Spectra and subspectra arising from ℓ-groups and commutative rings

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://wehrungf.users.Imno.cnrs.fr

TACL 2022, June 2022

A picture for the problem

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining
identifications (N_{0} and N_{1})

Basic definitions (wrt. ℓ-spectrum)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

■ A subset I, in an Abelian ℓ-group G, is an ℓ-ideal if it is an order-convex subgroup closed under \vee (equivalently, \wedge).

Basic definitions (wrt. ℓ-spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

- A subset I, in an Abelian ℓ-group G, is an ℓ-ideal if it is an order-convex subgroup closed under \vee (equivalently, \wedge).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow\{x, y\} \cap I \neq \varnothing$.

Basic definitions (wrt. ℓ-spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

- A subset I, in an Abelian ℓ-group G, is an ℓ-ideal if it is an order-convex subgroup closed under \vee (equivalently, \wedge).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow\{x, y\} \cap I \neq \varnothing$.
- Spec $_{\ell} G \stackrel{\text { def }}{=}\{$ prime ℓ-ideals of $G\}$, topologized by the closed sets the $\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}$ for $X \subseteq G$ (hull-kernel topology).

Basic definitions (wrt. ℓ-spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

- A subset I, in an Abelian ℓ-group G, is an ℓ-ideal if it is an order-convex subgroup closed under \vee (equivalently, \wedge).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow\{x, y\} \cap I \neq \varnothing$.
- $\operatorname{Spec}_{\ell} G \stackrel{\text { def }}{=}\{$ prime ℓ-ideals of $G\}$, topologized by the closed sets the $\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}$ for $X \subseteq G$ (hull-kernel topology).
- The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ-spectrum of G.

Basic definitions (wrt. real spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

- A subset, in a commutative unital ring A, is a cone if it is both an additive and a multiplicative submonoid of A, containing $\left\{x^{2} \mid x \in A\right\}$.
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining

Basic definitions (wrt. real spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining identifications (\aleph_{0} and \aleph_{1})

■ A subset, in a commutative unital ring A, is a cone if it is both an additive and a multiplicative submonoid of A, containing $\left\{x^{2} \mid x \in A\right\}$.

- A cone P is prime if $A=P \cup(-P)$ and the "support" $P \cap(-P)$ is a prime ideal of the ring A.

Basic definitions (wrt. real spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

■ A subset, in a commutative unital ring A, is a cone if it is both an additive and a multiplicative submonoid of A, containing $\left\{x^{2} \mid x \in A\right\}$.

- A cone P is prime if $A=P \cup(-P)$ and the "support" $P \cap(-P)$ is a prime ideal of the ring A. It follows that $-1 \notin P$ (otherwise $1 \in P \cap(-P)$).

Basic definitions (wrt. real spectrum)

■ A subset, in a commutative unital ring A, is a cone if it is both an additive and a multiplicative submonoid of A, containing $\left\{x^{2} \mid x \in A\right\}$.

- A cone P is prime if $A=P \cup(-P)$ and the "support" $P \cap(-P)$ is a prime ideal of the ring A. It follows that $-1 \notin P$ (otherwise $1 \in P \cap(-P)$).
- Spec $_{\mathrm{r}} A \stackrel{\text { def }}{=}\{$ prime cones of $A\}$, endowed with the topology generated by all open subsets $\left\{P \in \operatorname{Spec}_{\mathrm{r}} A \mid a \notin P\right\}$ for $a \in A$, and we call $\operatorname{Spec}_{\mathrm{r}} A$ the real spectrum of A.

Basic definitions (wrt. real spectrum)

■ A subset, in a commutative unital ring A, is a cone if it is both an additive and a multiplicative submonoid of A, containing $\left\{x^{2} \mid x \in A\right\}$.

- A cone P is prime if $A=P \cup(-P)$ and the "support" $P \cap(-P)$ is a prime ideal of the ring A. It follows that $-1 \notin P$ (otherwise $1 \in P \cap(-P)$).
- Spec $_{\mathrm{r}} A \stackrel{\text { def }}{=}\{$ prime cones of $A\}$, endowed with the topology generated by all open subsets $\left\{P \in \operatorname{Spec}_{\mathrm{r}} A \mid a \notin P\right\}$ for $a \in A$, and we call $\operatorname{Spec}_{\mathrm{r}} A$ the real spectrum of A.
- $\operatorname{Spec}_{\mathrm{r}} A$ is homeomorphic to the Zariski spectrum of the real closure (Schwartz 1989) of the ring A.

Basic definitions (spectral spaces)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining
identifications
(\aleph_{0} and \aleph_{1})

■ Specialization preorder on a topological space $X: x \leqslant y$ if $y \in \overline{\{x\}}$.

Basic definitions (spectral spaces)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

- Specialization preorder on a topological space $X: x \leqslant y$ if $y \in \overline{\{x\}}$.
■ A topological space X is spectral if it is T_{0} (i.e., $\leqslant i$ antisymmetric), every irreducible closed set is some $\overline{\{x\}}$, and $\stackrel{\circ}{\mathcal{K}}(X) \stackrel{\text { def }}{=}\{$ compact open subsets of $X\}$ is a basis of open sets in X, closed under finite intersections (thus X is compact).

Basic definitions (spectral spaces)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

- Specialization preorder on a topological space $X: x \leqslant y$ if $y \in \overline{\{x\}}$.
■ A topological space X is spectral if it is T_{0} (i.e., \leqslant is antisymmetric), every irreducible closed set is some $\overline{\{x\}}$, and $\stackrel{\circ}{\mathcal{K}}(X) \stackrel{\text { def }}{=}\{$ compact open subsets of $X\}$ is a basis of open sets in X, closed under finite intersections (thus X is compact).
- A spectral space X is completely normal if (X, \leqslant) is a root system, that is, each $\overline{\{x\}}$ is a chain wrt \leqslant.

Basic definitions (spectral spaces)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

- Specialization preorder on a topological space $X: x \leqslant y$ if $y \in \overline{\{x\}}$.
- A topological space X is spectral if it is T_{0} (i.e., \leqslant is antisymmetric), every irreducible closed set is some $\overline{\{x\}}$, and $\mathcal{K}(X) \stackrel{\text { def }}{=}\{$ compact open subsets of $X\}$ is a basis of open sets in X, closed under finite intersections (thus X is compact).
- A spectral space X is completely normal if (X, \leqslant) is a root system, that is, each $\{x\}$ is a chain wrt \leqslant.

Proposition (Keimel 1971; Coste and Roy 1981)

All $\operatorname{Spec}_{\ell} G$, for an Abelian ℓ-group G with unit, and $\operatorname{Spec}_{\mathrm{r}} A$, for a commutative unital ring A, are completely normal spectral spaces.

Stone duality

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications (\aleph_{0} and \aleph_{1})

- A map $f: X \rightarrow Y$ (between spectral spaces) is spectral if $f^{-1}[V] \in \mathcal{K}(X)$ whenever $V \in \mathcal{K}(Y)$.

Stone duality

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

- A map $f: X \rightarrow Y$ (between spectral spaces) is spectral if $f^{-1}[V] \in \mathcal{K}(X)$ whenever $V \in \mathcal{X}(Y)$. Hence spectral \Rightarrow continuous.
- A spectral subspace of Y is $X \subseteq Y$ such that the inclusion $\operatorname{map} X \hookrightarrow Y$ is spectral.

Stone duality

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining
identifications (\aleph_{0} and \aleph_{1})

- A map $f: X \rightarrow Y$ (between spectral spaces) is spectral if $f^{-1}[V] \in \stackrel{\circ}{\mathcal{K}}(X)$ whenever $V \in \stackrel{\circ}{\mathcal{K}}(Y)$. Hence spectral \Rightarrow continuous.
- A spectral subspace of Y is $X \subseteq Y$ such that the inclusion map $X \hookrightarrow Y$ is spectral.

Theorem (Stone 1933)

The category of all spectral spaces, with spectral maps, is dual to the category of all bounded distributive lattices, with 0 , 1-lattice homomorphisms.

