Dependence logic and team semantics

Fan Yang
University of Helsinki, Finland

TACL 2022
Coimbra, 20-24 June 2022

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$

Motivating example (due to Hodges 1997)

Let $/$ be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I
if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$

Motivating example (due to Hodges 1997)

Let / be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be coniformly continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$

Motivating example (due to Hodges 1997)

Let / be a subset of \mathbb{R}.
Definition:
A function $f: I \rightarrow \mathbb{R}$ is said to be coniformly continuous on I if for any $x_{0} \in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in I$,
which does not depend on x_{0}

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$

Motivating example (due to Hodges 1997)

Let / be a subset of \mathbb{R}.
Definition:
Aenion uniformly
A function $f: I \rightarrow \mathbb{R}$ is said to be continuous on I
if for any $\epsilon>0$ there exists $\delta>0$
such that for any $x_{0} \in I$ and any $x \in I$,

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon .
$$

continuity: $\forall x_{0} \forall \epsilon \exists \delta \forall x \phi$ uniform continuity: $\forall \epsilon \exists \delta \forall x_{0} \forall x \phi$

$\forall u \exists v \forall x \exists y \phi$

$$
\forall \widehat{u \exists v \forall x \exists y} \phi
$$

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

Henkin Quantifiers (1961):

$$
\left(\begin{array}{ll}
\forall u & \exists v \\
\forall x & \exists y
\end{array}\right) \phi
$$

$$
\forall u \exists v \forall x \exists y \phi
$$

Henkin Quantifiers (1961):

$$
\binom{\forall u \exists v}{\forall x \exists y} \phi
$$

meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u) / v, g(x) / y)$

$$
\forall u \exists v \forall x \exists y \phi
$$

Henkin Quantifiers (1961):

$$
\binom{\forall u \exists v}{\forall x \exists y} \phi
$$

$$
\text { meaning } \exists f \exists g \forall u \forall x \phi(u, x, f(u) / v, g(x) / y)
$$

(Enderton, Walkoe, 1970)
first-order logic+Henkin quantifiers \equiv existential second-order logic (ESO)

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

Henkin Quantifiers (1961):

$$
\left(\begin{array}{ll}
\forall u & \exists v \\
\forall x & \exists y
\end{array}\right) \phi
$$

meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u) / v, g(x) / y)$
Independence-Friendly Logic (Hintikka and Sandu, 1989):

$$
\forall u \exists v \forall x \exists y /\{u\} \phi
$$

imperfect information game
(Enderton, Walkoe, 1970)
first-order logic+Henkin quantifiers \equiv existential second-order logic (ESO)
\equiv independence-friendly logic

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

Henkin Quantifiers (1961):

$$
\left(\begin{array}{ll}
\forall u & \exists v \\
\forall x & \exists y
\end{array}\right) \phi
$$

meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u) / v, g(x) / y)$
Independence-Friendly Logic (Hintikka and Sandu, 1989):

$$
\forall u \exists v \forall x \exists y /\{u\} \phi
$$

imperfect information game
(Enderton, Walkoe, 1970)
first-order logic+Henkin quantifiers \equiv existential second-order logic (ESO) \equiv independence-friendly logic

Dependence logic (Väänänen 2007): $\quad \forall u \exists v \forall x \exists y(\phi \wedge=(x, y))$
" x completely determines y "

$$
=(x, y)
$$

" x completely determines y "

$$
y=f(x)=x^{2}
$$

" x completely determines y "

$$
=(\underbrace{x, y}_{\exists f})
$$

Dependence atoms (Väänänen 2007) \& team semantics (Hodges 1997)

	x	y	z
s	$\sqrt{2}$	2	0

$$
y=f(x)=x^{2}
$$

Given a model M, and an assignment $s: \operatorname{Var} \rightarrow M$, $M \neq s$ " x completely determines y "??

Dependence atoms (Väänänen 2007) \& team semantics (Hodges 1997)

Given a model M, and an assignment $s: \operatorname{Var} \rightarrow M$, $M \neq_{s}$ " x completely determines y "??

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

$$
y=f(x)=x^{2}
$$

Given a model M, and a team X, $M \equiv x$ " x completely determines y " iff for all $s, s^{\prime} \in X$,

$$
s(x)=s^{\prime}(x) \Longrightarrow s(y)=s^{\prime}(y)
$$

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

$$
y=f(x)=x^{2}
$$

Given a model M, and a team X,
$M \equiv x$ " x completely determines y " iff for all $s, s^{\prime} \in X$,

$$
s(x)=s^{\prime}(x) \Longrightarrow s(y)=s^{\prime}(y)
$$

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

$$
y=f(x)=x^{2}
$$

Given a model M, and a team X,
$M \equiv x$ " x completely determines y " iff for all $s, s^{\prime} \in X$,

$$
s(x)=s^{\prime}(x) \Longrightarrow s(y)=s^{\prime}(y)
$$

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

$$
y=f(x)=x^{2}
$$

Given a model M, and a team X, $M \equiv x$ " x completely determines y " iff for all $s, s^{\prime} \in X$,

$$
s(x)=s^{\prime}(x) \Longrightarrow s(y)=s^{\prime}(y)
$$

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

$$
y=f(x)=x^{2}
$$

Given a model M, and a team X,
$M \models x=(x, y)$ iff for all $s, s^{\prime} \in X$,

$$
s(x)=s^{\prime}(x) \Longrightarrow s(y)=s^{\prime}(y)
$$

	x	y	z
s_{0}	$\sqrt{2}$	2	0
s_{1}	$\sqrt{2}$	2	1
s_{2}	-2	4	$\sqrt{2}$
s_{3}	-2	4	2
s_{4}	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \rightarrow M$

