Non-distributive logics as evidential logics

Willem Conradie ¹ Andrea De Domenico ² Krishna Manoorkar ² Alessandra Palmigiano ² Mattia Panettiere ²

University of the Witwatersrand, Johannesburg¹

Vrije Universiteit, Amsterdam²

Motivation

- mathematical theory of LE-logics (LE: lattice expansions)
- algebraic and Kripke-style semantics
- generalized Sahlqvist theory
- algebraic proof theory (semantic cut elimination, FMP)
- Goldblatt-Thomason theorem
- unified inverse correspondence
- many-valued semantics

Motivation

- mathematical theory of LE-logics (LE: lattice expansions)
- algebraic and Kripke-style semantics
- generalized Sahlqvist theory
- algebraic proof theory (semantic cut elimination, FMP)
- Goldblatt-Thomason theorem
- unified inverse correspondence
- many-valued semantics

Can we make intuitive sense of LE-logics?

Basic lattice logic & main ideas

Language: $\mathcal{L} \ni \varphi ::= p \in Prop \mid \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi$ **Lattice Logic:** Set of \mathcal{L} -sequents $\varphi \vdash \psi$

containing:

 $p \vdash p \perp \vdash p p \vdash \top p \vdash p \lor q q \vdash p \lor q p \land q \vdash p \land q \vdash q$

closed under:

 $\frac{\varphi \vdash \chi \quad \chi \vdash \psi}{\varphi \vdash \psi} \quad \frac{\varphi \vdash \psi}{\varphi(\chi/p) \vdash \psi(\chi/p)} \quad \frac{\chi \vdash \varphi \quad \chi \vdash \psi}{\chi \vdash \varphi \land \psi} \quad \frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi}$

Basic lattice logic & main ideas

Language: $\mathcal{L} \ni \varphi ::= p \in Prop \mid \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi$ **Lattice Logic:** Set of \mathcal{L} -sequents $\varphi \vdash \psi$

containing:

 $p \vdash p \perp \vdash p p \vdash \top p \vdash p \lor q q \vdash p \lor q p \land q \vdash p \land q \vdash q$

closed under:

 $\frac{\varphi \vdash \chi \quad \chi \vdash \psi}{\varphi \vdash \psi} \quad \frac{\varphi \vdash \psi}{\varphi(\chi/p) \vdash \psi(\chi/p)} \quad \frac{\chi \vdash \varphi \quad \chi \vdash \psi}{\chi \vdash \varphi \land \psi} \quad \frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi}$

Challenge: Interpreting \lor as 'or' and \land as 'and' does not work, since 'and' and 'or' distribute over each other, while \land and \lor don't.

Basic lattice logic & main ideas

Language: $\mathcal{L} \ni \varphi ::= p \in Prop \mid \top \mid \perp \mid \varphi \land \varphi \mid \varphi \lor \varphi$ **Lattice Logic:** Set of \mathcal{L} -sequents $\varphi \vdash \psi$

containing:

 $p \vdash p \perp \vdash p p \vdash \top p \vdash p \lor q q \vdash p \lor q p \land q \vdash p \land q \vdash q$

closed under:

 $\frac{\varphi \vdash \chi \quad \chi \vdash \psi}{\varphi \vdash \psi} \quad \frac{\varphi \vdash \psi}{\varphi(\chi/p) \vdash \psi(\chi/p)} \quad \frac{\chi \vdash \varphi \quad \chi \vdash \psi}{\chi \vdash \varphi \land \psi} \quad \frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi}$

Challenge: Interpreting \lor as 'or' and \land as 'and' does not work, since 'and' and 'or' distribute over each other, while \land and \lor don't. Proposal (Graph-based semantics): Interpreting $\varphi \in \mathcal{L}$ as sentences under **other circumstances** (e.g. filtered through informational entropy)

Non-distributive logics, aka normal LE-logics

LE: Lattice Expansions: $\mathbb{A} = (\mathbb{L}, \mathcal{F}^{\mathbb{A}}, \mathcal{G}^{\mathbb{A}})$ lattice signature + operations of any finite arity. Additional operations partitioned in families $f \in \mathcal{F}$ and $g \in \mathcal{G}$. **Normality**: In each coordinate,

- f-type operations preserve finite joins in positive coordinates and reverse finite meets in negative coordinates;
- g-type operations preserve finite meets in positive coordinates and reverse finite joins in negative coordinates.

Non-distributive logics, aka normal LE-logics

LE: Lattice Expansions: $\mathbb{A} = (\mathbb{L}, \mathcal{F}^{\mathbb{A}}, \mathcal{G}^{\mathbb{A}})$ lattice signature + operations of any finite arity. Additional operations partitioned in families $f \in \mathcal{F}$ and $g \in \mathcal{G}$. **Normality**: In each coordinate,

- f-type operations preserve finite joins in positive coordinates and reverse finite meets in negative coordinates;
- g-type operations preserve finite meets in positive coordinates and reverse finite joins in negative coordinates.