Stone duality

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining
identifications (\aleph_{0} and \aleph_{1})

- A map $f: X \rightarrow Y$ (between spectral spaces) is spectral if $f^{-1}[V] \in \stackrel{\circ}{\mathcal{K}}(X)$ whenever $V \in \stackrel{\circ}{\mathcal{K}}(Y)$. Hence spectral \Rightarrow continuous.
- A spectral subspace of Y is $X \subseteq Y$ such that the inclusion map $X \hookrightarrow Y$ is spectral.

Theorem (Stone 1933)

The category of all spectral spaces, with spectral maps, is dual to the category of all bounded distributive lattices, with 0, 1-lattice homomorphisms.

■ Extended to generalized spectral spaces, with spectral maps, and distributive 0-lattices, with cofinal 0-lattice homomorphisms (Rump and Yang 2009).

Stone duality (cont'd)

Spectra and
subspectra arising from ℓ-groups and commutative rings

- The dual of a spectral space X is the lattice $\mathcal{K}(X) \stackrel{\text { def }}{=}\{$ compact opens of $X\}$.

Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining identifications (\aleph_{0} and \aleph_{1})

Stone duality (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

- The dual of a spectral space X is the lattice $\mathcal{K}(X) \stackrel{\text { def }}{=}\{$ compact opens of $X\}$.
- The dual of a bounded distributive lattice D is Spec $D \stackrel{\text { def }}{=}\{$ prime ideals of $D\}$.

Stone duality (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

- The dual of a spectral space X is the lattice $\mathcal{K}(X) \stackrel{\text { def }}{=}\{$ compact opens of $X\}$.
- The dual of a bounded distributive lattice D is Spec $D \stackrel{\text { def }}{=}\{$ prime ideals of $D\}$.
■ Spectral subspaces are dual to surjective lattice homomorphisms.

Statement of the problem

Spectra and subspectra arising from ℓ-groups and commutative rings

■ For a class \mathbf{X} of spectral spaces, denote by $\mathbf{S X}$ the class of all spectral subspaces of members of \mathbf{X}.

Statement of the problem

Spectra and subspectra arising from ℓ-groups and commutative rings

■ For a class \mathbf{X} of spectral spaces, denote by $\mathbf{S X}$ the class of all spectral subspaces of members of \mathbf{X}.

- CN $\stackrel{\text { def }}{=}\{$ completely normal spectral spaces $\}$.

Statement of the problem

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining identifications (\aleph_{0} and \aleph_{1})

■ For a class \mathbf{X} of spectral spaces, denote by $\mathbf{S X}$ the class of all spectral subspaces of members of \mathbf{X}.

- CN $\stackrel{\text { def }}{=}$ \{completely normal spectral spaces $\}$.
- $\ell \stackrel{\text { def }}{=}\left\{X \mid(\exists G\right.$ Abelian ℓ-group $\left.)\left(X \cong \operatorname{Spec}_{\ell} G\right)\right\}$.

Statement of the problem

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining

■ For a class \mathbf{X} of spectral spaces, denote by $\mathbf{S X}$ the class of all spectral subspaces of members of \mathbf{X}.

- CN $\stackrel{\text { def }}{=}$ \{completely normal spectral spaces $\}$.

■ $\ell \stackrel{\text { def }}{=}\left\{X \mid(\exists G\right.$ Abelian ℓ-group $\left.)\left(X \cong \operatorname{Spec}_{\ell} G\right)\right\}$.

- $\mathbf{R} \stackrel{\text { def }}{=}\left\{X \mid(\exists A\right.$ commutative unital ring $\left.)\left(X \cong \operatorname{Spec}_{\mathrm{r}} A\right)\right\}$.

Statement of the problem

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining
identifications (\aleph_{0} and \aleph_{1})

■ For a class \mathbf{X} of spectral spaces, denote by $\mathbf{S X}$ the class of all spectral subspaces of members of \mathbf{X}.

- CN $\stackrel{\text { def }}{=}\{$ completely normal spectral spaces $\}$.
- $\ell \stackrel{\text { def }}{=}\left\{X \mid(\exists G\right.$ Abelian ℓ-group $\left.)\left(X \cong \operatorname{Spec}_{\ell} G\right)\right\}$.
- $\mathbf{R} \stackrel{\text { def }}{=}\left\{X \mid(\exists A\right.$ commutative unital ring $\left.)\left(X \cong \operatorname{Spec}_{\mathrm{r}} A\right)\right\}$.

Problem

Determine all possible containments and non-containments between $\mathbf{C N}=\mathbf{S C N}, \boldsymbol{\ell}, \mathbf{S} \boldsymbol{\ell}, \mathbf{R}, \mathbf{S R}$, in every cardinality (i.e., according to card $\mathcal{K}(X))$.

\subseteq between $\mathbf{C N}, \ell, \mathbf{R}, \mathbf{S} \ell, \mathrm{SR}$: the SPANNER

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining
identifications
(\aleph_{0} and \aleph_{1})
$\kappa \stackrel{\text { def }}{=} \operatorname{card} \stackrel{\circ}{\mathcal{K}}(X)$; red line \leftrightharpoons sharp bound;

\subseteq between $\mathbf{C N}, \ell, \mathbf{R}, \mathbf{S} \ell, \mathrm{SR}$: the SPANNER

Spectra and
subspectra arising from ℓ-groups and commutative rings
$\kappa \stackrel{\text { def }}{=} \operatorname{card} \stackrel{\circ}{\mathcal{K}}(X)$; red line \leftrightharpoons sharp bound; $=$ black hole $(\mathbf{S R}=\boldsymbol{\ell}=\mathbf{R}=\mathbf{S} \boldsymbol{\ell}=\mathbf{S R})$

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining
identifications
(\aleph_{0} and \aleph_{1})

\subseteq between $\mathbf{C N}, \ell, \mathbf{R}, \mathbf{S} \ell, \mathbf{S R}$: the SPANNER

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps

Non-

containments (\aleph_{1} and \aleph_{2})

Remaining identifications (\aleph_{0} and \aleph_{1})
$\kappa \stackrel{\text { def }}{=}$ card $\stackrel{\circ}{\mathcal{K}}(X)$; red line \leftrightharpoons sharp bound; $=$ black hole $(\mathbf{S R}=\boldsymbol{\ell}=\mathbf{R}=\mathbf{S} \boldsymbol{\ell}=\mathbf{S R})$

CN

$\kappa \geq \aleph_{2}$
$\mathrm{CN}=\mathbf{S} \ell$

SR

$$
\kappa=\aleph_{1}
$$

$$
\kappa \leq \aleph_{0}
$$

Preliminary steps (Stone duality)

Spectra and subspectra arising from ℓ-groups and commutative rings

- Using Stone duality, we reduce everything to problems about bounded distributive lattices (and bounded homomorphisms).

Preliminary steps (Stone duality)

- Using Stone duality, we reduce everything to problems about bounded distributive lattices (and bounded homomorphisms).
■ By Monteiro (1954), complete normality translates to the lattice-theoretical condition

$$
(\forall a, b)(\exists x, y)(a \vee b=a \vee y=x \vee b \text { and } x \wedge y=0) .
$$

Preliminary steps (Stone duality)

- Using Stone duality, we reduce everything to problems about bounded distributive lattices (and bounded homomorphisms).
■ By Monteiro (1954), complete normality translates to the lattice-theoretical condition

$$
(\forall a, b)(\exists x, y)(a \vee b=a \vee y=x \vee b \text { and } x \wedge y=0)
$$

- That property is obviously closed under homomorphic images. Hence, $\mathbf{C N}=\mathbf{S C N}$.

Preliminary steps (ℓ-spectrum)

Spectra and
subspectra arising from ℓ-groups and commutative rings

■ For an Abelian ℓ-group G, the Stone dual of $\operatorname{Spec}_{\ell} G$ is the distributive 0-lattice $\operatorname{Id}_{\mathrm{c}}^{\ell} G=\left\{\langle a\rangle^{\ell} \mid a \in G^{+}\right\}$.

Preliminary steps (ℓ-spectrum)

Spectra and
subspectra arising from ℓ-groups and commutative rings

■ For an Abelian ℓ-group G, the Stone dual of $\operatorname{Spec}_{\ell} G$ is the distributive 0-lattice $\operatorname{Id}_{\mathrm{c}}^{\ell} G=\left\{\langle a\rangle^{\ell} \mid a \in G^{+}\right\}$.
■ Here $\langle a\rangle^{\ell}=\{x \in G \mid(\exists n \in \mathbb{N})(|x| \leq n a)\}$.