Given a model M, and a team X,
$M \models x=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X$,

$$
s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})
$$

	w	x	y
s_{0}	c	a	b
s_{1}	a	a	d
s_{2}	a	a	c
s_{3}	b	a	e
s_{4}	c	a	a

A team: a set of assignments $s: V \rightarrow M$

Given a model M, and a team X,
$M \models x=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X$,

$$
s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})
$$

$$
M \models x=(\langle \rangle, \vec{x}) \text { iff for all } s, s^{\prime} \in X, s(\vec{x})=s^{\prime}(\vec{x}) .
$$

	w	x	y
s_{0}	c	a	b
s_{1}	a	a	d
s_{2}	a	a	c
s_{3}	b	a	e
s_{4}	c	a	a

A team: a set of assignments $s: V \rightarrow M$

Given a model M, and a team X,
$M \models x=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X$,

$$
s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})
$$

- Constancy atom: $M \models_{X}=(\vec{x})$ iff for all $s, s^{\prime} \in X, s(\vec{x})=s^{\prime}(\vec{x})$.

	x	y	z	v
s_{0}	c	d	a	a
s_{1}	c	d	a	b
s_{2}	a	e	c	c
s_{3}	a	e	c	d

- A team can be viewed as a relational database.

	x	y	z	v
s_{0}	c	d	a	a
s_{1}	c	d	a	b
s_{2}	a	e	c	c
s_{3}	a	e	c	d

- A team can be viewed as a relational database.
- Dependence atoms $=(\vec{x}, \vec{y})$ correspond exactly to functional dependencies $\vec{x} \rightarrow \vec{y}$ in database theory

	x	y	z	v
s_{0}	c	d	a	a
s_{1}	c	d	a	b
s_{2}	a	e	c	c
s_{3}	a	e	c	d

- A team can be viewed as a relational database.
- Dependence atoms $=(\vec{x}, \vec{y})$ correspond exactly to functional dependencies $\vec{x} \rightarrow \vec{y}$ in database theory
- Armstrong's Axioms (1974) for functional dependencies:
- $=(\vec{x}, \vec{x})$
- $=(\vec{x} \vec{y}, \vec{z})$ implies $=(\vec{y} \vec{x}, \vec{z})$
- $=(\vec{x} \vec{x}, \vec{y})$ implies $=(\vec{x}, \vec{y})$
- $=(\vec{y}, \vec{z})$ implies $=(\vec{x} \vec{y}, \vec{z})$
- $=(\vec{x}, \vec{y})$ and $=(\vec{y}, \vec{z})$ imply $=(\vec{x}, \vec{z})$
- Dependence logic (Väänänen 2007): first-order logic $+=(\vec{x}, \vec{y})$
- First-order logic (FO):

$$
\alpha::=t=t^{\prime}|R \vec{t}| \neg \alpha|\alpha \wedge \alpha| \alpha \vee \alpha|\exists x \alpha| \forall x \alpha
$$

- Dependence logic (Väänänen 2007): first-order logic $+=(\vec{x}, \vec{y})$
- First-order logic (FO):

$$
\alpha::=t=t^{\prime}|R \vec{t}| \neg \alpha|\alpha \wedge \alpha| \alpha \vee \alpha|\exists x \alpha| \forall x \alpha
$$

- Dependence logic (Väänänen 2007):

$$
\begin{aligned}
& \phi::=\alpha|\neg \alpha| \phi \wedge \phi|\phi \vee \phi| \exists x \phi|\forall x \phi|=(\underbrace{\vec{x}, \vec{y})}_{\exists f} \\
& \text { where } \alpha \text { is an FO-formula }
\end{aligned}
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

x	y	z
3	4	5
2	3	0
1	2	3
0	1	0

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

$\left\lvert\,$| x | y | z |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| 2 | 3 | 0 |
| 1 | 2 | 3 |
| 0 | 1 | 0 |$\quad x<y\right.$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

$$
\begin{array}{|lll|l}
x & y & z \\
3 & 4 & 5 \\
2 & 3 & 0 & \\
1 & 2 & 3 \\
0 & 1 & 0 & \\
\hline
\end{array}
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

$$
\begin{array}{|lll|l}
x & y & z & \\
3 & 4 & 5 \\
2 & 3 & 0 & x<y \\
1 & 2 & 3 \\
0 & 1 & 0 & \\
\hline
\end{array}
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

$\left\lvert\,$| x | y | z |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| 2 | 3 | 0 |
| 1 | 2 | 3 |
| 0 | 1 | 0 |$\quad x<y\right.$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula

$$
\left|\begin{array}{lll}
x & y & z \\
3 & 4 & 5 \\
2 & 0 & 0 \\
1 & 2 & 3 \\
0 & 1 & 0
\end{array}\right| \quad M \not \models_{x} x<y
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \forall_{s} \alpha$, whenever α is a first-order formula

$$
\left.\begin{array}{|ccc|}
x & y & z \\
3 & 4 & 5 \\
2 & 0 & 0 \\
1 & 2 & 3 \\
0 & 1 & 0
\end{array} \right\rvert\, \quad M \not \models x x<y
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models_{\gamma} \phi \& M \models_{z} \psi$.

x	y	z
3	4	5
2	0	0
1	2	3
0	1	0

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \vDash_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models \gamma \phi$ \& $M \models_{z} \psi$.

x	y	z
3	4	5
2	0	0
1	2	3
0	1	0

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \vDash_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \neq \gamma \phi \& M \models_{z} \psi$.

x	y	z
3	4	5
2	0	0
1	2	3
0	1	0

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \vDash_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \neq \gamma \phi \& M \models_{z} \psi$.

x	y	z	$\begin{gathered} \alpha \\ \alpha \end{gathered} \quad \alpha \vee \beta$
3	4	5	
	0	0	
1	2	3	
0	1	0	

