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Motivation

▶ mathematical theory of LE-logics (LE: lattice expansions)
▶ algebraic and Kripke-style semantics
▶ generalized Sahlqvist theory
▶ algebraic proof theory (semantic cut elimination, FMP)
▶ Goldblatt-Thomason theorem
▶ unified inverse correspondence
▶ many-valued semantics

Can we make intuitive sense of LE-logics?
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Basic lattice logic & main ideas

Language: L ∋ φ ::= p ∈ Prop | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ
Lattice Logic: Set of L-sequents φ ⊢ ψ
▶ containing:

p ⊢ p ⊥ ⊢ p p ⊢ ⊤ p ⊢ p ∨ q q ⊢ p ∨ q p ∧ q ⊢ p p ∧ q ⊢ q

▶ closed under:
φ⊢χ χ⊢ψ

φ⊢ψ
φ⊢ψ

φ(χ/p)⊢ψ(χ/p)
χ⊢φ χ⊢ψ
χ⊢φ∧ψ

φ⊢χ ψ⊢χ
φ∨ψ⊢χ

Challenge: Interpreting ∨ as ‘or’ and ∧ as ‘and’ does not work,
since ‘and’ and ‘or’ distribute over each other, while ∧ and ∨ don’t.
Proposal (Graph-based semantics): Interpreting φ ∈ L as
sentences under other circumstances (e.g. filtered through
informational entropy)
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Non-distributive logics, aka normal LE-logics

LE: Lattice Expansions: A = (L,F A,GA)
lattice signature + operations of any finite arity.
Additional operations partitioned in families f ∈ F and g ∈ G.
Normality: In each coordinate,
▶ f -type operations preserve finite joins in positive coordinates

and reverse finite meets in negative coordinates;
▶ g-type operations preserve finite meets in positive

coordinates and reverse finite joins in negative coordinates.

Examples
▶ Distributive Modal Logic: F := {3,�} and G := {2,�}
▶ Bi-intuitionistic modal logic: F := {3, > } and G := {2,→}
▶ Full Lambek calculus: F := {◦} and G := {/, \}

▶ Lambek-Grishin calculus: F := {◦, /⊕, \⊕} and G := {⊕, /◦, \◦}

▶ . . .
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Modelling informational entropy

Informational entropy: an inherent boundary to knowability, due
e.g. to perceptual, theoretical, evidential or linguistic limits.
▶ In G = (Z ,E), interpret zEy as ‘z is indiscernible from y ’

▶ reflexivity of E: minimal property of indiscernibility;
▶ z[10] := {w ∈ Z |

w can be told apart from all u that can be told apart from z}
theoretical limit: z can be known up to z[10];

▶ classical case: E := ∆ and z[10] := {z} (no entropy)
▶ limit incorporated into meaning of connectives

(compare with intuitionistic interpretation of→)
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Informational Entropy as “intuitionism on speed”

Comparison with relational semantics of intuitionistic logic:
▶ (Z ,E) s.t. E reflexive and transitive;

▶ then E-closure of any Y ⊆ Z is upward-closure Y↑;
▶ E-closure as generalized persistency
▶ Meaning of→ changes under persistency; likewise, meaning

of ∨ changes under generalized persistency:
▶ [[φ ∨ ψ]] = (([φ]) ∩ ([ψ]))[0], i.e.
▶ z ⊩ φ ∨ ψ iff z can be told apart from any state that refutes

both φ and ψ
▶ In general, [[φ]] ∪ [[ψ]] ⊊ (([φ]) ∩ ([ψ]))[0]

▶ under this interpretation of ∨, it becomes unreasonable to
require distributivity of ∧ over ∨.

truth ⇝ provability ⇝ evidential reasoning
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Relational semantics for LE-logics, via duality
Polarities (Birkhoff)

(∅, xyz)

(b , xy)

(ab , x)

(abcd,∅)

(cd, z)

(c, yz)

(bc, y)⇝
X
I
A

x y z

a b dc

Reflexive graphs (Ploščica, 1995)

(∅, uvw)

(w, uv)

(vw, u)

(uvw,∅)

(u,w)
⇝

Z
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u v w

u v w

⇝u v w
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Compositional semantics for basic lattice logic
Polarities (Gehrke)
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z ⊩ φ iff z ∈ [[φ]] z ≻ φ iff z ∈ ([φ])
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Compositional semantics, expanded signature
Polarity-based frames (Gehrke)
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Graph-based semantics of LE-logics

a b c ↭

ab

ac

bc

ba
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ab

Representation. States: maximally disjoint filter-ideal pairs (F , I);
(F , I) E (F ′, I′) iff F ∩ I′ = ∅
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Reflexive graphs as generalized intuitionistic frames
Sets
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Summary of the definitions

z ⊩ φ ∧ ψ iff z ⊩ φ and z ⊩ ψ
z ≻ φ ∧ ψ iff for all z′, if zEz′ then z′ ⊮ φ ∧ ψ

z ⊩ φ ∨ ψ iff for all z′, if zEz′ then z′ ⊁ φ ∨ ψ
z ≻ φ ∨ ψ iff z ≻ φ and z ≻ ψ

z ⊩ 2φ iff for all z′, if zR2z′ then z′ ⊁ φ
z ≻ 2φ iff for all z′, if z′Ez then z′ ⊮ φ

z ⊩ 3φ iff for all z′, if zEz′ then z′ ⊁ φ
z ≻ 3φ iff for all z′, if zR3z′ then z′ ⊮ φ

...



Evidential logic as hyper-constructivism

If z ⊩ φ is interpreted as

‘In z we have evidence to accept φ’,

and z ≻ φ is interpreted as

‘In z we have evidence to refute φ’,

then φ denote propositions in a hyper-constructivist context:

z ⊮ φ does not imply z ≻ φ

meta-linguistic failure of ‘excluded middle’.



Modelling informational entropy

Reflexivity as E-reflexivity
∀p[2p ≤ p]

iff ∀j[j ≤ _j]
iff ∀z[z[10] ⊆ R [0][z[1]]]
iff E ⊆ R

Transitivity as E-transitivity
∀p[2p ≤ 22p]

iff ∀j[__j ≤ _j]
iff ∀z[R [0][(R [0][z[01]])[1]]] ⊆ R [0][z[01]]
iff R ◦E R ⊆ R

x(R ◦E S)a iff ∃b(xRb & E(1)[b] ⊆ S(0)[a]).
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Epistemic interpretation of modal axioms

Axiom Kripke Graph-based
frames frames

2p → p ∆ ⊆ R E ⊆ R
Factivity: agent can tell agent can tell

if agent knows apart only apart only
p then p true non-identical non-inher. indist.

states states
2p → 22p R ◦ R ⊆ R R ◦E R ⊆ R

Positive if agent tells positive
introspection: apart x, y introspection
if agent knows then agent can +

p then distinguish inherent
agent knows y from indistinguishab.
of knowing any z agent

p cannot tell
apart from x



A last example

p: ‘the defendant has not willingly caused harm to her friend’

q: ‘the defendant acted in self-defence’

The defendant is not guilty if and only if p ∨ q.

u: “I saw her grabbing a tennis racket and hitting her friend. She looked terrified.”

v: “I saw her grabbing a tennis racket and hitting her friend. She looked
frightened, but not necessarily by her friend.”

w: “I heard her scream that there was a poisonous spider on her friend’s
shoulder, so she killed the spider.”

u

q

p
v
p

w

p

q

There is no witness that provides enough evidence to refute both p and q, hence,
all testimonies lead to the acceptance of a not guilty verdict.