Preliminary steps

Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

Preliminary steps (ℓ-spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

■ For an Abelian ℓ-group G, the Stone dual of $\operatorname{Spec}_{\ell} G$ is the distributive 0-lattice $\operatorname{Id}_{\mathrm{c}}^{\ell} G=\left\{\langle a\rangle^{\ell} \mid a \in G^{+}\right\}$.
■ Here $\langle a\rangle^{\ell}=\{x \in G \mid(\exists n \in \mathbb{N})(|x| \leq n a)\}$.
■ Thus questions about $\operatorname{Spec}_{\ell} G$ translate to questions about lattices $\mathrm{Id}_{\mathrm{c}}^{\ell} G$, for Abelian ℓ-groups G.

Preliminary steps (Brumfiel spectrum)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary steps

Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining identifications (\aleph_{0} and \aleph_{1})

- F-rings are lattice-ordered rings satisfying

$$
(x \wedge y=0 \text { and } z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)
$$

Preliminary steps (Brumfiel spectrum)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary steps

Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

- F-rings are lattice-ordered rings satisfying

$$
(x \wedge y=0 \text { and } z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)
$$

■ Here, all f-rings will be commutative and unital.

Preliminary steps (Brumfiel spectrum)

- F-rings are lattice-ordered rings satisfying $(x \wedge y=0$ and $z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)$.
■ Here, all f-rings will be commutative and unital.
- Points of the Brumfiel spectrum $\operatorname{Spec}_{\mathrm{B}} A$ of an f-ring A are ℓ-ideals P (i.e., both additive ℓ-ideals and ring ideals) that are also prime as ring ideals (thus also as ℓ-ideals).

Preliminary steps (Brumfiel spectrum)

Basic
definitions
Stone duality
The problem
Preliminary steps

Non-
containments

- F-rings are lattice-ordered rings satisfying $(x \wedge y=0$ and $z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)$.
■ Here, all f-rings will be commutative and unital.
- Points of the Brumfiel spectrum $\operatorname{Spec}_{\mathrm{B}} A$ of an f-ring A are ℓ-ideals P (i.e., both additive ℓ-ideals and ring ideals) that are also prime as ring ideals (thus also as ℓ-ideals).
- The Stone dual of $\operatorname{Spec}_{\mathrm{B}} A$ is the lattice $\operatorname{Id}_{\mathrm{c}}^{r} A$ of all radical ℓ-ideals of A.

Preliminary steps (Brumfiel spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

- F-rings are lattice-ordered rings satisfying $(x \wedge y=0$ and $z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)$.
■ Here, all f-rings will be commutative and unital.
- Points of the Brumfiel spectrum $\operatorname{Spec}_{\mathrm{B}} A$ of an f-ring A are ℓ-ideals P (i.e., both additive ℓ-ideals and ring ideals) that are also prime as ring ideals (thus also as ℓ-ideals).
- The Stone dual of $\operatorname{Spec}_{\mathrm{B}} A$ is the lattice $\operatorname{Id}_{\mathrm{c}}^{r} A$ of all radical ℓ-ideals of A.
- Brumfiel spectra are the same as real spectra $\left(\operatorname{Spec}_{\mathrm{r}} A \cong \operatorname{Spec}_{\mathrm{B}} \mathrm{F}(A)\right.$, where $\mathrm{F}(A)$ f-ring-envelope of A; $\operatorname{Spec}_{\mathrm{B}} A \cong\left\{Q \in \operatorname{Spec}_{\mathrm{r}} A \mid A^{+} \subseteq Q\right\}$ via $P \mapsto A^{+}+P$, closed subspace of a real spectrum, thus a real spectrum).

Preliminary steps (Brumfiel spectrum)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

- F-rings are lattice-ordered rings satisfying $(x \wedge y=0$ and $z \geq 0) \Rightarrow(x \wedge y z=x \wedge z y=0)$.
- Here, all f-rings will be commutative and unital.
- Points of the Brumfiel spectrum $\operatorname{Spec}_{\mathrm{B}} A$ of an f-ring A are ℓ-ideals P (i.e., both additive ℓ-ideals and ring ideals) that are also prime as ring ideals (thus also as ℓ-ideals).
- The Stone dual of $\operatorname{Spec}_{\mathrm{B}} A$ is the lattice $\operatorname{Id}_{\mathrm{c}}^{r} A$ of all radical ℓ-ideals of A.
- Brumfiel spectra are the same as real spectra (Spec $A \cong \operatorname{Spec}_{\mathrm{B}} \mathrm{F}(A)$, where $\mathrm{F}(A)$ fring-envelope of A; $\operatorname{Spec}_{\mathrm{B}} A \cong\left\{Q \in \operatorname{Spec}_{\mathrm{r}} A \mid A^{+} \subseteq Q\right\}$ via $P \mapsto A^{+}+P$, closed subspace of a real spectrum, thus a real spectrum).
- Thus questions about real spectra translate to questions about lattices $\mathrm{Id}_{\mathrm{c}}^{r} A$, for f-rings A.

The other trivial spanner containment

Spectra and
subspectra
arising from ℓ-groups and commutative rings

- It is $\mathbf{S R} \subseteq \mathbf{S} \ell$ (equivalently, $\mathbf{R} \subseteq \mathbf{S} \ell$).

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining
identifications
(\aleph_{0} and \aleph_{1})

The other trivial spanner containment

Spectra and subspectra arising from ℓ-groups and commutative rings

- It is $\mathbf{S R} \subseteq \mathbf{S} \ell$ (equivalently, $\mathbf{R} \subseteq \mathbf{S} \ell$).
- This means that every $\operatorname{Id}_{c}^{r} A$ (for a f-ring A) is a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for some Abelian ℓ-group G with unit.

The other trivial spanner containment

Spectra and subspectra arising from ℓ-groups and commutative rings

- It is $\mathbf{S R} \subseteq \mathbf{S} \ell$ (equivalently, $\mathbf{R} \subseteq \mathbf{S} \ell$).
- This means that every $\operatorname{Id}_{c}^{r} A$ (for a f-ring A) is a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for some Abelian ℓ-group G with unit.
- Take $G \stackrel{\text { def }}{=}\{x \in A \mid(\exists n \in \mathbb{N})(|x| \leq n \cdot 1)\}$ with induced ℓ-group structure, and $\mathrm{Id}_{\mathrm{c}}^{\ell} G \rightarrow \mathrm{Id}_{\mathrm{c}}^{r} A,\langle a\rangle^{\ell} \mapsto\langle a\rangle^{\mathrm{r}}$.

Condensates for one arrow: a basis for a few spanner non-containments

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

■ We are given a homomorphism $\varphi: A \rightarrow B$ of first-order structures (over a vocabulary v).

Condensates for one arrow: a basis for a few spanner non-containments

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

Non-

containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining

■ We are given a homomorphism $\varphi: A \rightarrow B$ of first-order structures (over a vocabulary v).

- The condensate construction on φ means to concentrate in a single object the "repetition" of φ, κ times where κ is an infinite cardinal.

Condensates for one arrow: a basis for a few spanner non-containments

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining

■ We are given a homomorphism $\varphi: A \rightarrow B$ of first-order structures (over a vocabulary v).

- The condensate construction on φ means to concentrate in a single object the "repetition" of φ, κ times where κ is an infinite cardinal.
- Formally, Cond (φ, κ) is the \mathbf{v}-structure with universe $\left\{(x, y) \in A \times B^{\kappa} \mid y\right.$ is almost constant and $\left.y_{\infty}=\varphi(x)\right\}$.

Condensates for one arrow: a basis for a few spanner non-containments

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

■ We are given a homomorphism $\varphi: A \rightarrow B$ of first-order structures (over a vocabulary v).

- The condensate construction on φ means to concentrate in a single object the "repetition" of φ, κ times where κ is an infinite cardinal.
- Formally, Cond (φ, κ) is the \mathbf{v}-structure with universe $\left\{(x, y) \in A \times B^{\kappa} \mid y\right.$ is almost constant and $\left.y_{\infty}=\varphi(x)\right\}$.