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M=x=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models \gamma \phi \& M \models^{\prime} \psi \psi$.
- $M \models x \exists \boldsymbol{v} \alpha$ iff $\forall s \in X: M \models_{s} \exists v \alpha$

x	y	z
3	4	5
2	0	0
1	2	3
0	1	0

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models \gamma \phi \& M \models^{\prime} \models^{\prime} \psi$.
- $M \neq x \exists \boldsymbol{v} \alpha$ iff $\forall s \in X: M \models_{s} \exists v \alpha$

$$
\begin{array}{|ccc|c|c}
x & y & z & v & \\
3 & 4 & 5 & 0 & \\
2 & 0 & 0 & 1 & M \\
1 & 2 & 3 & 2 & \\
0 & 1 & 0 & 3 & \\
& & & &
\end{array}
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models \gamma \phi \& M \models^{\prime} \models^{\prime} \psi$.
- $M \neq x \exists \boldsymbol{v} \alpha$ iff $\forall s \in X: M \models_{s} \exists v \alpha$

$$
\begin{array}{|ccc|c|}
x & y & z & v \\
3 & 4 & 5 & 0 \\
2 & 0 & 0 & 1 \\
1 & 2 & 3 & 2 \\
0 & 1 & 0 & 3 \\
& & \\
& & & \\
& & &
\end{array}
$$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models_{\gamma} \phi \& M \models_{z} \psi$.
- $M \models x \exists v \phi$ iff there exists $F: X \rightarrow \wp(M) \backslash\{\emptyset\}$, s.t. $M \models_{x(F / v)} \phi$, where

$$
X(F / v)=\{s(a / v) \mid s \in X \text { and } a \in F(s)\} .
$$

$\left.\begin{array}{|lll|l|l}x & y & z & v & \\ 3 & 4 & 5 & 0 \\ 2 & 0 & 0 & 1 & \\ 1 & 2 & 3 & 2 & \\ 0 & 1 & 0 & 3\end{array}\right]$

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M \models_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models \gamma \phi \& M \models^{\prime} \psi \psi$.
- $M \models x \exists v \phi$ iff there exists $F: X \rightarrow \wp(M) \backslash\{\emptyset\}$, s.t. $M \models x(F / v) \phi$, where

$$
X(F / v)=\{s(a / v) \mid s \in X \text { and } a \in F(s)\} .
$$

- $M \models_{x} \forall v \phi$ iff $M \models x(M / v) \phi$, where $X(M / v)=\{s(a / v) \mid s \in X \& a \in M\}$.

x	y	z	v	
3	4	5	0	
2	0	0	1	
1	2	3	2	
0	1	0	3	

Team semantics

Let X be a team, i.e., a set of assignments $s: \operatorname{Var} \rightarrow M$.

- $M=_{x}=(\vec{x}, \vec{y})$ iff for all $s, s^{\prime} \in X: s(\vec{x})=s^{\prime}(\vec{x}) \Longrightarrow s(\vec{y})=s^{\prime}(\vec{y})$.
- $M \models_{x} \alpha$ iff for all $s \in X, M \models_{s} \alpha$, whenever α is a first-order formula
- $M \neq x \neg \alpha$ iff for all $s \in X, M \not \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{x} \phi \wedge \psi$ iff $M \models_{x} \phi$ and $M \models_{x} \psi$.
- $M \models x \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models_{\gamma} \phi \& M \models_{z} \psi$.
- $M \models x \exists v \phi$ iff there exists $F: X \rightarrow \wp(M) \backslash\{\emptyset\}$, s.t. $M \models x(F / v) \phi$, where

$$
X(F / v)=\{s(a / v) \mid s \in X \text { and } a \in F(s)\} .
$$

- $M \models_{x} \forall v \phi$ iff $M \models x(M / v) \phi$, where $X(M / v)=\{s(a / v) \mid s \in X \& a \in M\}$.

Empty team property: $M \models_{\emptyset \phi}$.
Downward closure: $M \models_{x} \phi$ and $Y \subseteq X \Longrightarrow M \models_{\gamma} \phi$.
For every formula α of the standard first-order logic,
Union closure: $M \models x_{i} \alpha$ for all $i \in I \neq \emptyset$, then $M \models \bigcup_{i \in i} x_{i} \alpha$.
Flatness: $M \models_{x} \alpha \Longleftrightarrow \forall s \in X: M \models_{\{s\}} \alpha \Longleftrightarrow \forall s \in X: M \models_{s} \alpha$.
$x \perp y$
$x \perp y$
$x \perp y$

- $M=x \vec{x} \perp \vec{y} \quad$ iff \quad for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that $s^{\prime \prime}(\vec{x})=s(\vec{x})$ and $s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})$.

$x \perp y |$| x | y | z |
| :--- | :--- | :--- |
| a | b | e |
| c | d | d |
| c | b | e |
| a | d | a |

- $M=_{x} \vec{x} \perp \vec{y}$ iff for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that $s^{\prime \prime}(\vec{x})=s(\vec{x})$ and $s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})$.

$x \perp y |$| x | y | z |
| :--- | :--- | :--- |
| a | b | e |
| c | d | d |
| c | b | e |
| a | d | a |

- $M=_{x} \vec{x} \perp \vec{y}$ iff for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that $s^{\prime \prime}(\vec{x})=s(\vec{x})$ and $s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})$.

$x \perp y |$| x | y | z |
| :--- | :--- | :--- |
| a | b | e |
| c | d | d |
| c | b | e |
| a | d | a |

- $M=_{x} \vec{x} \perp \vec{y}$ iff for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that $s^{\prime \prime}(\vec{x})=s(\vec{x})$ and $s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})$.

$x \perp y |$| x | y | z |
| :--- | :--- | :--- |
| a | b | e |
| c | d | d |
| c | b | e |
| a | d | a |

- $M=_{x} \vec{x} \perp \vec{y}$ iff for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that

$$
s^{\prime \prime}(\vec{x})=s(\vec{x}) \text { and } s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})
$$

- $M=_{X} \vec{x} \perp_{\vec{z}} \vec{y}$ iff for all $s, s^{\prime} \in X$ s.t. $s(\vec{z})=s^{\prime}(\vec{z})$, there exists $s^{\prime \prime} \in X$ s.t. $s^{\prime \prime}(\vec{z})=s(\vec{z})$,

$$
s^{\prime \prime}(\vec{x})=s(\vec{x}) \text { and } s^{\prime \prime}(\vec{y})=s^{\prime}(\vec{y})
$$

... correspond to embedded multivalued dependencies $\vec{z} \rightarrow \vec{x} \mid \vec{y}$ in database theory

Fact: $=(x, y) \equiv y \perp_{x} y$, thus $\mathrm{FO}(=(\ldots)) \lesseqgtr \mathrm{FO}(\perp)$ (i.e., $\left.\mathrm{FO}+\vec{x} \perp_{\vec{z}} \vec{y}\right)$.

