 2 is a8 cogenerator in BooSpBA ...



Profinite Alcerras

Theorem

Consider an alaepraic theory containing only "at most" ginary
operation symeols (finitely many) so that

- the Binary operations are associative,

- there is a total order on the Binary operation sywmrols and
the distrieutive laws hold,

- The unitary operations are closed under composition,

- the de Moraan laws hold (for every unary and every Binary
operation syyneol, there exist ...).

Then every alaekra in Boolean spaces is profinite.
E Johnstone, Peter T (I98L). Stone spaces. Vol. 3. Cameridae

Studies in Advanced Mathematics. Cameridae: Campridae
University Press. xxii + 370. Reprint of the (982 edition



Part 3
Kleisli categories, Splitting
Idempotents, and all that



Halmos duality

Theorem
BooSpKripke ~ BAO®P.

Boolean space Kripke frame:

X f5vy

ri Is
X—f—>Y

B Jénsson, Bjarni and Tarski, Alfred (19SD. "Boolean alaerras
with operators. " In: American Journal of Mathematics T3(4),
pp. 891-939.

E Kupke, Clemens, Kurz, Alexander, and Venema, Mde (2004,
"Stone coalgerras”. In: Theoretical Computer Science 321(-2),
pp. IO9—I134+



Halmos duality

Theorem Theorem
BooSpKripke ~ BAO®P. BooSpRel ~ FinSupgh.

Boolean space Kripke £rame:

hom(—,2)

X 5y BooSp BA°P
S i J
- ol BooSpRel bom(=2) FinSupga

B J8nsson, Bjarni and Tarski, Alfred (I95). "Boolean alaesras
with operators. " In: American Journal of Mathematics T3(4),
pp. 891-939.

B kupke, Clemens, Kurz, Alexander, and Venema, Mde (2004,
"Stone coalaerras” In: Theoretical Computer Science 32T(1-2),
pp. IO9—I134+

B Halmos, Paul R (I956). "Alaerraic loaic |. Monadic Boolean
alaerras” In: Compositio Mathematica 2, pp. 217—249.



Halmos duality (variation)

Theorem Theorem
PriestKripke ~ DLO®P. PriestDist ~ FinSupg).
"Priestley Kripke $frame":
X .y Priest M DL°P
gy e | |
. ! -
X T \4 PrlestDlsthm)FmSupDL

E Cianoli, Roserto, Lafalce, S., and Petrovich, Alejandro (199D.
"Reemarks on Priestley duality £or distrisutive lattices” In: Order 8(3),
pp. 299-3I5.

B Petrovich, Alejandro (1996). "Distrisutive lattices with an operator”
INn: Studia Loaica SE(-2), pp. 205-224. Special issue on Priestley
duality.

B Bonsangue, Marcello M, Kurz, Alexander, and Rewitzky, Inarid M.
(200N. "Coaleerraic representations of distrisutive lattices with
operators”. In: Topoloay and its Applications [SH(+), pp. T18—T91.



The Rigaer picture

BooSp ~ BA®°P

op

PriestDist ~ FinSupp);.

o

PriestKripke ~ DLO®P EsaDist ~ FinSupjiy - EsaSp ~ HA®P
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The powerset monad

The powerset monad P = (P, m,e) on Set consists of the
powerset functor P: Set — Set and

ex: X — PX, x+——{x} and mx: PPX — PX, Ar—>UA.

Remark
Rel ~ Setp.

Remark
A relation r: X — Y is a function if and only i£
- r has a right adjoint in the ordered catecory Rel

- r is 8 hOMOMOrPhism Of comonoids IN the monoidal cateaory
Rel:

X —yy XxX 25 yxy

\% i Ta,

X ———Y

r



The Upset monad

The upset monad U = (U, m, e) on Ord consists of the upset
functor U: Ord — Ord defined By

UX={ACX|1A=A}, Uf:UX—UY, A—1f(A)
and

ex: X — UX, x+—1x and myx: UUX — UX, A|—>UA.



The Upset monad

The upset monad U = (U, m, e) on Ord consists of the upset
functor U: Ord — Ord defined By

UX={ACX|1A=A}, Uf:UX—UY, A—1f(A)
and
ex: X — UX, xr—1Tx and mx: UUX — UX, A»—>UA.

Remark
Dist ~ OrdU.
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Vietoris monads (discrete case)

B Vietoris, Leopold (1922). "Bereiche zweiter Ordnuna". In:
Monatshefte fur Mathematik und Physik 32D, pp. 258—-280.