■ Under quite general conditions, if κ is large enough and the arrow φ is not representable wrt a given functor, then neither is the object $\operatorname{Cond}(\varphi, \kappa)$.

Applications to $\ell \subsetneq \mathbf{S} \ell$ and $\mathbf{R} \varsubsetneqq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

■ The maps φ will be 0,1 -homomorphisms between bounded distributive lattices, best described by their Birkhoff dual maps (here, isotone maps between finite chains).

Applications to $\ell \subsetneq \mathbf{S} \ell$ and $\mathbf{R} \nsubseteq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

Non-

containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining

■ The maps φ will be 0 , 1 -homomorphisms between bounded distributive lattices, best described by their Birkhoff dual maps (here, isotone maps between finite chains).
■ For $\ell \varsubsetneqq \mathbf{S} \ell$, consider $\operatorname{Cond}\left(\varphi, \omega_{1}\right)$ where φ is the dual map of $\{1\} \rightarrow\{1,2\}, 1 \mapsto 1$ (not closed).

Applications to $\ell \subsetneq \mathbf{S} \ell$ and $\mathbf{R} \nsubseteq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

■ The maps φ will be 0,1 -homomorphisms between bounded distributive lattices, best described by their Birkhoff dual maps (here, isotone maps between finite chains).
■ For $\ell \varsubsetneqq \mathbf{S} \ell$, consider $\operatorname{Cond}\left(\varphi, \omega_{1}\right)$ where φ is the dual map of $\{1\} \rightarrow\{1,2\}, 1 \mapsto 1$ (not closed).

- For $\mathbf{R} \varsubsetneqq \mathbf{S R}$, consider $\operatorname{Cond}\left(\varphi, \omega_{1}\right)$ where φ is the dual map of $\{1,2\} \rightarrow\{1,2,3\}, 1 \mapsto 1,2 \mapsto 3$ (not convex).

Applications to $\ell \nsubseteq \mathbf{S} \ell$ and $\mathbf{R} \nsubseteq \mathbf{S R}$

Basic
definitions
Stone duality
The problem
Preliminary
steps

■ The maps φ will be 0 , 1 -homomorphisms between bounded distributive lattices, best described by their Birkhoff dual maps (here, isotone maps between finite chains).
■ For $\ell \varsubsetneqq \mathbf{S} \ell$, consider $\operatorname{Cond}\left(\varphi, \omega_{1}\right)$ where φ is the dual map of $\{1\} \rightarrow\{1,2\}, 1 \mapsto 1$ (not closed).

- For $\mathbf{R} \varsubsetneqq \mathbf{S R}$, consider $\operatorname{Cond}\left(\varphi, \omega_{1}\right)$ where φ is the dual map of $\{1,2\} \rightarrow\{1,2,3\}, 1 \mapsto 1,2 \mapsto 3$ (not convex). (Solves, in the negative, a 2012 problem by Mellor and Tressl, asking whether a spectral subspace of a real spectrum is a real spectrum).

An example for $\ell \nsubseteq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining identifications (\aleph_{0} and \aleph_{1})

■ Involves the lexicographical power $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ (a totally ordered Abelian group).

An example for $\ell \nsubseteq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Dreliminary
steps
Noncontainments (\aleph_{1} and \aleph_{2})

■ Involves the lexicographical power $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ (a totally ordered Abelian group).

- The elements of $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ are finite linear combinations $x=\sum_{i<n} x_{i} \mathbf{t}^{\alpha_{i}}$ where each $x_{i} \in \mathbb{Z}$, each $\alpha_{i}<\omega_{1}$, and the indeterminate \mathbf{t} is "infinitely small".

An example for $\ell \nsubseteq \mathbf{S R}$

- Involves the lexicographical power $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ (a totally ordered Abelian group).
- The elements of $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ are finite linear combinations $x=\sum_{i<n} x_{i} t^{\alpha_{i}}$ where each $x_{i} \in \mathbb{Z}$, each $\alpha_{i}<\omega_{1}$, and the indeterminate \mathbf{t} is "infinitely small".
■ Then consider the Abelian ℓ-group F on generators a, b and relations $a, b \geq 0$.

An example for $\ell \not \subset \mathbf{S R}$

- Involves the lexicographical power $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ (a totally ordered Abelian group).
- The elements of $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ are finite linear combinations $x=\sum_{i<n} x_{i} \mathbf{t}^{\alpha_{i}}$ where each $x_{i} \in \mathbb{Z}$, each $\alpha_{i}<\omega_{1}$, and the indeterminate \mathbf{t} is "infinitely small".
- Then consider the Abelian ℓ-group F on generators a, b and relations $a, b \geq 0$.
- The desired counterexample is the Abelian ℓ-group $G \stackrel{\text { def }}{=} \mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle \times_{\text {lex }} F$ (lexicographical product).

An example for $\ell \nsubseteq \mathbf{S R}$

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Pretiminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining
identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

■ Involves the lexicographical power $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ (a totally ordered Abelian group).

- The elements of $\mathbb{Z}\left\langle\omega_{1}^{\mathrm{op}}\right\rangle$ are finite linear combinations $x=\sum_{i<n} x_{i} \mathbf{t}^{\alpha_{i}}$ where each $x_{i} \in \mathbb{Z}$, each $\alpha_{i}<\omega_{1}$, and the indeterminate \mathbf{t} is "infinitely small".
- Then consider the Abelian ℓ-group F on generators a, b and relations $a, b \geq 0$.
- The desired counterexample is the Abelian ℓ-group $G \stackrel{\text { def }}{=} \mathbb{Z}\left\langle\omega_{1}^{\text {op }}\right\rangle \times_{\text {lex }} F$ (lexicographical product).

Theorem (W 2017)

There is no commutative unital ring A such that $\operatorname{Spec}_{\ell} G$ is a spectral subspace of $\mathrm{Spec}_{\mathrm{r}} A$.

An example for $\mathbf{S} \ell \varsubsetneqq \mathbf{C N}$ (and more, e.g. CBD)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Relies on a non-commutative diagram \vec{A} of Abelian ℓ-groups:

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments (\aleph_{1} and \aleph_{2})

Remaining identifications (\aleph_{0} and \aleph_{1})

An example for $\mathbf{S \ell} \subsetneq \mathbf{C N}$ (and more, e.g. CBD)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

Non-

 containments (\aleph_{1} and \aleph_{2})Remaining identifications (\aleph_{0} and \aleph_{1})

Relies on a non-commutative diagram \vec{A} of Abelian ℓ-groups:

$0 \leq a \leq a^{\prime} \leq 2 a ; b \geq 0 ; c \geq 0$.
All arrows inclusion maps, except $A_{1}(a) \rightarrow A_{13}\left(a^{\prime}, c\right)$ via $a \mapsto a^{\prime}$.

An example for $\mathbf{S} \ell \nsucceq \mathrm{CN}$ (cont'd)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications (\aleph_{0} and \aleph_{1})

■ For every set $I, \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}^{\prime}$ is a commutative diagram (indexed by $\{0,1\}^{3 \times I}$) of completely normal distributive 0 -lattices.

An example for $\mathbf{S} \ell \nsucceq \mathrm{CN}$ (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

■ For every set $I, \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}^{\prime}$ is a commutative diagram (indexed by $\{0,1\}^{3 \times I}$) of completely normal distributive 0 -lattices.
■ For every $\{0,1\}^{3}$-indexed commutative diagram \vec{G} of Abelian ℓ-groups, $\operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A} \neq \operatorname{Id}_{\mathrm{c}}^{\ell} G$.

An example for $\mathbf{S} \ell \nsucceq \mathrm{CN}$ (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

Non-

containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining

■ For every set $I, \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}^{\prime}$ is a commutative diagram (indexed by $\{0,1\}^{3 \times I}$) of completely normal distributive 0 -lattices.

- For every $\{0,1\}^{3}$-indexed commutative diagram \vec{G} of Abelian ℓ-groups, $\mathrm{Id}_{\mathrm{c}}^{\ell} \vec{A} \neq \mathrm{Id}_{\mathrm{c}}^{\ell} G$.
- By using the condensate machinery (Gillibert and W 2011; here not just for one arrow, but for the whole $\{0,1\}^{3}$-indexed diagram $\left.\operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}\right)$, this enables to construct

An example for $\mathbf{S} \ell \nsucceq \mathrm{CN}$ (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

■ For every set $I, \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}^{\prime}$ is a commutative diagram (indexed by $\{0,1\}^{3 \times I}$) of completely normal distributive 0 -lattices.