Expressing dependencies and swapping quantifiers

The following dependence relation:

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

can be expressed in dependence logic as

- $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y))$

Expressing dependencies and swapping quantifiers

The following dependence relation:

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

can be expressed in dependence logic as

- $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y))$
- or $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y) \wedge=(u, v))$ (to be more rigorous),

Expressing dependencies and swapping quantifiers

The following dependence relation:

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

can be expressed in dependence logic as

- $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y))$
- or $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y) \wedge=(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y(\phi \wedge=(x, y) \wedge=(u, v))$.

Expressing dependencies and swapping quantifiers

The following dependence relation:

$$
\forall u \exists v \forall \widehat{x \exists y} \phi
$$

can be expressed in dependence logic as

- $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y))$
- or $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y) \wedge=(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y(\phi \wedge=(x, y) \wedge=(u, v))$.

Lemma. For any formula ϕ of $\mathrm{FO}(=(\ldots))$,

$$
\exists y \forall x \phi(x, y, \vec{v}) \equiv \forall x \exists y(=(\vec{v}, y) \wedge \phi) .
$$

Expressing dependencies and swapping quantifiers

The following dependence relation:

$$
\forall u \exists v \forall x \exists y \phi
$$

can be expressed in dependence logic as

- $\forall u \exists \forall \forall x \exists y(\phi \wedge=(x, y))$
- or $\forall u \exists v \forall x \exists y(\phi \wedge=(x, y) \wedge=(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y(\phi \wedge=(x, y) \wedge=(u, v))$.

Lemma. For any formula ϕ of $\mathrm{FO}(=(\ldots))$,

$$
\exists y \forall x \phi(x, y, \vec{v}) \equiv \forall x \exists y(=(\vec{v}, y) \wedge \phi) .
$$

Prop. For any formula ϕ of $\mathrm{FO}(=(\ldots))$, we have that

$$
\phi \equiv \forall \vec{x} \exists \vec{y} \theta
$$

for some quantifier-free formula θ.
Pf. First transform ϕ into an equivalent formula in prenex normal form $Q_{1} x_{1} \ldots Q_{n} x_{n} \theta$, where each $Q_{i} \in\{\forall, \exists\}$ and θ is quantifier-free. Then apply Lemma exhaustedly.

Defining infinity
$|M|=\infty$

Defining infinity
$|M|=\infty$ iff $\exists f: \square$

Defining infinity

Defining infinity
$|M|=\infty$ iff $\exists f: \square$

$$
|M|=\infty \text { iff } \exists f:
$$

- An existential second-order (ESO) sentence:
$\exists f \exists v \forall x_{0} \forall x_{1}\left(\left(f\left(x_{0}\right)=f\left(x_{1}\right) \rightarrow x_{0}=x_{1}\right) \wedge f\left(x_{0}\right) \neq v\right)$

$$
|M|=\infty \text { iff } \exists f:
$$

- An existential second-order (ESO) sentence:
$\exists f \exists v \forall x_{0} \forall x_{1}\left(\left(f\left(x_{0}\right)=f\left(x_{1}\right) \rightarrow x_{0}=x_{1}\right) \wedge f\left(x_{0}\right) \neq v\right)$
- $\mathrm{An} \mathrm{FO}(=(. .$.$))-sentence:$

$$
\phi_{\infty}:=\exists v \forall x \exists y(=(x, y) \wedge=(y, x) \wedge(v \neq y))
$$

$$
|M|=\infty \text { iff } \exists f:
$$

- An existential second-order (ESO) sentence:
$\exists f \exists v \forall x_{0} \forall x_{1}\left(\left(f\left(x_{0}\right)=f\left(x_{1}\right) \rightarrow x_{0}=x_{1}\right) \wedge f\left(x_{0}\right) \neq v\right)$
- $\mathrm{An} \mathrm{FO}(=(. .$.$))-sentence:$

$$
\phi_{\infty}:=\exists v \forall x \exists y(=(x, y) \wedge=(y, x) \wedge(v \neq y))
$$

$$
|M|=\infty \text { iff } \exists f:
$$

- An existential second-order (ESO) sentence:
$\exists f \exists v \forall x_{0} \forall x_{1}\left(\left(f\left(x_{0}\right)=f\left(x_{1}\right) \rightarrow x_{0}=x_{1}\right) \wedge f\left(x_{0}\right) \neq v\right)$
- $\mathrm{An} \mathrm{FO}(=(. .$.$))-sentence:$

$$
\phi_{\infty}:=\exists v \forall x \exists y(=(x, y) \wedge=(y, x) \wedge(v \neq y))
$$

Theorem (Väänänen 2007)

For any ESO-sentence ϕ, there is an $\mathrm{FO}(=(\ldots))$-sentence ψ such that for any model M,

$$
M \models \phi \Longleftrightarrow M \models \psi ;
$$

and vice versa.
Proof (Idea):

- $\mathrm{ESO} \Longrightarrow \mathrm{FO}(=(\ldots))$:

$$
\text { E.g., } M \models \exists f \forall \vec{x} \alpha\left(\vec{x}, f\left(\vec{x}_{i}\right)\right) \Longleftrightarrow M \models \forall \vec{x} \exists y\left(=\left(\vec{x}_{i}, y\right) \wedge \alpha(\vec{x}, y)\right) .
$$

- $\mathrm{FO}(=(\ldots)) \Longrightarrow \mathrm{ESO}(\mathrm{R})$: Observation: A team X over the domain $\left\{v_{1}, \ldots, v_{n}\right\}$ induces an n-ary relation $r e l(X)=\{s(\vec{v}) \mid s \in X\}$:

	v_{1}	v_{2}	\ldots	v_{n}
s_{1}	a_{11}	a_{12}	\ldots	$a_{1 n}$
s_{2}	a_{21}	a_{22}	\ldots	$a_{2 n}$
s_{3}	a_{31}	a_{32}	\ldots	$a_{3 n}$

Theorem (Väänänen 2007 \& Grädel, Väänänen 2013 \& Galliani 2012)