The functor V: CompHaus — CompHaus is defined By
- VX ={AC X | A dosed} with the "hit-and-miss topoloay"
{A|AnB+#o2}, {A|AnNB =g} (for all B open);
- VF(A) = f(A).

We ogtain 8 monad V = (V, m, e) with unit x — {x} and
muktiplication given By union.

This monad restricts to BooSp and BooSpy, ~ BooSpRel.



Vietoris monad (ordered case)

Definition

An orderered compact space is a triple (X, <,7) consisting of a
set X, an order < on X and a compact Hausdor£$ topoloay T on
X so that the set

{(ny) e X x X[ x <y}
is closed with respect to the product topoloay.

B Nachein, Leopoldo (I950). Topoloaia e Ordem. University of
Chicaao Press.
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Vietoris monad (ordered case)

Definition
An orderered compact space is a triple (X, <,7) consisting of a
set X, an order < on X and a compact Hausdor£$ topoloay T on
X so that the set
{(x,y) e X x X | x <y}

is closed with respect to the product topoloay.
We consider here V: PosComp — PosComp defined By

- VX ={AC X | A upper cdosed} with the "hit-and-miss topoloay";

- VF(A) = 1 (A).
We ogtain a8 monad V = (V, m, e) with unit x — N{x} and multipli-
cation Given By union.

This monad restricts to Priest and Priesty ~ PriestDist.

More information:

E Schak, Andrea (1993). "Alaerras £or Generalized Power Con-
structions” PhD thesis. Technische Hochschule Darmstadt.



Vietoris monad (the topoloaical case)

The lower Vietoris monad V = (V, m, e) on Top consists of the
functor V: Top — Top sending a topoloaical space X to the space

VX ={AC X | Ais closed}
with the topoloay cenerated Ry the sets
B®={Ac VX|ANB+# @} (BC X open),

and Vf: VX — VY sends A to f[A], for f: X — Y in Top; and the
unit e and the multiplication m of V are aiven By

ex: X — VX, xr—{x} and mx: WX — VX, A—|]JA
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The lower Vietoris monad V = (V, m, e) on Top consists of the
functor V: Top — Top sending a topoloaical space X to the space

VX ={AC X | Ais closed}
with the topoloay cenerated Ry the sets
B®={Ac VX|ANB+# @} (BC X open),

and Vf: VX — VY sends A to f[A], for f: X — Y in Top; and the
unit e and the multiplication m of V are aiven By

ex: X — VX, xr—{x} and mx: WX — VX, A—|]JA

E Nachein, Leopoldo (1992). "Compact unions of closed sugsets
are closed and compact intersections Of open sursets are
open’ In: Portuaslia Mathematica H9.(4), pp. +HO3—H-0O9.



Vietoris monad (the topoloaical case)

The lower Vietoris monad V = (V, m, e) on Top consists of the
functor V: Top — Top sending a topoloaical space X to the space

VX ={AC X | Ais closed}
with the topoloay cenerated Ry the sets
B®={Ac VX|ANB+# @} (BC X open),

and Vf: VX — VY sends A to f[A], for f: X — Y in Top; and the
unit e and the multiplication m of V are aiven By

ex: X — VX, xr—{x} and mx: WX — VX, A—|]JA

Remark

The classic Vietoris construction, with closed sets, does not
define an orvious functor on Top. That is, adding the sets UC to
the surrasis Of aroOve does Not define a functor.
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Stone vs. Priestley spaces

Theorem
The cateaory Spec Of spectral spaces and spectral maps is dually
eQuivalent to the category DL of distrirutive lattices and
homMmomorphisms.

Spec ~ DL°P,

B Stone, Marshall Harvey (1938). *Topoloaical representations of
distrirutive lattices and Brouwerian loaics”. In: ®asopis pro pastovani
matematiky a fysiky 1D, pp. -25.

Theorem
The cateaory DL is also dually equivalent to the cateaory Priest.
Priest ~ DLP

B Priestley, Hilary A. (I970). "Representation of distriputive lattices By
means Of ordered Stone spaces” [n: Bulletin of the London Mathe-
matical Society 2.(2), pp. IBE—I90.

In particular: Spec ~ Priest



Starly compact spaces

Detinition

A topoloaical space X is starly compact i£ X is soser, locally
compact and finite intersections of compact down-sets are
compact.

B Gierz, Gerhard, Hofmann, Karl Heinrich, Keimel, Kiaus, Law-
son, Jimmie D., Mislove, Michael W., and Scott, Dana S. (2003).
Continuous lattices and domains. Vol. 93. Encyclopedia of Math-
ematics and its Applications. Cameridae: Camiridae University
Press. xxxvi + S9l.
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Starly compact spaces

Definition

A topoloaical space X is starly compact i£ X is soser, locally
compact and finite intersections of compact down-sets are
compact.

