Universal indexed categories

Matthew Di Meglio

TACL 2022

1) Introduction to indexed categories

- 2 Universality of self indexing
- (3) Indexed monoidal categories

Concept Family

category (C(X, T)) x, reobe

functor
$$\subseteq \xrightarrow{F}_{\underline{D}} \left(\subseteq (X,Y) \xrightarrow{F_{X,Y}} \supseteq (FX,FY) \right)_{X,Y \in Ob \subseteq}$$

Concept Family

category (C(X, Y)) x, Yeobs

functor $\subseteq \xrightarrow{F} \supseteq \left(\subseteq (X,Y) \xrightarrow{F_{X,Y}} \supseteq (FX,FY) \right)_{X,Y \in Ob} \subseteq$

Indexed categories

S = category with a terminal object 1

An S-indexing C of a coategory C consists of

Indexed categories

S = category with a terminal object 1

An S-indexing C of a coategory C consists of

· for all J in S, a category \mathbb{C}^J with $\mathbb{C}^1 \cong \mathbb{C}$ (objects and morphisms of \mathbb{C}^J are J-indexed families of those of \mathbb{C})

S = category with a terminal object 1

An S-indexing C of a category C consists of

- · for all J in S, a category C^J with $C^1 \cong C$ (objects and morphisms of C^J are J-indexed families of those of C^J)
- · for all $r: J \to K$ in S, a functor $\Delta_r: \mathbb{C}^K \to \mathbb{C}^J$ (Δ_r reindexes K-indexed families along r)

S = category with a terminal object 1

An S-indexing C of a coategory C consists of

- · for all J in S, a category C^J with $C^1 \cong C$ (objects and morphisms of C^J are J-indexed families of those of C)
- · for all $r: J \to K$ in S, a functor $\Delta_r: \mathbb{C}^K \to \mathbb{C}^J$ (Δ_r reindexes K-indexed families along r)

such that $\Delta_{rs} \cong \Delta_s \Delta_r$ and $\Delta_{id_J} \cong id_{CJ}$ wherently. (i.e. the data forms a pseudofunctor $\underline{S}^{op} \to \underline{Cot}$)

S = category with a terminal object 1

An S-indexing C of a category C consists of

- · for all J in S, a category \mathbb{C}^J with $\mathbb{C}^1 \cong \mathbb{C}$ (objects and morphisms of \mathbb{C}^J are J-indexed families of those of \mathbb{C}^J)
- · for all $r: J \to K$ in S, a functor $\Delta_r: \mathbb{C}^K \to \mathbb{C}^J$ (Δ_r reindexes K-indexed families along r)

such that $\Delta_{rs} \cong \Delta_s \Delta_r$ and $\Delta_{id_J} \cong id_{CJ}$ wherently. (i.e. the data forms a pseudofunctor $\underline{S}^{op} \to \underline{Cot}$)

Example (set indexing)
$$\frac{S}{S} = \frac{Set}{Set}$$

$$C^{J} = \prod_{j \in J} C$$

$$\Delta_{r}(Y_{k})_{k \in K} = (Y_{r;j})_{j \in J}$$

S = category with a terminal object 1

An S-indexing C of a coategory C consists of

- · for all J in S, a category \mathbb{C}^J with $\mathbb{C}^1 \cong \mathbb{C}$ (objects and morphisms of \mathbb{C}^J are J-indexed families of those of \mathbb{C}^J)
- · for all $r: J \to K$ in S, a functor $\Delta_r: \mathbb{C}^K \to \mathbb{C}^J$ (Δ_r reindexes K-indexed families along r)

such that $\Delta_{rs} \cong \Delta_s \Delta_r$ and $\Delta_{id_J} \cong id_{CJ}$ coherently. (i.e. the data forms a pseudofunctor $\underline{S}^{op} \to \underline{Cat}$)

Example (set indexing)
$$\frac{S}{S} = \frac{Set}{Set}$$

$$C^{J} = \prod_{j \in J} C$$

$$\Delta_{r}(Y_{k})_{k \in K} = (Y_{rj})_{j \in J}$$

Example (self indexing) S = finitely complete C $\mathbb{C}_2 = \mathbb{C} \setminus \mathcal{I}$ $\Delta_r(\Upsilon \to J) = \text{chosen pullback of y along } r$

Indexed sums

An indexed category has indexed sums if each Δr has a left adjoint Σr that is compatible with reindexing.