For any ESO-sentence ϕ, there is an $\mathrm{FO}(=(\ldots))$ - or $\mathrm{FO}(\perp)$-sentence ψ such that for any model M,

$$
M \models \phi \Longleftrightarrow M \models \psi
$$

and vice versa.
Proof (Idea):

- $\mathrm{ESO} \Longrightarrow \mathrm{FO}(=(\ldots))$:
E.g., $M \models \exists f \forall \vec{x} \alpha\left(\vec{x}, f\left(\vec{x}_{i}\right)\right) \Longleftrightarrow M \models \forall \vec{x} \exists y\left(=\left(\vec{x}_{i}, y\right) \wedge \alpha(\vec{x}, y)\right)$.
- $\mathrm{FO}(=(\ldots)) \Longrightarrow \mathrm{ESO}(\mathrm{R})$: Observation: A team X over the domain $\left\{v_{1}, \ldots, v_{n}\right\}$ induces an n-ary relation $\operatorname{rel}(X)=\{s(\vec{v}) \mid s \in X\}$:

	v_{1}	v_{2}	\ldots	v_{n}
s_{1}	a_{11}	a_{12}	\ldots	$a_{1 n}$
s_{2}	a_{21}	a_{22}	\ldots	$a_{2 n}$
s_{3}	a_{31}	a_{32}	\ldots	$a_{3 n}$

Theorem (Väänänen 2007 \& Grädel, Väänänen 2013 \& Galliani 2012)

For any ESO-sentence ϕ, there is an $\mathrm{FO}(=(\ldots))$ - or $\mathrm{FO}(\perp)$-sentence ψ such that for any model M,

$$
M \models \phi \Longleftrightarrow M \models \psi
$$

and vice versa.
Proof (Idea):

- $\mathrm{ESO} \Longrightarrow \mathrm{FO}(=(\ldots))$:

$$
\text { E.g., } M \models \exists f \forall \vec{x} \alpha\left(\vec{x}, f\left(\overrightarrow{x_{i}}\right)\right) \Longleftrightarrow M \models \forall \vec{x} \exists y\left(=\left(\overrightarrow{x_{i}}, y\right) \wedge \alpha(\vec{x}, y)\right) .
$$

- $\mathrm{FO}(=(\ldots)) \Longrightarrow \mathrm{ESO}(\mathrm{R})$: Observation: A team X over the domain $\left\{v_{1}, \ldots, v_{n}\right\}$ induces an n-ary relation $\operatorname{rel}(X)=\{s(\vec{v}) \mid s \in X\}$:

	v_{1}	v_{2}	\ldots	v_{n}
s_{1}	a_{11}	a_{12}	\ldots	$a_{1 n}$
s_{2}	a_{21}	a_{22}	\ldots	$a_{2 n}$
s_{3}	a_{31}	a_{32}	\ldots	$a_{3 n}$

Corollary. The classes of finite structures definable in $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ are exactly the ones recognized in NP.
(follows from Fagin 1973)

Partial axiomatization

Theorem (

$$
\ulcorner\models \phi \Longleftrightarrow \Gamma \vdash \phi
$$

Partial axiomatization

Theorem (Kontinen, Väänänen 2013 \& Hannula 2015)
There are (sound) systems of natural deduction for $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ such that

$$
\ulcorner\models \alpha \Longleftrightarrow\ulcorner\vdash \alpha
$$

for any set Γ of sentences and first-order sentence α.

Partial axiomatization

Theorem (Kontinen, Väänänen 2013 \& Hannula 2015 \& Y. 2016)

There are (sound) systems of natural deduction for $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ such that

$$
\ulcorner\vDash \alpha \Longleftrightarrow\ulcorner\vdash \alpha
$$

for any set Γ of formulas and essentially first-order/negatable formula α.

Def. A formula θ in L is called negatable if there exists a formula η in L s.t. $\eta \equiv \dot{\sim} \theta$, where the weak classical negation $\dot{\sim}$ is defined as

$$
M \models x \dot{\sim} \phi \Longleftrightarrow X=\emptyset \text { or } M \not \models x \phi
$$

- Remark: Neither $\mathrm{FO}(=(\ldots))$ nor $\mathrm{FO}(\perp)$ is closed under $\dot{\sim}$, since $\mathrm{FO}(\perp) \equiv \mathrm{FO}(=(\ldots)) \equiv \mathrm{ESO}$.
- First-order formulas α are negatable in $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$.

Partial axiomatization

Theorem (Kontinen, Väänänen 2013 \& Hannula 2015 \& Y. 2016)

There are (sound) systems of natural deduction for $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ such that

$$
\ulcorner\models \alpha \Longleftrightarrow \Gamma \vdash \alpha
$$

for any set Γ of formulas and essentially first-order/negatable formula α.

Def. A formula θ in L is called negatable if there exists a formula η in L s.t. $\eta \equiv \dot{\sim} \theta$, where the weak classical negation $\dot{\sim}$ is defined as

$$
M \models x \dot{\sim} \phi \Longleftrightarrow X=\emptyset \text { or } M \not \models x \phi
$$

- Remark: Neither $\mathrm{FO}(=(\ldots))$ nor $\mathrm{FO}(\perp)$ is closed under $\dot{\sim}$, since $\mathrm{FO}(\perp) \equiv \mathrm{FO}(=(\ldots)) \equiv \mathrm{ESO}$.
- First-order formulas α are negatable in $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$.
- Thm. (Y. 2016) For any formula α in $\mathrm{FO}(\perp), \dot{\sim} \alpha$ exists in $\mathrm{FO}(\perp)$ iff the ESO-translation χ_{α} of α is equiv. to a first-order formula.
- Cor. The class of negatable formulas is undecidable.

Partial axiomatization

Theorem (Kontinen, Väänänen 2013 \& Hannula 2015 \& Y. 2016)

There are (sound) systems of natural deduction for $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ such that

$$
\ulcorner\vDash \alpha \Longleftrightarrow\ulcorner\vdash \alpha
$$

for any set Γ of formulas and essentially first-order/negatable formula α.
Examples:

- Dependence and independence atoms are all negatable in $\mathrm{FO}(\perp)$. \rightsquigarrow Armstrong's axioms for functional dependencies are derivable.
\rightsquigarrow Some facts concerning independence notions in quantum theory are derivable. (Abramsky, Puljujärvi, Väänänen 2021)

Partial axiomatization

Theorem (Kontinen, Väänänen 2013 \& Hannula 2015 \& Y. 2016)

There are (sound) systems of natural deduction for $\mathrm{FO}(=(\ldots))$ and $\mathrm{FO}(\perp)$ such that

$$
\ulcorner\models \alpha \Longleftrightarrow Г \vdash \alpha
$$

for any set Γ of formulas and essentially first-order/negatable formula α.