A continuous map f: X — Y Between starly compact spaces is

spectral whenever f~1(A) is compact, for every A C Y compact and
down-closed.

Remark
Here we consider the natural order of a topoloaical space X
defined as

x <y whenever yec {xi},

R.emark
Every compact -Hausdor£f space is starly compact and every
continuous map Between compact -Hausdor$£ spaces is spectral:

CompHaus — StablyComp.



Connection with ordered compact spaces

Remark
This functor has a right adjoint

StablyComp — CompHaus

which sends a starly compact space X to the compact Hausdorss
space with the same underiying set and the patch topoloay: the
topoloay cenerated By the open suksets and the complements of
the compact down-closed sursets of X.
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Connection with ordered compact spaces

Remark
This functor has a right adjoint

StablyComp — CompHaus

which sends a starly compact space X to the compact Hausdorss
space with the same underiying set and the patch topoloay: the
topoloay aenerated By the open sugsets and the complements of
the compact down-closed sursets of X.

Theorem

Every stakly compact space X defines an ordered compact
Hausdor$f space with the patch topoloay and the underlying order
of X, and an ordered compact Hausdor$$ space X recomes a
staBly compact space where the topoloay is aiven By all
down-closed opens of X.

PosComp ~ StablyComp
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Back to Vietoris

Proposition

- The monad V = (V, m,e) on Top is of Kock-Z & gerlein type,
that iS) evx < Vex or, CQUiVBICr\‘tIy, evx 1 mx -1 Vex.

- Let f: X — Y Be in Top. Then Vf has a left adjoint if and only
i$ f is "down-wards open"

- | X is starly compact, then so is VX.

- |# X is staBly compact, then ex: X — VX and mx: VVX — VX
are spectral.

-8 f: X — Y is a continuous map Between staely compact
spaces, then Vf: VX — VY is spectral if and only i f: X — Y
is spectral.

- A starly compact space X is spectral if and only if VX is
spectral.

Corollary

Conseauently, the monad V = (V, m, e) on Top restricts to
monads on StablyComp and on Spec.



Back to Vietoris

Remark

Using the adjunction Between StablyComp and CompHaus, we can
transfer the monad V on StablyComp to the Vietoris monad V
on CompHaus.

The topoloay of VX is the patch topoloay which is generated By
the sets

U={ACX|ANB=2} (UCX open) and

{AC X dosed | ANK =@} (K C X compact).



Back to Vietoris

Remark

Using the adjunction Between StablyComp and CompHaus, we can
transfer the monad V on StablyComp to the Vietoris monad V
on CompHaus.

The topoloay of VX is the patch topoloay which is generated By
the sets

U={ACX|ANB=2} (UCX open) and
{AC X dosed | ANK =@} (K C X compact).

Proposition
A compact Hausdorff space X is a Stone space i£ and only if VX
is 8 Stone space.



Back to Vietoris

Remark

Using the adjunction Between StablyComp and CompHaus, we can
transfer the monad V on StablyComp to the Vietoris monad V
on CompHaus.

The topoloay of VX is the patch topoloay which is generated By
the sets

U={ACX|ANB=2} (UCX open) and
{AC X dosed | ANK =@} (K C X compact).

Proposition
A compact Hausdorff space X is a Stone space i£ and only if VX
is 8 Stone space.

Therefore the monad V on CompHaus restricts to a monad on
BooSp.
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The "monadic strateay'

F
- Stert with X 1 2 AP,
G

- |# (for instance) F is not £ull, then the catecory A has to
Many MmOorPpPhisms ...

- ... or the catecory X too fewll

- With D Being the monad induced By F 4 G on X,
X]D — AP

is fully faithful.

- ldenctify D, that is, £ind a "nice” monad isomorphic to D.



Tarle of content

7. Halmos dualities

8. ldempotent split completion



1. Halvos dualities



Liftinas to Kleisli catexories

Theorem

Let X and A Be categories with respresentaele foraetful
functors to Set, T = (T, m,e) 8 monad on X and F 4 G an
adjunction

F
G

_induced By (X, A). The followina data are in Bijection

(i) Functors F: Xp — AP commuting with the left adjoints.
(i) Monad morphisms j: T — D (D induced By F - G).

(iii) T-slaerra structures o: TX — X such that the map

—

(=): X(X, X) — X(TX,X), vr—o-Tp=11%

is an A-morphismv kx: FX — FTX.