- For every $\{0,1\}^{3}$-indexed commutative diagram \vec{G} of Abelian ℓ-groups, $\operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A} \neq \operatorname{Id}_{\mathrm{c}}^{\ell} G$.
- By using the condensate machinery (Gillibert and W 2011; here not just for one arrow, but for the whole $\{0,1\}^{3}$-indexed diagram $\operatorname{ld}_{\mathrm{c}}^{\ell} \vec{A}$), this enables to construct a completely normal distributive 0-lattice (very roughly speaking, " $\omega_{2} \otimes \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}$ "), of cardinality \aleph_{2}, which is not a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for any Abelian ℓ-group G.

An example for $\mathbf{S} \ell \nsucceq \mathrm{CN}$ (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Prelliminary
steps

Non-

containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

■ For every set $I, \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}^{\prime}$ is a commutative diagram (indexed by $\{0,1\}^{3 \times I}$) of completely normal distributive 0 -lattices.

- For every $\{0,1\}^{3}$-indexed commutative diagram \vec{G} of Abelian ℓ-groups, $\operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A} \neq \operatorname{Id}_{\mathrm{c}}^{\ell} G$.
- By using the condensate machinery (Gillibert and W 2011; here not just for one arrow, but for the whole $\{0,1\}^{3}$-indexed diagram $\left.\operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}\right)$, this enables to construct a completely normal distributive 0-lattice (very roughly speaking, " $\omega_{2} \otimes \operatorname{Id}_{\mathrm{c}}^{\ell} \vec{A}$ "), of cardinality \aleph_{2}, which is not a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for any Abelian ℓ-group G.
- Further extensions of the condensate construction (W 2021), together with Tuuri's Interpolation Theorem (1992), then make it possible to prove that $\operatorname{ld}_{\mathrm{c}}^{\ell} \mathcal{G} \stackrel{\text { def }}{=}\left\{D \mid(\exists G\right.$ Abelian ℓ-group $\left.)\left(D \cong \mathrm{Id}_{\mathrm{c}}^{\ell} G\right)\right\}$ is not co-projective over $\mathscr{L}_{\infty \infty}$.

Moving towards

```
Spectra and
subspectra arising from \(\ell\)-groups and commutative
rings
```