Indexed sums

An indexed category has indexed sums if each Δr has a left adjoint Σr that is compatible with reindexing.

Proposition

A category has small sums if and only if its set indexing has indexed sums.

$$\sum_{\Gamma} (\chi_{j})_{j \in J} = \left(\sum_{j \in \Gamma^{-1} \{ k \}} \chi_{j} \right)_{k \in K}$$

Indexed sums

An indexed category has indexed sums if each Δr has a left adjoint Σr that is compatible with reindexing.

Proposition

A category has small sums if and only if its set indexing has indexed sums.

$$\sum_{\Gamma} (\chi_{\vec{j}})_{j \in J} = \left(\sum_{j \in \Gamma^{-1} \{k\}} \chi_{\vec{j}}\right)_{k \in K}$$

Proposition

The self indexing of a finitely complete category has indexed sums.

$$\sum_{r} (X \xrightarrow{x} I) = (X \xrightarrow{rx} K)$$

Extensivity

An indexed category $S^{op} \xrightarrow{C} Cat$ is extensive if

- · it has indexed sums, and
- · for all $r: J \to K$ in S and all X in \mathbb{C}^J , the functor $\sum_r : \mathbb{C}^J / X \longrightarrow \mathbb{C}^K / \sum_r X$

is an equivalence of categories.

Extensivity

An indexed category $S^{op} \xrightarrow{C} Cat$ is extensive if

- · it has indexed sums, and
- · for all $r: J \to K$ in S and all X in \mathbb{C}^J , the functor $\sum_r : \mathbb{C}^J / X \longrightarrow \mathbb{C}^K / \sum_r X$

is an equivalence of categories.

Proposition

A category is extensive if and only if its set indexing is too.

Extensivity

An indexed category $S^{op} \xrightarrow{C} Cat$ is extensive if

- · it has indexed sums, and
- · for all $r: J \rightarrow K$ in S and all X in C^{J} , the functor

$$\sum^{\mathbf{L}}: \mathbb{C}_{2} \backslash X \longrightarrow \mathbb{C}_{k} \backslash \Sigma^{k} X$$

is an equivalence of categories.

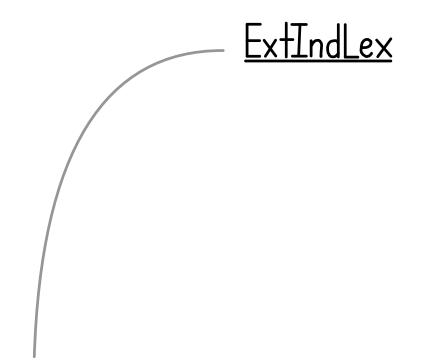
Proposition

A category is extensive if and only if its set indexing is too.

Proposition

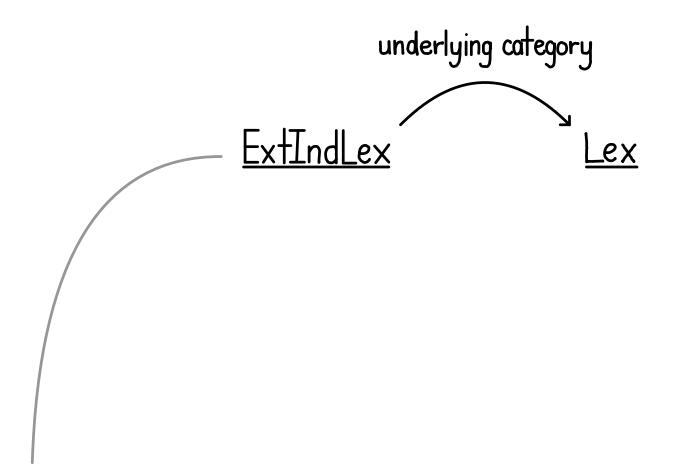
The self indexing of a finitely complete category is extensive.