Examples

•

- Distributive Modal Logic: $\mathcal{F} := \{\diamondsuit, \triangleleft\}$ and $\mathcal{G} := \{\Box, \rhd\}$
- ▶ Bi-intuitionistic modal logic: $\mathcal{F} := \{\diamondsuit, \succ\}$ and $\mathcal{G} := \{\Box, \rightarrow\}$
- Full Lambek calculus: $\mathcal{F} := \{\circ\}$ and $\mathcal{G} := \{/, \setminus\}$
- ▶ Lambek-Grishin calculus: $\mathcal{F} := \{\circ, /_{\oplus}, \setminus_{\oplus}\}$ and $\mathcal{G} := \{\oplus, /_{\circ}, \setminus_{\circ}\}$

Informational entropy: an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits.

▶ In $\mathbb{G} = (Z, E)$, interpret *zEy* as '*z* is *indiscernible* from *y*'

Informational entropy: an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits.

- ▶ In $\mathbb{G} = (Z, E)$, interpret *zEy* as '*z* is *indiscernible* from *y*'
- reflexivity of E: minimal property of indiscernibility;

Informational entropy: an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits.

- ▶ In $\mathbb{G} = (Z, E)$, interpret *zEy* as '*z* is *indiscernible* from *y*'
- reflexivity of E: minimal property of indiscernibility;

▶
$$z^{[10]} := \{ w \in Z \mid$$

w can be told apart from all *u* that can be told apart from *z*} theoretical limit: *z* can be known up to $z^{[10]}$;

Informational entropy: an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits.

- ▶ In $\mathbb{G} = (Z, E)$, interpret *zEy* as '*z* is *indiscernible* from *y*'
- reflexivity of E: minimal property of indiscernibility;

►
$$z^{[10]} := \{ w \in Z \mid$$

w can be told apart from all *u* that can be told apart from *z*} **theoretical limit**: *z* can be known up to $z^{[10]}$;

• classical case: $E := \Delta$ and $z^{[10]} := \{z\}$ (no entropy)

Informational entropy: an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits.

- ▶ In $\mathbb{G} = (Z, E)$, interpret *zEy* as '*z* is *indiscernible* from *y*'
- reflexivity of E: minimal property of indiscernibility;
- ► $z^{[10]} := \{ w \in Z \mid$

w can be told apart from all *u* that can be told apart from *z*} **theoretical limit**: *z* can be known up to $z^{[10]}$;

- classical case: $E := \Delta$ and $z^{[10]} := \{z\}$ (no entropy)
- ► limit incorporated into meaning of connectives (compare with intuitionistic interpretation of →)

Comparison with relational semantics of intuitionistic logic:

• (Z, E) s.t. *E* reflexive and **transitive**;

- (Z, E) s.t. *E* reflexive and **transitive**;
- then *E*-closure of any $Y \subseteq Z$ is **upward-closure** $Y\uparrow$;
- E-closure as generalized persistency
- Meaning of → changes under persistency; likewise, meaning of ∨ changes under generalized persistency:

- (Z, E) s.t. *E* reflexive and **transitive**;
- then *E*-closure of any $Y \subseteq Z$ is **upward-closure** $Y\uparrow$;
- E-closure as generalized persistency
- Meaning of → changes under persistency; likewise, meaning of ∨ changes under generalized persistency:

•
$$\llbracket \varphi \lor \psi \rrbracket = (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket)^{[0]}$$
, i.e.

- *z* ⊩ φ ∨ ψ iff *z* can be told apart from any state that refutes both φ and ψ
- ▶ In general, $\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \subsetneq (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket)^{[0]}$

- (Z, E) s.t. *E* reflexive and **transitive**;
- then *E*-closure of any $Y \subseteq Z$ is **upward-closure** $Y\uparrow$;
- E-closure as generalized persistency
- Meaning of → changes under persistency; likewise, meaning of ∨ changes under generalized persistency:
- $\llbracket \varphi \lor \psi \rrbracket = (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket)^{[0]}$, i.e.
- *z* ⊩ φ ∨ ψ iff *z* can be told apart from any state that refutes both φ and ψ
- ▶ In general, $\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \subsetneq (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket))^{[0]}$
- ► under this interpretation of ∨, it becomes unreasonable to require distributivity of ∧ over ∨.

- (Z, E) s.t. *E* reflexive and **transitive**;
- then *E*-closure of any $Y \subseteq Z$ is **upward-closure** $Y\uparrow$;
- E-closure as generalized persistency
- Meaning of → changes under persistency; likewise, meaning of ∨ changes under generalized persistency:
- $\llbracket \varphi \lor \psi \rrbracket = (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket)^{[0]}$, i.e.
- *z* ⊩ φ ∨ ψ iff *z* can be told apart from any state that refutes both φ and ψ
- ► In general, $\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \subsetneq (\llbracket \varphi \rrbracket) \cap (\llbracket \psi \rrbracket))^{[0]}$
- ► under this interpretation of ∨, it becomes unreasonable to require distributivity of ∧ over ∨.