Basic

```
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
( \(\aleph_{1}\) and \(\aleph_{2}\) )
Remaining identifications
( \(\aleph_{0}\) and \(\aleph_{1}\) )

\section*{Moving towards \((\leftarrow 1\) mean, the llack one \()\)}

Spectra and
subspectra arising from \(\ell\)-groups and commutative rings

\section*{Basic}
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
( \(\aleph_{1}\) and \(\aleph_{2}\) )
Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )

\section*{Theorem (W 2019)}

Every (at most) countable completely normal distributive 0 -lattice is isomorphic to \(\mathrm{Id}_{\mathrm{c}}^{\ell} G\) for some Abelian \(\ell\)-group \(G\) with unit.

\section*{Moving towards \((\leftarrow\) I mean, the black one)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Prelliminary
steps
Non-
containments
\(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)
Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )

\section*{Theorem (W 2019)}

Every (at most) countable completely normal distributive 0 -lattice is isomorphic to \(\mathrm{Id}_{\mathrm{c}}^{\ell} G\) for some Abelian \(\ell\)-group \(G\) with unit.

■ Hence every second countable, completely normal spectral space is homeomorphic to \(\mathrm{Spec}_{\ell} G\) for some Abelian \(\ell\)-group \(G\) with unit (i.e., " \(\ell=\mathbf{C N}\) on countable").

\section*{Moving towards \\ \((\leftarrow\) I mean, the black one \()\)}

Spectra and
subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
( \(\aleph_{1}\) and \(\aleph_{2}\) )
Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )

\section*{Theorem (W 2019)}

Every (at most) countable completely normal distributive 0 -lattice is isomorphic to \(\mathrm{Id}_{\mathrm{c}}^{\ell} G\) for some Abelian \(\ell\)-group \(G\) with unit.

■ Hence every second countable, completely normal spectral space is homeomorphic to \(\mathrm{Spec}_{\ell} G\) for some Abelian \(\ell\)-group \(G\) with unit (i.e., " \(\ell=\mathbf{C N}\) on countable").
- In fact, \(G\) can be taken a vector lattice over any given countable totally ordered division ring \(\mathbb{k}\) ( \(\ell\)-ideals then need be closed under scalar multiplication; the countability assumption on \(\mathbb{k}\) cannot be dispensed with).

\section*{Idea of the proof ( \(\ell=\mathrm{CN}\) on countable)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments ( \(\aleph_{1}\) and \(\aleph_{2}\) )

Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )
- A lattice homomorphism \(\varphi: A \rightarrow B\) is closed if whenever \(a_{0}, a_{1} \in A\) and \(b \in B\), if \(\varphi\left(a_{0}\right) \leq \varphi\left(a_{1}\right) \vee b\) then \(\exists x \in A\) such that \(a_{0} \leq a_{1} \vee x\) and \(\varphi(x) \leq b\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

\section*{Non-}
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- A lattice homomorphism \(\varphi: A \rightarrow B\) is closed if whenever \(a_{0}, a_{1} \in A\) and \(b \in B\), if \(\varphi\left(a_{0}\right) \leq \varphi\left(a_{1}\right) \vee b\) then \(\exists x \in A\) such that \(a_{0} \leq a_{1} \vee x\) and \(\varphi(x) \leq b\).
■ For any \(\ell\)-homomorphism \(f: G \rightarrow H\) between \(\ell\)-groups, the map \(\operatorname{Id}_{\mathrm{c}}^{\ell} f: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow \operatorname{Id}_{\mathrm{c}}^{\ell} H,\langle a\rangle^{\ell} \mapsto\langle f(a)\rangle^{\ell}\) is closed.

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- A lattice homomorphism \(\varphi: A \rightarrow B\) is closed if whenever \(a_{0}, a_{1} \in A\) and \(b \in B\), if \(\varphi\left(a_{0}\right) \leq \varphi\left(a_{1}\right) \vee b\) then \(\exists x \in A\) such that \(a_{0} \leq a_{1} \vee x\) and \(\varphi(x) \leq b\).
■ For any \(\ell\)-homomorphism \(f: G \rightarrow H\) between \(\ell\)-groups, the map \(\operatorname{Id}_{\mathrm{c}}^{\ell} f: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow \operatorname{Id}_{\mathrm{c}}^{\ell} H,\langle a\rangle^{\ell} \mapsto\langle f(a)\rangle^{\ell}\) is closed.
■ Conversely, any surjective closed lattice homomorphism \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow D\) induces \(\operatorname{Id}_{\mathrm{c}}^{\ell}(G / I) \cong D\) where \(I \stackrel{\text { def }}{=}\left\{x \in G \mid \varphi\left(\langle x\rangle^{\ell}\right)=0\right\}\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps

\section*{Non-}
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- A lattice homomorphism \(\varphi: A \rightarrow B\) is closed if whenever \(a_{0}, a_{1} \in A\) and \(b \in B\), if \(\varphi\left(a_{0}\right) \leq \varphi\left(a_{1}\right) \vee b\) then \(\exists x \in A\) such that \(a_{0} \leq a_{1} \vee x\) and \(\varphi(x) \leq b\).
■ For any \(\ell\)-homomorphism \(f: G \rightarrow H\) between \(\ell\)-groups, the map \(\operatorname{Id}_{\mathrm{c}}^{\ell} f: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow \operatorname{Id}_{\mathrm{c}}^{\ell} H,\langle a\rangle^{\ell} \mapsto\langle f(a)\rangle^{\ell}\) is closed.
■ Conversely, any surjective closed lattice homomorphism \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow D\) induces \(\operatorname{Id}_{\mathrm{c}}^{\ell}(G / I) \cong D\) where \(I \stackrel{\text { def }}{=}\left\{x \in G \mid \varphi\left(\langle x\rangle^{\ell}\right)=0\right\}\).
■ Let \(L=\left\{a_{0}, a_{1}, a_{2} \ldots\right\}\) be a countable, completely normal bounded distributive lattice.

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Pretiminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)

■ A lattice homomorphism \(\varphi: A \rightarrow B\) is closed if whenever \(a_{0}, a_{1} \in A\) and \(b \in B\), if \(\varphi\left(a_{0}\right) \leq \varphi\left(a_{1}\right) \vee b\) then \(\exists x \in A\) such that \(a_{0} \leq a_{1} \vee x\) and \(\varphi(x) \leq b\).
■ For any \(\ell\)-homomorphism \(f: G \rightarrow H\) between \(\ell\)-groups, the map \(\operatorname{Id}_{\mathrm{c}}^{\ell} f: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow \operatorname{Id}_{\mathrm{c}}^{\ell} H,\langle a\rangle^{\ell} \mapsto\langle f(a)\rangle^{\ell}\) is closed.
■ Conversely, any surjective closed lattice homomorphism \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} G \rightarrow D\) induces \(\operatorname{Id}_{\mathrm{c}}^{\ell}(G / I) \cong D\) where \(I \stackrel{\text { def }}{=}\left\{x \in G \mid \varphi\left(\langle x\rangle^{\ell}\right)=0\right\}\).
■ Let \(L=\left\{a_{0}, a_{1}, a_{2} \ldots\right\}\) be a countable, completely normal bounded distributive lattice.
- Let \(F_{\ell}(\omega) \stackrel{\text { def }}{=}\) free Abelian \(\ell\)-group on \(\omega\). It suffices to construct a surjective closed lattice homomorphism \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\) (because then, \(L \cong \operatorname{Id}_{\mathrm{c}}^{\ell}\left(\mathrm{F}_{\ell}(\omega) / I\right)\) for a suitable \(\ell\)-ideal \(I)\).

\section*{Idea of the proof \((\ell=\mathbf{C N}\) on countable, cont'd)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

\section*{Basic}
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )
- Construct \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\), by iteratively defining an ascending sequence of 0,1 -lattice homomorphisms \(\varphi_{n}: \mathrm{Op}_{n} \rightarrow L\) for suitable finite sublattices \(\mathrm{Op}_{\boldsymbol{F}}\) of \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega)\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable, cont'd \()\)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- Construct \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\), by iteratively defining an ascending sequence of 0,1 -lattice homomorphisms \(\varphi_{n}: \mathrm{Op}_{\mathrm{F}} \rightarrow L\) for suitable finite sublattices \(\mathrm{Op}_{n}\) of \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega)\).
- For any \(\mathcal{F} \subseteq \mathbb{Z}^{(\omega)}\), Op \(\mathcal{F}\) denotes the 0,1 -sublattice of \(\mathfrak{P}\left(\mathbb{Z}^{(\omega)}\right)\) generated by all \(\llbracket f>0 \rrbracket \stackrel{\text { def }}{=}\left\{x \in \mathbb{Z}^{(\omega)} \mid\langle f \mid x\rangle>0\right\}\) where \(f \in \mathcal{F} \cup(-\mathcal{F})\). Then set \(\mathrm{Op}^{-} \mathcal{F} \stackrel{\text { def }}{=} \mathrm{Op} \mathcal{F} \backslash\left\{\mathbb{Z}^{(\omega)}\right\}\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable, cont'd \()\)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Pretiminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- Construct \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\), by iteratively defining an ascending sequence of 0,1 -lattice homomorphisms \(\varphi_{n}: \mathrm{Op}_{\mathrm{F}} \rightarrow L\) for suitable finite sublattices \(\mathrm{Op}_{n}\) of \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega)\).
- For any \(\mathcal{F} \subseteq \mathbb{Z}^{(\omega)}\), Op \(\mathcal{F}\) denotes the 0,1 -sublattice of \(\mathfrak{P}\left(\mathbb{Z}^{(\omega)}\right)\) generated by all \(\llbracket f>0 \rrbracket \xlongequal{\text { def }}\left\{x \in \mathbb{Z}^{(\omega)} \mid\langle f \mid x\rangle>0\right\}\) where \(f \in \mathcal{F} \cup(-\mathcal{F})\). Then set \(\mathrm{Op}^{-} \mathcal{F} \stackrel{\text { def }}{=} \mathrm{Op} \mathcal{F} \backslash\left\{\mathbb{Z}^{(\omega)}\right\}\).
- By Baker-Beynon duality, \(I \mathrm{~d}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \cong \mathrm{Op}^{-} \mathbb{Z}^{(\omega)}\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable, cont'd \()\)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- Construct \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\), by iteratively defining an ascending sequence of 0,1 -lattice homomorphisms \(\varphi_{n}: \mathrm{Op}_{\boldsymbol{F}} \rightarrow L\) for suitable finite sublattices \(\mathrm{Op}_{n}\) of \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega)\).
- For any \(\mathcal{F} \subseteq \mathbb{Z}^{(\omega)}\), Op \(\mathcal{F}\) denotes the 0,1 -sublattice of \(\mathfrak{P}\left(\mathbb{Z}^{(\omega)}\right)\) generated by all \(\llbracket f>0 \rrbracket \xlongequal{\text { def }}\left\{x \in \mathbb{Z}^{(\omega)} \mid\langle f \mid x\rangle>0\right\}\) where \(f \in \mathcal{F} \cup(-\mathcal{F})\). Then set \(\mathrm{Op}^{-} \mathcal{F} \stackrel{\text { def }}{=} \mathrm{Op} \mathcal{F} \backslash\left\{\mathbb{Z}^{(\omega)}\right\}\).
- By Baker-Beynon duality, \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \cong \mathrm{Op}^{-} \mathbb{Z}^{(\omega)}\).
- Let \(\mathbb{Z}^{(\omega)}=\left\{f_{n} \mid n<\omega\right\}\).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable, cont'd \()\)}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)
- Construct \(\varphi: \operatorname{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \rightarrow L\), by iteratively defining an ascending sequence of 0,1 -lattice homomorphisms \(\varphi_{n}: \mathrm{Op}_{\boldsymbol{F}} \rightarrow L\) for suitable finite sublattices \(\mathrm{Op}_{n}\) of \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega)\).
- For any \(\mathcal{F} \subseteq \mathbb{Z}^{(\omega)}\), Op \(\mathcal{F}\) denotes the 0,1 -sublattice of \(\mathfrak{P}\left(\mathbb{Z}^{(\omega)}\right)\) generated by all \(\llbracket f>0 \rrbracket \xlongequal{\text { def }}\left\{x \in \mathbb{Z}^{(\omega)} \mid\langle f \mid x\rangle>0\right\}\) where \(f \in \mathcal{F} \cup(-\mathcal{F})\). Then set \(\mathrm{Op}^{-} \mathcal{F} \stackrel{\text { def }}{=} \mathrm{Op} \mathcal{F} \backslash\left\{\mathbb{Z}^{(\omega)}\right\}\).
- By Baker-Beynon duality, \(\mathrm{Id}_{\mathrm{c}}^{\ell} \mathrm{F}_{\ell}(\omega) \cong \mathrm{Op}^{-} \mathbb{Z}^{(\omega)}\).
- Let \(\mathbb{Z}^{(\omega)}=\left\{f_{n} \mid n<\omega\right\}\).
- Given \(\varphi_{n}: \operatorname{Op}_{n} \rightarrow L\), we find an extension \(\varphi_{n+1}: \mathrm{Op}_{n+1} \rightarrow L\), with \(\mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}\), as follows.

\section*{Idea of the proof \((\ell=\mathbf{C N}\) on countable, cont'd 2 )}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments ( \(\aleph_{1}\) and \(\aleph_{2}\) )

Remaining identifications ( \(\aleph_{0}\) and \(\aleph_{1}\) )
- Domain step: if \(n \equiv 0(\bmod 3)\), then \(\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{f_{\lfloor n / 3\rfloor}\right\}\) and pick any extension \(\varphi_{n+1}: \mathrm{Op}_{n+1} \rightarrow L\) (requires a nontrivial lattice-theoretical technical lemma for existence).

\section*{Idea of the proof ( \(\ell=\mathbf{C N}\) on countable, cont'd 2 )}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)

■ Domain step: if \(n \equiv 0(\bmod 3)\), then \(\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{f_{[n / 3]}\right\}\) and pick any extension \(\varphi_{n+1}: \mathrm{Op}_{n+1} \rightarrow L\) (requires a nontrivial lattice-theoretical technical lemma for existence).
■ Range step: if \(n \equiv 1(\bmod 3)\), then \(\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{\delta_{k}\right\}\) for large enough \(k\), then pick the extension \(\llbracket \delta_{k}>0 \rrbracket \mapsto a\lfloor n / 3\rfloor\), \(\llbracket \delta_{k}<0 \rrbracket \mapsto 0\) (easy, because then \(\mathrm{Op} \mathcal{F}_{n+1} \cong \mathrm{Op} \mathcal{F}_{n} * J_{2}\) ).

\section*{Idea of the proof \((\ell=\mathbf{C N}\) on countable, cont'd 2 )}

Spectra and subspectra arising from \(\ell\)-groups and commutative rings

Basic
definitions
Stone duality
The problem
Prelliminary
steps
Non-
containments \(\left(\aleph_{1}\right.\) and \(\left.\aleph_{2}\right)\)

Remaining identifications \(\left(\aleph_{0}\right.\) and \(\left.\aleph_{1}\right)\)

■ Domain step: if \(n \equiv 0(\bmod 3)\), then \(\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{f_{\lfloor n / 3\rfloor}\right\}\) and pick any extension \(\varphi_{n+1}\) : \(\mathrm{Op} \mathcal{F}_{n+1} \rightarrow L\) (requires a nontrivial lattice-theoretical technical lemma for existence).
■ Range step: if \(n \equiv 1(\bmod 3)\), then \(\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup\left\{\delta_{k}\right\}\) for large enough \(k\), then pick the extension \(\llbracket \delta_{k}>0 \rrbracket \mapsto a_{\lfloor n / 3\rfloor}\), \(\llbracket \delta_{k}<0 \rrbracket \mapsto 0\) (easy, because then \(\mathrm{Op} \mathcal{F}_{n+1} \cong \mathrm{Op} \mathcal{F}_{n} * J_{2}\) ).
■ Closure step: if \(n \equiv 2(\bmod 3)\), then \(\mathcal{F}_{n+1}\) is a large enough finite subset of \(\mathbb{Z}^{(\omega)}\) containing \(\mathcal{F}_{n}\) such that all "closure defects" \(\varphi_{n}(X) \leq \varphi_{n}(Y) \vee a_{k}\), where \(X, Y \in O p \mathcal{F}_{n}\) and \(k \leq n\), are corrected in \(\mathcal{F}_{n+1}\) (the hardest part of the argument).

\section*{Further feeding the}
```