- (1) Introduction to indexed categories
- 2 Universality of self indexing
- 3) Indexed monoidal categories



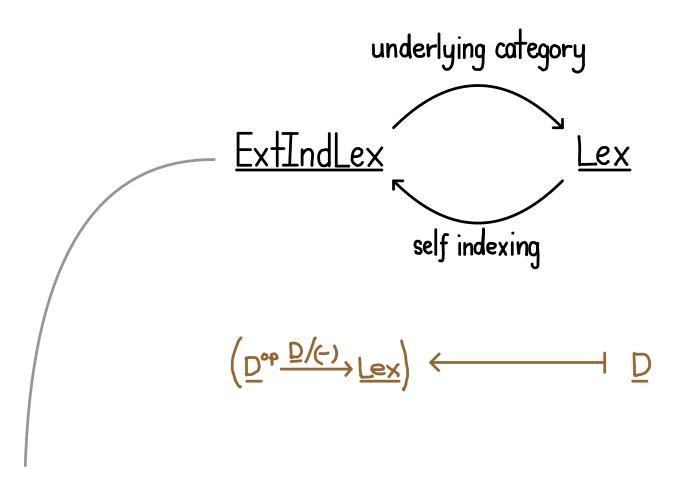
Extensive finitely complete indexed categories and finitely continuous indexed functors that preserve indexed approducts

$$(\underline{S}^{op} \xrightarrow{\mathbb{C}} \underline{Lex}) \longmapsto \mathbb{C}^{1}$$



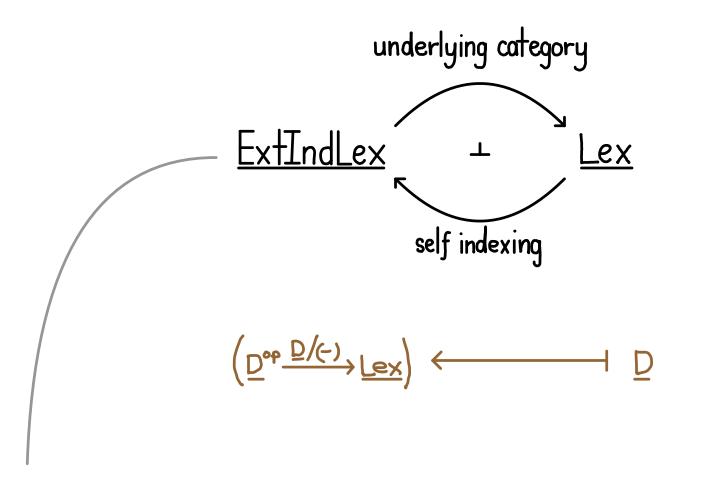
Extensive finitely complete indexed categories and finitely continuous indexed functors that preserve indexed coproducts

$$(\underline{S}^{op} \xrightarrow{\mathbb{C}} \underline{Lex}) \longmapsto \mathbb{C}^{1}$$

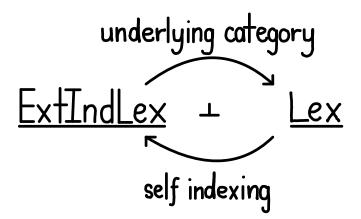


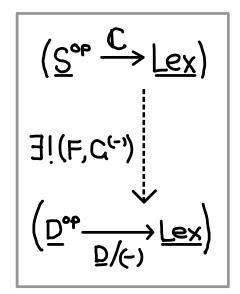
Extensive finitely complete indexed categories and finitely continuous indexed functors that preserve indexed coproducts

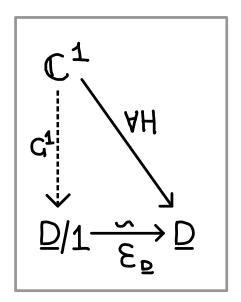
$$(\underline{S}^{op} \xrightarrow{\mathbb{C}} \underline{Lex}) \longmapsto \mathbb{C}^{1}$$

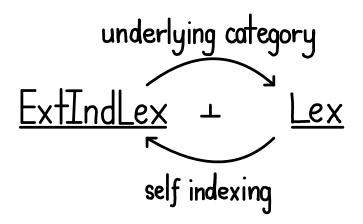


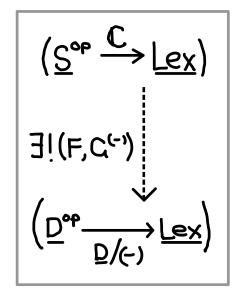
Extensive finitely complete indexed categories and finitely continuous indexed functors that preserve indexed coproducts