Litinas to Kleisli categories
For a T-alaerra structure o: TX — X such that the map

X(X,X) — X(TX,X), $pr— 0T

is 8n A-mOrPhism rx: FX — FTX:
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- We define a functor F: Xt — A°P commuting with the left
adjoints By

(p: X = TY) — (FY 25 FTY £% EX).
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Litinas to Kleisli cateaories
For a T-alaekra structure o: TX — X such that the map
X(X, X) — X(TX,X), v+— 0Ty

is an A-morphism kx: FX — FTX:
- We define a functor F: X — A% commuting with the left
adjoints By
(p: X = TY) — (FY 25 FTY £% EX).
- The induced monad morphism j: T — D is Given By the family
OFf maps
Jx: | TX| — A(FX,A), t+— (¥ = o - TY()).

Remark
For every X in X: Hence, jx is an empeedding if
I TX| Jx A(FX Z) and only i$ the cone

@\ levw (%: TX — X)y

|X |= \Z| Is point-separatina and initial.
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Some simplification

I# X = TX, with T-alaerra structure my,, then

- the functor F: X — AP is a lifting of the hom—functor
X(—,Xo): Xp — SetC’p,

- interpreting the elements of TX as morphisms ¢ : Xg —— X Iin

the Kleisli catecory Xt allows to descrige the components of
the monad morphism j using composition in Xr:

Jx: | TX| — hom(FX, A), @+ (b — - ).
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Frames
Example

We consider now:

- the catecory SFrmy, Of spatial frames and suprema preserving
MaPps,

- the Vietoris monad V on Top,
- With 2 Beina the Sierpinski space with V: V2 — 2 the map

—

() : Top(X,2) — Top(VX, 2)

sends B C X open to B°.

- Therefore (—) preserves all suprema.

- VX has By definition the initial topoloay with respect to the
point-separatina source (h: VX = 2)petop(x,2)-

The monad morPphism j is aiven By
Jx: VX — SFrmy(FX,2), A~ (B~ [ANB # 2])

hence j is an isomorphismv and we ogtain Topy =~ SFrm‘\’f.
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Priestley spaces
We consider now:
- the lower Vietoris monad V = (V, m, e) on Spec,

- the Sierpinski space 2 with V:V2—2,

- the induced map (/—\): Spec(X,2) —» Spec(VX,2) is the
restriction of the corresponding map of the previous
Example and theretfore preserves finite suprema,

- the cone (F: VX — 2)pespec(x,2) 1S POINt-separating and VX has
the initial topoloay (= initial Spec-structure).

The monad morphisv J is Given gy
jx: VX — FinSuppp (FX,2), A~ (B~ [AN B+ 2]),
Compactness guarantees that jx is surjective, hence

Specy ~ FinSup);.



8. l[dempotent split completion
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Srlitting idempotentts

Definition

An arrow e: C — C in a catecory C is idempotent if e-e=e
Example

£ r-s=1then e =s-ris idempotent.

Definition

A category C is idempotent split complete if every idempotent is
of this form.

R.emark

- C complete —> C idempotent split complete.

- C idempotent split complete —> C°P idempotent split
cOMplete.

Example
The cateaory Rel is not idempotent split complete.
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[dempotent split completion

The idempotent split completion kar(C) of C is aiven By the
following data.
- Ogjects: (C,e) with e idempotent.
- An arrow f: (C,e) — (C',€’) is an arrow in C so that
f-e=f=¢€-f
The catecory C is fully emredded into kar(C) via C — (C,1¢).

The cateaory kar(C) is idempotent split complete and C — kar(C)
has the expected universal property.

Lemma

Let A e a full suecateaory of B and assume that idempotents
split in B. Let A e the full surcatecory of B defined By the
retracts of the ogjects in A Then idempotents split in A and
A = Ais the free idempotent split completion of A
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Continuous relations

R.emark

We consider the catecory StablyCompDist of staely compact spaces
and spectral distrieutors, it Becomes a 2-catecory via the
inclusion order of relations (which is dual to the order from VX).

Proposition
Let X and Y Be starly compact spaces and f: X — Y Be a map.
Then f is spectral if and only if £, is a8 spectral distrigutor.

Theorem
For a morphism f: X — Y in StablyComp, the f£ollowing assertions
are equivalent.

(i) fis down-wards open

(i) The spectral distrirutor f.: X —e» Y has a right adjoint in
StablyCompDist.