Examples:

- Dependence and independence atoms are all negatable in $\mathrm{FO}(\perp)$. \rightsquigarrow Armstrong's axioms for functional dependencies are derivable.
\rightsquigarrow Some facts concerning independence notions in quantum theory are derivable. (Abramsky, Puljujärvi, Väänänen 2021)
- If $\Gamma \models \perp$, then $\Gamma \vdash \perp$.
\rightsquigarrow Arrow's Impossibility Theorem can be formalized in $\mathrm{FO}(\perp)$ as $\Gamma_{\text {Arrow }}, \dot{\sim} \phi_{\text {dictator }}=\perp$ or $\Gamma_{\text {Arrow }}=\phi_{\text {dictator }}$, and it is derivable in the system of $\mathrm{FO}(\perp)$, i.e., $\Gamma_{\text {Arrow }} \vdash \phi_{\text {dictator }}$. (Pacuit, Y. 2016)
- (Kontinen, Y. 2020) A variant of dependence logic with weaker quantifiers \forall^{1}, \exists^{1} and global disjunction
- (Lück 2018) First-order logic with the (strong) classical negation ~
- (Baltag, van Benthem 2021) Dependence logic with a "local" version of functional dependence

Local disjunction:

- $M=_{X} \phi \vee \psi$ iff there exist $Y, Z \subseteq X$ with $X=Y \cup Z$ s.t. $M \models_{Y} \phi \& M \models_{z} \psi$.

$$
\begin{array}{|lll|l|}
\hline x & y & z & \\
\hline 3 & 4 & 5 & \\
2 & 3 & 0 & \\
\hline 1 & 2 & 3 & \\
\hline 1 & \alpha, \beta \\
\hline 0 & 1 & 0 & \\
\hline
\end{array}
$$

Global disjunction:

- $M=_{x} \phi \mathbb{V} \psi$ iff $M=_{x} \phi$ or $M \models_{x} \psi$

Fact: $\phi \vee \psi \equiv \exists x y(=(x) \wedge=(y) \wedge((\phi \wedge x=y) \vee(\psi \wedge x \neq y)))$

- $M \models_{x} \phi \rightarrow \psi$ iff for all $Y \subseteq X, M=_{\gamma} \phi$ implies $M \models_{\gamma} \psi$. — introduced by Abramsky \& Väänänen (2009)
Properties:
- If ϕ and ψ are downward closed, so is $\phi \rightarrow \psi$.
- $=\left(x_{1} \ldots x_{n}, y\right) \equiv=\left(x_{1}\right) \wedge \ldots=\left(x_{n}\right) \rightarrow=(y)$
- Thm (Y. 2013). $\mathrm{FO}(=(\ldots), \rightarrow) \equiv$ full second-order logic

Propositional dependence logic

A first-order team:
a set of assignments $s: V \rightarrow M$ with $V \subseteq \operatorname{Var}$

	x	y	z
s_{1}	a	c	b
s_{2}	a	c	c
s_{3}	b	d	d
s_{4}	b	d	c

$$
M \models x=(\vec{x}, \vec{y})
$$

"Energy is determined by mass"
(via the function $e=m c^{2}$)
$=(\vec{p}, \vec{q})$
"Whether I will take my umbrella depends on whether it is raining."

A first-order team:
a set of assignments $s: V \rightarrow M$ with $V \subseteq \operatorname{Var}$

	x	y	z
s_{1}	a	c	b
s_{2}	a	c	c
s_{3}	b	d	d
s_{4}	b	d	c

$$
M=x=(\vec{x}, \vec{y})
$$

A propositional team:
a set of valuations / possible worlds

$$
v: V \rightarrow\{0,1\} \text { with } V \subseteq \text { Prop }
$$

	p	q	r
v_{1}	1	1	1
v_{2}	1	1	0
v_{3}	0	0	0
v_{4}	0	0	1

$=(\vec{p}, \vec{q})$
"Whether I will take my umbrella depends on whether it is raining."

A first-order team:
a set of assignments $s: V \rightarrow M$ with $V \subseteq \operatorname{Var}$

	x	y	z
s_{1}	a	c	b
s_{2}	a	c	c
s_{3}	b	d	d
s_{4}	b	d	c

$$
M \models x=(\vec{x}, \vec{y})
$$

"Energy is determined by mass"
(via the function $e=m c^{2}$)

A propositional team:
a set of valuations / possible worlds

$$
v: V \rightarrow\{0,1\} \text { with } V \subseteq \text { Prop }
$$

"Whether I will take my umbrella depends on whether it is raining."

A first-order team:
a set of assignments $s: V \rightarrow M$ with $V \subseteq \operatorname{Var}$

	x	y	z
s_{1}	a	c	b
s_{2}	a	c	c
s_{3}	b	d	d
s_{4}	b	d	c

$$
M \models x=(\vec{x}, \vec{y})
$$

A propositional team:
a set of valuations / possible worlds

$$
v: V \rightarrow\{0,1\} \text { with } V \subseteq \text { Prop }
$$

$X \models=(\vec{p}, \vec{q}) \quad$ iff for all $v, u \in X$

$$
v(\vec{p})=u(\vec{p}) \Longrightarrow v(\vec{q})=u(\vec{q})
$$

"Whether I will take my umbrella depends on whether it is raining."

$$
\text { - } X \models=(\vec{p}) \text { iff for all } v, u \in X: v(\vec{p})=u(\vec{p}) \text {. }
$$

$$
\begin{array}{|ccc|}
\hline \ldots & p & \ldots \\
\hline \ldots & 1 & \ldots \\
\hline
\end{array} \quad \text { or } \quad \begin{array}{|lll|}
\hline \ldots & p & \ldots \\
\hline \ldots & 0 & \ldots \\
\hline
\end{array}
$$