Spectra and
subspectra arising from ℓ-groups and commutative
rings

```

\section*{Basic}
```

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining identifications
(\aleph_{0} and \aleph_{1})

Further feeding the (black) : $\mathbf{R}=\mathbf{C N}$ on countable

Spectra and subspectra arising from ℓ-groups and commutative rings

■ Proceeds in a similar fashion as the argument for $\ell=\mathbf{C N}$ on countable, with more ingredients added. We fix a countable real-closed field \mathbb{k}.

Further feeding the (black)
 $\mathbf{R}=\mathbf{C N}$ on countable

■ Proceeds in a similar fashion as the argument for $\ell=\mathbf{C N}$ on countable, with more ingredients added. We fix a countable real-closed field \mathbb{k}.

- The basic features of the lattices Op \mathcal{F} need to be extended to the case where \mathcal{F} consists of affine functionals, restricted to convex subsets of any \mathbb{k}^{d}.

Further feeding the (black)
 $\mathrm{R}=\mathrm{CN}$ on countable

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

■ Proceeds in a similar fashion as the argument for $\ell=\mathbf{C N}$ on countable, with more ingredients added. We fix a countable real-closed field \mathbb{k}.

- The basic features of the lattices Op \mathcal{F} need to be extended to the case where \mathcal{F} consists of affine functionals, restricted to convex subsets of any \mathbb{k}^{d}.

Triangulation Theorem (Bochnak, Coste, and Roy 1987?)

Given semi-algebraic sets $S_{0}, \ldots, S_{I} \subseteq S \subseteq \mathbb{k}^{d}$ with S closed bounded, there are a simplicial complex \mathbb{K} in \mathbb{K}^{d} and a semi-algebraic homeomorphism $\tau: S \rightarrow|\mathbb{K}|$ such that each $\tau\left[S_{i}\right]$ is partitioned (i.e., union of open simplices) by \mathbb{K}.

$\mathbf{R}=\mathbf{C N}$ on countable (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications
(\aleph_{0} and \aleph_{1})

The following improvement of the Triangulation Theorem is needed:

$\mathbf{R}=\mathbf{C N}$ on countable (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Prelliminary
steps

Non-

containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

The following improvement of the Triangulation Theorem is needed:

Normal Triangulation Theorem (Baro 2010)
Let \mathbb{K} be a simplicial complex of \mathbb{K}^{d} and let S_{1}, \ldots, S, be semi-algebraic subsets of $|\mathbb{K}|$. Then there are a triangulation (\mathbb{L}, ψ) of $\left(|\mathbb{K}| ; S_{1}, \ldots, S_{l}\right)$ such that \mathbb{L} is a subdivision of \mathbb{K} and $\psi[S]=S$ for each open simplex of \mathbb{K}.

$\mathbf{R}=\mathbf{C N}$ on countable (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

The following improvement of the Triangulation Theorem is needed:

Normal Triangulation Theorem (Baro 2010)
Let \mathbb{K} be a simplicial complex of \mathbb{K}^{d} and let S_{1}, \ldots, S, be semi-algebraic subsets of $|\mathbb{K}|$. Then there are a triangulation (\mathbb{L}, ψ) of $\left(|\mathbb{K}| ; S_{1}, \ldots, S_{l}\right)$ such that \mathbb{L} is a subdivision of \mathbb{K} and $\psi[S]=S$ for each open simplex of \mathbb{K}.
"Straightening up the semi-algebraic sets S_{i} while keeping the open simplices of \mathbb{K} intact."

$\mathrm{R}=\mathrm{CN}$ on countable (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications (\aleph_{0} and \aleph_{1})

The following improvement of the Triangulation Theorem is needed:

Normal Triangulation Theorem (Baro 2010)

Let \mathbb{K} be a simplicial complex of \mathbb{K}^{d} and let S_{1}, \ldots, S, be semi-algebraic subsets of $|\mathbb{K}|$. Then there are a triangulation (\mathbb{L}, ψ) of $\left(|\mathbb{K}| ; S_{1}, \ldots, S_{l}\right)$ such that \mathbb{L} is a subdivision of \mathbb{K} and $\psi[S]=S$ for each open simplex of \mathbb{K}.
"Straightening up the semi-algebraic sets S_{i} while keeping the open simplices of \mathbb{K} intact."
Then the role of the lattices $\mathrm{Op} \mathcal{F}$ is played by images of lattices $\operatorname{Op}(\mathcal{F}, \Omega)$ (relativization of $\operatorname{Op} \mathcal{F}$ to a convex subset Ω) under semi-algebraic homeomorphisms. Induction step taken care of via the Normal Triangulation Theorem.

Stating $\mathbf{R}=\mathbf{C N}$ for countable (and more)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
(\aleph_{1} and \aleph_{2})
Remaining identifications (\aleph_{0} and \aleph_{1})

Theorem (W 2021)
Let \mathbb{k} be a countable formally real field $\left(-1 \neq \sum_{i} x_{i}^{2}\right)$. Then every countable completely normal bounded distributive lattice is isomorphic to $\operatorname{ld}_{c}^{r} A$ for some (commutative unital) f-ring and \mathbb{k}-algebra A.

Stating $\mathbf{R}=\mathbf{C N}$ for countable (and more)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications (\aleph_{0} and \aleph_{1})

Theorem (W 2021)
Let \mathbb{k} be a countable formally real field $\left(-1 \neq \sum_{i} x_{i}^{2}\right)$. Then every countable completely normal bounded distributive lattice is isomorphic to $\operatorname{ld}_{c}^{r} A$ for some (commutative unital) f-ring and \mathbb{k}-algebra A.