(iii) the distrirutor f*: Y —— X is a spectral distrirutor.
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Remark

The Priestley spaces corresponding to -Heyting alcerras are the
Esakia spaces: those Priestley spaces X where the down-closure
Of every open sueset of X is again open.
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E sakia spaces

Remark

The Priestley spaces corresponding to -Heyting alcerras are the
Esakia spaces: those Priestley spaces X where the down-closure
Of every open sueset of X is again open.

B Essakia, Leo (19T4). “"Topoloaical Kripke models” In: Doklady
Akademii Nauk SSSR. 214 pp. 29830

Detinition

A starly compact space X is called an Esakia space whenever, for
every open sukset A of the patch space X, of X, its down-closure
JA is open in X.

We write GEsaDist t© denote the full surcatecory of
StablyCompDist defined Ry all Esakia spaces, and EsaDist stands for
the full surcateaory of GEsaDist defined By all spectral spaces.



E sakia spaces split Boolean spaces

Theorem
For a starly compact space X, the following assertions are
eQuivalentt.

(i) X is an Esakia space.

(i) The spectral map i: X, — X, x+— x is down-wards open.

(iii) The spectral distriButor i.: X, e+ X has a right adjoint
(necessarily aiven By ™).

(iv) X is a split suroBject of a compact Hausdor££ space Y in
StablyCompDist.

I# X is spectral, then the space Y in the last assertion can ge

chosen as a Stone space.
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E.askia spaces are idempotent split complete

Remark

Recall that SpecDist > FinSupy);. Moreover, the catecory FinSupp,
is idempotent split complete, and therefore SpecDist is idempotent
split complete.

Corollary

The cateaory EsaDist is the idempotent split completion of
BooSpRel.
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co—Heyting alcerras

Remark

For a distrirutive lattice L, we consider its Booleanisation

Jj: L — B which is aiven By any epimorphic emredding in DL of L
into a Boolean alaerra B.

Theorem
For a distrieutive lattice L, the following assertions are
eQuivalent.
1. Lis a co—Heyting alaerra.
2. The lattice homomorphism j: L — B has a left adjoint in
FinSuppy, j©: B— L
3. Lis a split suroBject of a Boolean alaesra in FinSupp;.

B Mckinsey, John C. C. and Tarski, Alfred (I945). "On closed ele-
ments in closure algerras” In: Annals of Mathematics. Second
Series 41D, pp. 122—162-.



co—-Heyting alcerras

Remark

For a distrirutive lattice L, we consider its Booleanisation

Jj: L — B which is aiven By any epimorphic emredding in DL of L
into a Boolean alaerra B.

Theorem
For a distrieutive lattice L, the following assertions are
eQuivalentt.

1. Lis a co—Heyting alaerra.

2. The lattice homomorphism j: L — B has a left adjoint in
FinSuppy, j©: B— L

3. Lis a split suroBject of a Boolean alaesra in FinSupp;.

Corollary
The cateaory FinSup ey, IS the idempotent split completion of
FinSupBA.
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Theorem
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EsaDist ~ FinSup by, -

Remark

A lattice homomorphism f: L1 — Ly Between co—-Heyting
alaerras preserves the co--Heyting operation if and only if
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Esakia duality

Theorem
The equivalence SpecDist ~ FinSup}y; restricts to an equivalence

EsaDist ~ FinSup by, -

Remark

A lattice homomorphism f: L1 — Ly Between co—-Heyting
alaerras preserves the co--Heyting operation if and only if

the corresponding spectral map g: X1 —> Xo makes the diagram of
spectral distrirutors

y-
X1 = Xg

Fio %
I I2

(X1)p - (X2)p

commutative. Element-wise: for all x € X; and y € Xo with g(x) <y,
there is some x' € X; with x < x’ and g(x’) = y.



One more ...

E Roserrush, Rosert and Wood, Richard J. (I99+).
"Constructive complete distrigutivity V" In: Applied Cateaorical
Structures 2.(2), pp. 19—+

E Roserrush, Rosert and Wood, Richard J. (2004). "Split
structures” In: Theory and Applications of Catecories [3(12),
pp. [12—183.

Theorem
kar(Dist) ~ kar(Rel) ~ CCDgp.
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One more ...

E Roserrush, Rosert and Wood, Richard J. (I99+).

"Constructive complete distrigutivity V" In: Applied Cateaorical
Structures 2.(2), pp. 19—+

E Roserrush, Rosert and Wood, Richard J. (2004). "Split

structures” In: Theory and Applications of Catecories [3(12),
pp. [12—183.

Theorem
kar(Dist) ~ kar(Rel) ~ CCDgp.

Theorem
Dist ~ TALgp.

Theorem
Pos®® ~ TAL.
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