Relational semantics for LE-logics, via duality Polarities (Birkhoff)

Relational semantics for LE-logics, via duality Polarities (Birkhoff)

Reflexive graphs (Ploščica, 1995)

Compositional semantics for basic lattice logic Polarities (Gehrke)

Reflexive graphs (Conradie & Craig)

Compositional semantics for basic lattice logic Polarities (Gehrke)

Reflexive graphs (Conradie & Craig)

Compositional semantics, expanded signature Polarity-based frames (Gehrke)

Graph-based frames (Conradie & Craig)

Graph-based semantics of LE-logics

Graph-based semantics of LE-logics

Representation. States: maximally disjoint filter-ideal pairs (*F*, *I*); $(F, I) \in (F', I')$ iff $F \cap I' = \emptyset$

Graph-based semantics of LE-logics

Representation. States: maximally disjoint filter-ideal pairs (*F*, *I*); $(F, I) \in (F', I')$ iff $F \cap I' = \emptyset$

Reflexive graphs as generalized intuitionistic frames Sets

(uvw.ø)

(uvw,∅)

Reflexive graphs

Summary of the definitions

 $z \Vdash \varphi \land \psi \quad \text{iff} \qquad z \Vdash \varphi \text{ and } z \Vdash \psi \\ z \succ \varphi \land \psi \quad \text{iff} \quad \text{for all } z', \text{ if } zEz' \text{ then } z' \nvDash \varphi \land \psi \\ z \Vdash \varphi \lor \psi \quad \text{iff} \quad \text{for all } z', \text{ if } zEz' \text{ then } z' \nvDash \varphi \lor \psi \\ z \succ \varphi \lor \psi \quad \text{iff} \quad z \succ \varphi \text{ and } z \succ \psi$

- $z \Vdash \Box \varphi$ iff for all z', if $zR_{\Box}z'$ then $z' \neq \varphi$ $z \succ \Box \varphi$ iff for all z', if z'Ez then $z' \neq \varphi$
- $z \Vdash \Diamond \varphi$ iff for all z', if zEz' then $z' \neq \varphi$ $z \succ \Diamond \varphi$ iff for all z', if $zR_{\Diamond}z'$ then $z' \neq \varphi$

. . .

Evidential logic as hyper-constructivism

If $z \Vdash \varphi$ is interpreted as

'In z we have evidence to **accept** φ ',

and $z > \varphi$ is interpreted as

'In z we have evidence to **refute** φ ',

then φ denote propositions in a **hyper-constructivist** context:

 $z \nvDash \varphi$ does **not** imply $z \succ \varphi$

meta-linguistic failure of 'excluded middle'.

Reflexivity as *E*-reflexivity $\forall p[\Box p \leq p]$ iff $\forall j[j \leq \blacklozenge j]$ iff $\forall z[z^{[10]} \subseteq R^{[0]}[z^{[1]}]]$ iff $E \subseteq R$

```
Reflexivity as E-reflexivity

\forall p[\Box p \leq p]

iff \forall j[j \leq \blacklozenge j]

iff \forall z[z^{[10]} \subseteq R^{[0]}[z^{[1]}]]

iff E \subseteq R
```

```
Transitivity as E-transitivity

\forall p[\Box p \leq \Box \Box p]

iff \forall j[ \blacklozenge \phi j \leq \phi j]

iff \forall z[R^{[0]}[(R^{[0]}[z^{[01]}])^{[1]}]] \subseteq R^{[0]}[z^{[01]}]

iff R \circ_E R \subseteq R
```

 $x(R \circ_E S)a$ iff $\exists b(xRb \& E^{(1)}[b] \subseteq S^{(0)}[a]).$

Epistemic interpretation of modal axioms

Axiom	Kripke	Graph-based
	frames	frames
$\Box p ightarrow p$	$\Delta \subseteq R$	$E \subseteq R$
Factivity:	agent can tell	agent can tell
if agent knows	apart only	apart only
p then p true	non-identical	non-inher. indist.
	states	states
$\Box p \rightarrow \Box \Box p$	$R \circ R \subseteq R$	$R \circ_E R \subseteq R$
Positive	if agent tells	positive
introspection:	apart x, y	introspection
if agent knows	then agent can	+
p then	distinguish	inherent
agent knows	y from	indistinguishab.
of knowing	any z agent	
p	cannot tell	
	apart from x	

A last example

p: 'the defendant has not willingly caused harm to her friend'

q: 'the defendant acted in self-defence'

The defendant is not guilty if and only if $p \lor q$.

u: "I saw her grabbing a tennis racket and hitting her friend. She looked terrified."

v: "I saw her grabbing a tennis racket and hitting her friend. She looked frightened, but not necessarily by her friend."

w: "I heard her scream that there was a poisonous spider on her friend's shoulder, so she killed the spider."

There is no witness that provides enough evidence to refute both p and q, hence, all testimonies lead to the acceptance of a not guilty verdict.