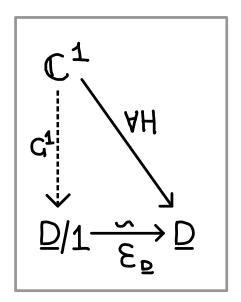












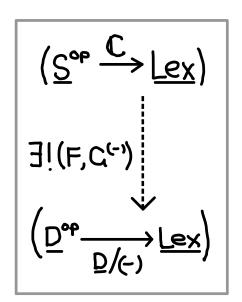
Existence

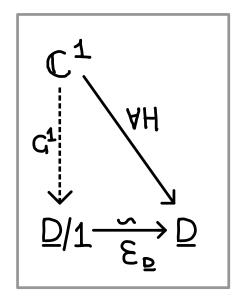
$$C_{1} = \left(\mathbb{C}_{1} \equiv \mathbb{C}_{1} / \mathbb{I}^{2} \xrightarrow{\Sigma^{2}} \mathbb{C}_{1} / \Sigma^{2} \mathbb{I}^{2} \xrightarrow{H} \overline{\Sigma}^{k} \mathbb{I}^{k}\right)$$

$$\overline{C} \qquad H \Sigma^{1} \mathbb{I}^{2} \equiv H \Sigma^{k} \Sigma^{k} \nabla^{k} \mathbb{I}^{k} \xrightarrow{H \Sigma^{k} \Sigma^{k} \mathbb{I}^{k}} H \Sigma^{k} \mathbb{I}^{k}$$

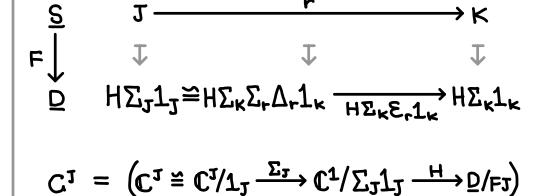
$$\overline{C} \qquad \underline{C} \qquad$$







Existence



Remarks

- · Easier to prove strict functoriality and uniqueness using fibrations
- · Need extensivity to show that G is compatible with Δ
- · Construction same as Moens (1982)

- (1) Introduction to indexed categories
- 2 Universality of self indexing
- (3) Indexed monoidal categories

Indexed manaidal categories

7

A symmetric monoidal S-indexing of a symmetric monoidal category $\mathcal V$ is a pseudofunctor

 $V: \underline{S}^{op} \longrightarrow \underline{SymMonCat}$

strong symmetric monoidal functors

where S is cartesian monoidal and $V^1 \cong V$.

Indexed monoidal categories

7

A symmetric monoidal S-indexing of a symmetric monoidal category $\mathcal V$ is a pseudofunctor

$$V: \underline{S}^{op} \longrightarrow \underline{SymMonCat}$$

strong symmetric monoidal functors

where S is cartesian monoidal and $V^1 \cong V$.

Example (set indexing)

$$\underline{S} = \underline{Set} \qquad \forall^{\mathcal{I}} = \underline{\prod} \mathcal{V}$$

$$(X_j)_{j \in J} \otimes_J (Y_j)_{j \in J} = (X_j \otimes Y_j)_{j \in J}$$

Indexed manaidal categories

7

A symmetric monoidal S-indexing of a symmetric monoidal category $\mathcal V$ is a pseudofunctor

$$V: \underline{S}^{op} \longrightarrow \underline{SymMonCat}$$

strong symmetric monoidal functors

where S is cartesian manoidal and $V^1 \cong V$.

Example (set indexing)

$$\underline{S} = \underline{Set} \qquad \forall^{\mathcal{I}} = \underline{\mathcal{I}} \mathcal{V}$$

$$(\chi_{\dot{j}})_{\dot{j}\in\mathcal{I}}\otimes_{\mathcal{I}}(\chi_{\dot{j}})_{\dot{j}\in\mathcal{I}}=(\chi_{\dot{j}}\otimes\chi_{\dot{j}})_{\dot{j}\in\mathcal{I}}$$

Non-example (self indexing)

$$\underline{s} = \mathcal{V} \qquad \mathbb{V}^{1} = \mathcal{V}/\mathcal{I}$$

$$(X \xrightarrow{\infty} \mathcal{I}) \otimes_{\mathcal{I}} (X \xrightarrow{\mathcal{A}} \mathcal{I}) = \frac{1}{3}$$

A (occommutative) comonaid J is an object J equipped with morphisms

$$d_J: J \rightarrow J \otimes J$$
 and $e_J: J \rightarrow I$ comultiplication $e_J: J \rightarrow I$

subject to coassociativity, counitality and cocommutativity laws.

A (occommutative) comonaid J is an object J equipped with morphisms

$$d_J: J \rightarrow J \otimes J$$
 and $e_J: J \rightarrow I$ comultiplication ω

subject to coassociativity, counitality and cocommutativity laws.

