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Full primary doctrines

Definition (full primary doctrine)

A full primary doctrine is a functor P: C°®® —— InfSl from the opposite of a
category C with finite limits to the category of inf-semilattices.

A full primary morphism of doctrines is given by a pair (F, b)
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where F: C ——D is a finite limits preserving functor and b: P——RoF isa
natural transformation.



Full existential doctrines

Definition (full existential doctrine)

A full primary doctrine P: C°%® —— InfSl is called a full existential doctrine if
for every arrow f: A—— B of C the functor Py has a left adjoint 35 and these
satisfy Beck-Chevalley condition and Frobenius reciprocity.

Definition (full existential morphism of doctrines)

Let P: C°* ——InfSl and R: D°°P —— InfSl be two full existential doctrines. A
full primary morphism of doctrines (F, b) is said full existential if for every arrow

f: A—— B of C we have that
3prba(a) = ba(3r(a))

for every element a of P(A).



Full hyperdoctrines and full triposes

Definition (full hyperdoctrine)
A full existential doctrine P: C°® —— InfSl is said full hyperdoctrine if
» for every object A of C, the poset P(A) is a Heyting algebra and for every
arrow f: A——=B, Ps: P(B)——= P(A) is a morphism of Heyting algebras;
» for every arrow f: A—— B, the functor Py has a right adjoint V and these
satisfy Beck-Chevalley condition.

Definition (full tripos)

A full hyperdoctrine P: C°° —— InfSl is said full tripos if for every object X of C
there exists an object PX and an element €x of P(X x PX) such that for every o of
P(X x Y) there exists an arrow {a}x: Y ——PX such that a = Pig, x {a},(€x)-



Examples

Example

Let A be a locale. The representable functor A(-): Set®® —— InfS| assigning to
a set X the poset AX of functions from X to A with the pointwise order is a full
tripos.

Example

Given a pca A, we can consider the realizability tripos P: Set®® —— InfSl over
Set. For each set X, the partial ordered set (P(X), <) is defined as the set of
functions P(A)X from X to the powerset P(A) of A. Given two elements a and 8
of P(X), we say that a < B if there exists an element a € A such that for all x € X
and all a € a(x), a- ais defined and it is an element of B(x).



Full triposes and Presheaves

Definition

Let P: C°P ——InfSl be a full tripos. The Grothendieck category or category of
points Gp of P is given by the following objects and arrows:

» objects are pairs (A, a), where A is an object of C and a € P(A);

» a morphism f: (A, a) — (B, B) isanarrow f: A—— B of C such that
o < Ps(B).

Definition

Let P: C°® —— InfSl be a full tripos. We define the category of P-presheaves as
the category PSh(P) := (Gp)ex/lex-



Examples

Example

Let A be a locale and the localic tripos A(=): Set®® — InfSl. We have the
equivalence PSh(A) = (A} )ex/tex = (Ga) )ex/lex-

Example

Let A be a pca, and let us consider the realizability tripos P: Set®® —— InfSl .
The category Gp can be described as follows: they are pairs (X, a), where X is a

setand a € X x A is a relation. A morphism f: (X, a) — (B, B) is given by a
function f: X——=Y such that there exists an element a € A that tracks f.

RT(A)Q (gP)ex/lex = PSh(P)'



Tripos-to-topos

Tripos-to-topos. Given a full tripos P: C°P —— InfSl, the topos Tp consists of:

> objects: are pairs (A, p) where A is an object of C and p is an element of
P(A x A) satisfying:
1. symmetry: a4, a; - A| p(aq, ax) F p(az, aq);
2. transitivity: a;, a5, a3 : A| p(as, a2) A p(az, a3) F p(as, a3);

> arrows: ¢: (A, p)—— (B, 0) are objects ¢ of P(A x B) such that:

a:Ab:B|¢(a b)Ap(a a)lk o(b,b)

1,02 :A, b:B|p(aq, az) A ¢(aq, b) F ¢(ay, b);
a:A by, by:B|o(by, by) A ¢(a, bq) - ¢(a, by);
a:A by, by:Bl@(a, bs) A ¢(a, by) Fo(by, by);
a:A|p(a,a)F 3b.¢(a, b).
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Full existential completion

Full existential completion. Let P: C°P —— InfSl be a full primary doctrine. For
every object A of C consider the preorder P (A) defined by:
> objects: pairs ( B LA ,a), where B LA is an arrow of C and a € P(B);
g

> order: ( BLA ,a) < (C——A, p) if there exists an arrow h: B——C
of C such that the diagram

commutes and o < Py(B).

The doctrine P37 : C°° —— InfSl is called the full existential completion of P.

D. Trotta Pitts (2020), The existential completion, Theory and Applications of Categories



Sheaf triposes

Definition
A full tripos P: C°® —— InfSl is said a sheaf tripos if its full existential
completion P : C°? ——InfSl is a full tripos.

Theorem

Let P: C°® —— InfSl be a sheaf tripos. Then we have the category PSh(P) is a
topos and we have an isomorphism of toposes

Tpar = (Gp)ex/tex = PSh(P).



Theorem
Let P: C°» —— InfSl be a sheaf tripos. Then there is an adjunction of triposes

such that si = idp, and s is a full existential morphism. Moreover, this induces an
adjunction of toposes

such that T(s)T(i) = idr,.



Tripos-to-topos of sheaf triposes

Corollary

Let P: C°» ——InfSl be a sheaf tripos. Then there exists a Lawvere-Tierney
topology j on Tpa; such that Tp = Shj(Tpz).



A sufficient condition for sheaf triposes

Theorem
Let P: C°® —— InfSl be a full tripos such that

» C has weak dependent products;

» the weak predicate classifier Q has a power object in C;

» C admits a proper factorization system (£, M) and every epi of £ splits.
. Then P:(C°° ——InfSl is a sheaf tripos.

Corollary

Every full tripos whose base category is Set (with the axiom of choice) is a sheaf
tripos.



Example

The localic tripos A(7): Set°®® —— InfSl is a sheaf tripos. The adjunction

is exactly the so-called sheafification.

Example

The realizability tripos P: Set°®® —— InfSl is a sheaf tripos. Therefore, we have