The countability of \mathbb{k} cannot be dispensed with (W 2021).

Stating $\mathbf{R}=\mathbf{C N}$ for countable (and more)

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Prelliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining

Theorem (W 2021)

Let \mathbb{k} be a countable formally real field $\left(-1 \neq \sum_{i} x_{i}^{2}\right)$. Then every countable completely normal bounded distributive lattice is isomorphic to $\operatorname{ld}_{c}^{r} A$ for some (commutative unital) f-ring and \mathbb{k}-algebra A.

The countability of \mathbb{k} cannot be dispensed with (W 2021).

Corollary

Every second countable completely normal spectral space is homeomorphic to the real spectrum of some commutative unital ring.

The remaining identification: $\mathbf{C N}=\mathbf{S} \ell$ at \aleph_{1}

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

Theorem (Ploščica and W 2022)
Every completely normal bounded distributive lattice with $\leq \aleph_{1}$ elements is a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for some Abelian ℓ-group G with unit.

The remaining identification: $\mathbf{C N}=\mathbf{S} \ell$ at \aleph_{1}

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

Theorem (Ploščica and W 2022)

Every completely normal bounded distributive lattice with $\leq \aleph_{1}$ elements is a homomorphic image of $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ for some Abelian ℓ-group G with unit.

Again, this extends to vector lattices over countable totally ordered division rings \mathbb{k}. The countability of \mathbb{k} cannot be dispensed with (W 2021).

The remaining identification: $\mathbf{C N}=\mathbf{S} \ell$ at \aleph_{1}

Spectra and
subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining

Theorem (Ploščica and W 2022)

Every completely normal bounded distributive lattice with $\leq \aleph_{1}$ elements is a homomorphic image of $\operatorname{Id}_{\mathrm{c}}^{\ell} G$ for some Abelian ℓ-group G with unit.

Again, this extends to vector lattices over countable totally ordered division rings \mathbb{k}. The countability of \mathbb{k} cannot be dispensed with (W 2021).

Corollary

Every completely normal spectral space, with $\leq \aleph_{1}$ compact open sets, can be embedded as a spectral subspace into $\mathrm{Spec}_{\ell} G$ for some Abelian ℓ-group G with unit.

Idea of the proof

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

- Write a completely normal bounded distributive lattice L with \aleph_{1} elements as an ascending union $L=\bigcup\left(L_{\xi} \mid \xi<\omega_{1}\right)$ for countable completely normal bounded sublattices L_{ξ}.

Idea of the proof

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

- Write a completely normal bounded distributive lattice L with \aleph_{1} elements as an ascending union $L=\bigcup\left(L_{\xi} \mid \xi<\omega_{1}\right)$ for countable completely normal bounded sublattices L_{ξ}.
■ Iteratively represent all subdiagrams $\left(L_{\xi} \mid \xi<\alpha\right)$, for $\alpha<\omega_{1}$, as homomorphic images of \mathbb{k}-vector lattices diagrams (\mathbb{k} given countable totally ordered division ring).

Idea of the proof

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

- Write a completely normal bounded distributive lattice L with \aleph_{1} elements as an ascending union $L=\bigcup\left(L_{\xi} \mid \xi<\omega_{1}\right)$ for countable completely normal bounded sublattices L_{ξ}.
■ Iteratively represent all subdiagrams $\left(L_{\xi} \mid \xi<\alpha\right)$, for $\alpha<\omega_{1}$, as homomorphic images of \mathbb{k}-vector lattices diagrams (\mathbb{k} given countable totally ordered division ring).
- The next slide describes what the induction step looks like.

Idea of the proof (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments $\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$

Remaining identifications $\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

■ For $I \subseteq J$ countably infinite, $\mathcal{D} \subseteq \mathbb{k}^{(J)}$ finite, $a \in \mathbb{k}^{(J)}$, and a completely normal bounded distributive lattice L, we need to extend a 0,1-lattice homomorphism $f: \operatorname{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D}, \mathbb{k}^{(J)}\right) \rightarrow L$ to a lattice homomorphism $g: O p\left(\mathbb{k}^{(I)} \cup \mathcal{D} \cup\{a\}, \mathbb{k}^{(J)}\right) \rightarrow L$.

Idea of the proof (cont'd)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

■ For $I \subseteq J$ countably infinite, $\mathcal{D} \subseteq \mathbb{k}^{(J)}$ finite, $a \in \mathbb{k}^{(J)}$, and a completely normal bounded distributive lattice L, we need to extend a 0,1-lattice homomorphism $f: \operatorname{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D}, \mathbb{k}^{(J)}\right) \rightarrow L$ to a lattice homomorphism $g: \operatorname{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D} \cup\{a\}, \mathbb{k}^{(J)}\right) \rightarrow L$.

- This is done as in the finite case (i.e., extend $f: \operatorname{Op}\left(\mathcal{D}, \mathbb{K}^{(J)}\right) \rightarrow L$ with \mathcal{D} finite), via a more general lattice-theoretical extension lemma.

Idea of the proof (cont'd)

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments

■ For $I \subseteq J$ countably infinite, $\mathcal{D} \subseteq \mathbb{k}^{(J)}$ finite, $a \in \mathbb{k}^{(J)}$, and a completely normal bounded distributive lattice L, we need to extend a 0,1-lattice homomorphism $f: \operatorname{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D}, \mathbb{k}^{(J)}\right) \rightarrow L$ to a lattice homomorphism $g: \operatorname{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D} \cup\{a\}, \mathbb{k}^{(J)}\right) \rightarrow L$.

- This is done as in the finite case (i.e., extend $f: \operatorname{Op}\left(\mathcal{D}, \mathbb{K}^{(J)}\right) \rightarrow L$ with \mathcal{D} finite), via a more general lattice-theoretical extension lemma. A key point is that the Boolean algebra Bool $\left(\mathbb{K}^{(I)} \cup \mathcal{D}, \mathbb{K}^{(J)}\right)$ (generated by $\left.\mathrm{Op}\left(\mathbb{k}^{(I)} \cup \mathcal{D}, \mathbb{k}^{(J)}\right)\right)$ is relatively complete in $\operatorname{Bool}\left(\mathbb{k}^{(J)}, \mathbb{k}^{(J)}\right)$.
- There is no longer any need to consider the closure step.

A few references (logic, category theory)

Spectra and subspectra arising from ℓ-groups and commutative rings

Basic
definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications (\aleph_{0} and \aleph_{1})

1 J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
2 P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
3 H.M. Tuuri, Relative separation theorems for $\mathscr{L}_{\kappa+\kappa}$, Notre Dame J. Formal Logic 33 (1992), no. 3, 383-401.
4 F. Wehrung, From non-commutative diagrams to anti-elementary classes, J. Math. Logic 21, no. 2 (2021), 2150011.

5 F. Wehrung, Projective classes as images of accessible functors, J. Logic Comput., to appear, 45 p.

A few references (spectra)

1 F. Wehrung, Spectral spaces of countable Abelian lattice-ordered groups, Trans. Amer. Math. Soc. 371 (2019), no. 3, 2133-2158.

2 F. Wehrung, Cevian operations on distributive lattices, J. Pure Appl. Algebra 224 (2020), no. 4, 106202, 23 p.
3 F. Wehrung, Real spectra and ℓ-spectra of algebras and vector lattices over countable fields, J. Pure Appl. Algebra 226 (2022), no. 4, Paper No. 106861, 25 p.
4 F. Wehrung, Real spectrum versus ℓ-spectrum via Brumfiel spectrum, Algebr. Represent. Theory, to appear, 22 p.
5 M. Ploščica and F. Wehrung, Spectral subspaces of spectra of Abelian lattice-ordered groups in size aleph one, preprint, in preparation.

> Spectra and
> subspectra arising from ℓ-groups and commutative
> rings

Basic

definitions
Stone duality
The problem
Preliminary
steps
Non-
containments
$\left(\aleph_{1}\right.$ and $\left.\aleph_{2}\right)$
Remaining identifications
$\left(\aleph_{0}\right.$ and $\left.\aleph_{1}\right)$

Thanks for your attention!