 $Comon_{\nu} = category of comonoids in <math>\nu$

A (occommutative) comonaid J is an object J equipped with morphisms

$$d_J: J \rightarrow J \otimes J$$
 and $e_J: J \rightarrow I$ comultiplication ω unit

subject to coassociativity, counitality and cocommutativity laws.

$$Comon_{\nu} = category of comorbids in $V$$$

Proposition

If V is cartesian monoidal, then Comony = V

A (occommutative) comonaid J is an object J equipped with morphisms

$$d_J: J \rightarrow J \otimes J$$
 and $e_J: J \rightarrow I$ comultiplication ω unit

subject to coassociativity, counitality and cocommutativity laws.

$$Comon_{\nu} = category of comorbids in $V$$$

Proposition

If V is cartesian monoidal, then Comony = V

Proposition (Fox 1975)

Comon ν is the cofree cartesian monoidal category on ν

Comodules

A J-comodule (X,x) is an object X equipped with a morphism

$$x: X \longrightarrow J \otimes X$$

that preserves comultiplication and counits.

Comodules

A J-comodule (X,x) is an object X equipped with a morphism

$$x: X \longrightarrow J \otimes X$$

that preserves comultiplication and counits.

$$\underline{Comod}_{\mathcal{V}}(\mathcal{I}) = \underline{Category} \text{ of } \mathcal{I}-\underline{Comodules} \text{ in } \mathcal{V}$$

Comodules

A J-comodule (X,x) is an object X equipped with a morphism

$$x: X \longrightarrow J \otimes X$$

that preserves comultiplication and counits.

$$\underline{Comod}_{\mathcal{V}}(\mathcal{I}) = \underline{Comodules} \text{ in } \mathcal{V}$$

Proposition

If V is cartesian monoidal, then $Comod_{V}(J) \cong V/J$

Comonoid indexing

The comonaid indexing of a symmetric monoidal category V with nice equalisers is the indexed category

 $Comod_{\gamma}(-): Comon_{\gamma}^{op} \longrightarrow SymMonCat$

Comonoid indexing

The comonaid indexing of a symmetric monoidal category V with nice equalisers is the indexed category

$$\underline{\mathsf{Comod}}_{\mathcal{V}}(-):\underline{\mathsf{Comon}}_{\mathcal{V}}^{\mathsf{op}} \longrightarrow \underline{\mathsf{Sym}}\underline{\mathsf{Mon}}\underline{\mathsf{Cat}}$$

Proposition

If V is cartesian monoidal, then it is finitely complete and its commonaid indexing is isomorphic with its self-indexing.

Monoidal extensivity

A symmetric monoidal category V is (infinitary) monoidal extensive if it has small opproducts and the functor

$$\sum_{j \in J} : \prod_{j \in J} \underline{Comod}_{\mathcal{V}}(A_j) \longrightarrow \underline{Comod}_{\mathcal{V}} \left(\sum_{j \in J} A_j \right)$$

is always an equivalence of categories.

Example (Crunenfelder-Paré 1987) Vect 1K

Monoidal extensivity

A symmetric monoidal category V is (infinitary) monoidal extensive if it has small opproducts and the functor

$$\sum_{j \in J} : \prod_{j \in J} \underline{Comod}_{\mathcal{V}}(A_{j}) \longrightarrow \underline{Comod}_{\mathcal{V}}(\sum_{j \in J} A_{j})$$

is always an equivalence of categories.

Example (Crunenfelder-Paré 1987) Vect 1K

An indexed symmetric monoidal category $V: \underline{S}^{op} \longrightarrow \underline{SymMonCat}$ is monoidal extensive if it has indexed coproducts and the functor

$$\Sigma_r : Comod_{V^{\mathcal{I}}}(A) \longrightarrow Comod_{V^{\mathcal{K}}}(\Sigma_r A)$$

is always an equivalence of categories.

Universality of comonoid indexing *



Conclusion

- · Comonoid indexing of nice symmetric monoidal categories generalizes self indexing of finitely complete categories
- · Taking the self indexing/common id indexing is right adjoint to taking the underlying category
- · There is a monoidal generalisation of extensivity

Conclusion

- · Comonoid indexing of nice symmetric monoidal categories generalises self indexing of finitely complete categories
- · Taking the self indexing/common id indexing is right adjoint to taking the underlying category
- · There is a monoidal generalisation of extensivity

Future work

- · Finish checking details for morbidal case
- · Check monoidal version of Moons! theorem
- · Investigate links to linear dependent types
- · Work out link between categories internal to and enriched in a monoidal category via monoidal extensivity