Fact: $=(p) \equiv p \mathbb{\vee} \neg p$

$$
\text { - } X \models=(\vec{p}) \text { iff for all } v, u \in X: v(\vec{p})=u(\vec{p}) \text {. }
$$

$$
\begin{array}{|lll|}
\hline \ldots & p & \ldots \\
\hline \ldots & 1 & \ldots \\
\ldots & 1 & \ldots \\
\ldots & 1 & \ldots \\
\ldots & 1 & \ldots
\end{array} \quad \text { or } \quad \begin{array}{|lll|}
\hline \ldots & p & \ldots \\
\hline \ldots & 0 & \ldots \\
\hline
\end{array}
$$

Fact: $=(p) \equiv p \vee \neg p$

$$
=\left(p_{1} \ldots p_{n}, q\right) \equiv=\left(p_{1}\right) \wedge \cdots \wedge=\left(p_{n}\right) \rightarrow=(q)
$$

- $X \models=(\vec{p}) \quad$ iff \quad for all $v, u \in X: v(\vec{p})=u(\vec{p})$.

$$
\begin{array}{|lll|}
\hline \ldots & p & \ldots \\
\hline \ldots & 1 & \ldots \\
\hline
\end{array} \quad \text { or } \quad \begin{array}{|lll|}
\hline \ldots & p & \ldots \\
\hline \ldots & 0 & \ldots \\
\hline
\end{array}
$$

Fact: $=(p) \equiv p \mathbb{\vee} \neg p \equiv ? p$

$$
=\left(p_{1} \ldots p_{n}, q\right) \equiv=\left(p_{1}\right) \wedge \cdots \wedge=\left(p_{n}\right) \rightarrow=(q)
$$

Remark: Team semantics was adopted independently also in inquisitive semantics (Ciardelli and Roelofsen 2011) to model questions in natural language.

Propositional team-based logic

Language of standard logic: $\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \vee \alpha| \alpha \rightarrow \alpha$ Language of team-based logic (tCPC):

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi|\phi \vee \phi|=(\vec{p}, \vec{q}) \quad \neg \phi:=\phi \rightarrow \perp
$$

Propositional team-based logic

Language of standard logic: $\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \vee \alpha| \alpha \rightarrow \alpha$ Language of team-based logic (tCPC):

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi|\phi \vee \phi|=(\vec{p}, \vec{q}) \quad \neg \phi:=\phi \rightarrow \perp
$$

Team semantics: Let $t \subseteq 2^{\text {Prop }}$ be a team, i.e., a set of possible worlds.

- $t \equiv p$ iff $v(p)=1$ for all $v \in t$
- $t \vDash \perp$ iff $t=\emptyset$
- $t \models \phi \wedge \psi$ iff $t \models \phi$ and $t \models \psi$
- $t \models \phi \vee \psi$ iff $t \models \phi$ or $t \models \psi$
- $t \models \phi \vee \psi$ iff $\exists s, r \subseteq t$ s.t. $t=s \cup r, s \models \phi$ and $r \models \psi$
- $t \models \phi \rightarrow \psi$ iff $\forall \boldsymbol{s} \subseteq t: s \models \phi$ implies $s \models \psi$
- $t \models \neg \phi$ iff $t \models \phi \rightarrow \perp$ iff $\{v\} \not \models \phi$ for all $v \in t$

Empty team property: $\emptyset=\phi$ for all ϕ
Downward Closure: If $s \subseteq t \models \phi$, then $s \models \phi$.
For any standard formula α (i.e., formula of the standard logic),
Union closure: $\quad t \vDash \alpha$ and $\boldsymbol{s} \models \alpha \Longrightarrow t \cup s \models \alpha$
Flatness:

$$
t \models \alpha \Longleftrightarrow \forall v \in t:\{\boldsymbol{v}\} \models \alpha \Longleftrightarrow \forall v \in t: v \models \alpha
$$

Propositional team-based logic

Language of standard logic: $\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \vee \alpha| \alpha \rightarrow \alpha$ Language of team-based logic (tCPC):

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \vee \phi| \phi \rightarrow \phi|\phi \vee \phi|=(\vec{p}, \vec{q}) \quad \neg \phi:=\phi \rightarrow \perp
$$

Team semantics: Let $t \subseteq 2^{\text {Prop }}$ be a team, i.e., a set of possible worlds.

- $t \models p$ iff $v(p)=1$ for all $v \in t$
- $t \vDash \perp$ iff $t=\emptyset$
- $t \models \phi \wedge \psi$ iff $t \models \phi$ and $t \models \psi$
- $t \models \phi \vee \psi$ iff $t \models \phi$ or $t \models \psi$
- $t \models \phi \vee \psi$ iff $\exists s, r \subseteq t$ s.t. $t \subseteq s \cup r, s \models \phi$ and $r \models \psi$
- $t \models \phi \rightarrow \psi$ iff $\forall \boldsymbol{s} \subseteq t: s \models \phi$ implies $s \models \psi$
- $t \models \neg \phi$ iff $t \models \phi \rightarrow \perp$ iff $\{v\} \not \models \phi$ for all $v \in t$

Empty team property: $\emptyset=\phi$ for all ϕ
Downward Closure: If $s \subseteq t \models \phi$, then $s \models \phi$.
For any standard formula α (i.e., formula of the standard logic),
Union closure: $\quad t \vDash \alpha$ and $\boldsymbol{s} \models \alpha \Longrightarrow t \cup s \models \alpha$
Flatness:

$$
t \models \alpha \Longleftrightarrow \forall v \in t:\{\boldsymbol{v}\} \models \alpha \Longleftrightarrow \forall v \in t: v \models \alpha
$$

The powerset model
Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables.

Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \text { iff } t=p \text { iff } v(p)=1 \text { for all } v \in t
$$

$11,10,01,00$

- $t \vDash \phi$ iff $M^{\circ}, t \Vdash \phi ;$ \& team implication $=$ intuitionistic implication:
- $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.

Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \quad \text { iff } t=p \text { iff } \quad v(p)=1 \text { for all } v \in t
$$

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; \& team implication $=$ intuitionistic implication:
- $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.

Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \quad \text { iff } \quad t=p \text { iff } \quad v(p)=1 \text { for all } v \in t
$$

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; \& team implication $=$ intuitionistic implication:
- $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.

Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \quad \text { iff } \quad t=p \text { iff } \quad v(p)=1 \text { for all } v \in t
$$

(01)

- $t \vDash \phi$ iff $M^{\circ}, t \Vdash \phi ;$ \& team implication $=$ intuitionistic implication:
- $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t=\phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet}=(\wp(W) \backslash\{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee-free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML^{\urcorner}of ML .
(Ciardelli, Roelfsen 2011)
- $(\alpha \rightarrow \phi \mathbb{\vee}) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi)$ holds (over $\left.M^{\circ}\right)$
- Prop (disjunctive normal form). For any formula ϕ, we have that

$$
\phi \equiv \bigvee_{i \in I} \alpha_{i},
$$

for some standard (i.e., V-free) formulas α_{i}.
Pf. By $(\alpha \rightarrow \phi \mathbb{\psi}) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi)$ (Split axiom).

- Disjunction property: If $\models \phi \vee \psi$, then $\models \phi$ or $\models \psi$

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\perp, \wedge, \mathbb{} v, \rightarrow]$, i.e.,
\vdots
- $\phi \rightarrow(\phi \mathbb{\psi}), \psi \rightarrow(\phi \vee \psi)$
- $(\phi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow((\phi \vee \psi) \rightarrow \chi))$
- $\perp \rightarrow \phi$
- $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \mathbb{} \vee(\alpha \rightarrow \psi)$
(Split)
- $\phi \vee(\psi \vee \chi) \rightarrow(\phi \vee \psi) \mathbb{}$ ($\phi \vee \chi)$
- $\phi \rightarrow \phi \vee \psi$
- $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi)$
- $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
- $\phi \vee \psi \rightarrow \psi \vee \phi$
- $(\phi \vee \psi) \vee \chi \rightarrow \phi \vee(\psi \vee \chi)$
- $\neg \neg \alpha \rightarrow \alpha$

No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\perp, \wedge, \mathbb{V}, \rightarrow$], i.e.,

引

- $\phi \rightarrow(\phi \mathbb{\vee} \psi), \psi \rightarrow(\phi \mathbb{})$
- $(\phi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow((\phi \mathbb{\psi}) \rightarrow \chi))$
- $\perp \rightarrow \phi$
- $(\alpha \rightarrow \phi \mathbb{V} \psi) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi)$
(Split)
- $\phi \vee(\psi \vee \chi) \rightarrow(\phi \vee \psi) \vee(\phi \vee \chi)$
- $\phi \rightarrow \phi \vee \psi$
- $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi)$
- $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
- $\phi \vee \psi \rightarrow \psi \vee \phi$
- $(\phi \vee \psi) \vee \chi \rightarrow \phi \vee(\psi \vee \chi)$
- $\neg \neg \alpha \rightarrow \alpha$

No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

- (Ciardelli, lemhoff, Y. 2020): tIPC $=\mathrm{tCPC} \ominus \neg \neg \alpha \rightarrow \alpha$ is complete for team semantics over intuitionistic Kripke models, where a team is a set of possible worlds in an intuitionistic Kripke model.

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\perp, \wedge, \mathbb{V}, \rightarrow$]
- $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \mathbb{}(\alpha \rightarrow \psi)$
- $\phi \vee(\psi \vee \chi) \rightarrow(\phi \vee \psi) \mathbb{(})(\phi \vee \chi)$
- $\phi \rightarrow \phi \vee \psi$
- $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi)$
- $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
- $\phi \vee \psi \rightarrow \psi \vee \phi$
- $(\phi \vee \psi) \vee \chi \rightarrow \phi \vee(\psi \vee \chi)$
- $\neg \neg \alpha \rightarrow \alpha$

No uniform substitution!
and the Modus Ponens rule.
(Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

- (Ciardelli, lemhoff, Y. 2020): tIPC $=\mathrm{tCPC} \ominus \neg \neg \alpha \rightarrow \alpha$ is complete for team semantics over intuitionistic Kripke models, where a team is a set of possible worlds in an intuitionistic Kripke model.
- Given an intermediate logic $\mathrm{L}=\mathrm{IPC} \oplus \alpha_{1} \oplus \cdots \oplus \alpha_{n}$ with each $\alpha_{i} \in[\perp, \wedge, \vee, \rightarrow]$, define $\mathrm{tL}=\mathrm{tIPC} \oplus \alpha_{1} \oplus \cdots \oplus \alpha_{n}$.
(Quadrellaro 2021), cf. (Punčochár 2021)
Thm. For any L that is complete w.r.t. a class F_{L} of frames, if L has the disjunction property or is canonical, then tL is complete w.r.t. F_{L} too. (Bezhanishvili , Y. 2022)

Logics with two layers

- tCPC $=\mathrm{tIPC} \oplus \neg \neg \alpha \rightarrow \alpha$.

- tCPC $=\mathrm{tIPC} \oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $\mathrm{L}=\mathrm{IPC} \oplus \Delta, \mathrm{tL}=\mathrm{tIPC} \oplus \Delta$.

Logics with two layers

- tCPC $=\mathrm{tIPC} \oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $\mathrm{L}=\mathrm{IPC} \oplus \Delta$, $\mathrm{tL}=\mathrm{tIPC} \oplus \Delta$.
- Conservativity: For any set $\Delta \cup\{\alpha\}$ of standard formulas,

$$
\Delta \vdash_{\text {IIPC }} \alpha \Longleftrightarrow \Delta \vdash_{\text {IPC }} \alpha
$$

- $\phi \equiv \mathbb{V}_{i \in I} \alpha_{i} \quad($ by Split axiom $(\alpha \rightarrow \phi \mathbb{V}) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi))$
- Glivenko-type theorem (Ciardelli, lemhoff, Y. 2020):

$$
\vdash_{\mathrm{tCPC}} \backslash_{i \in I} \alpha_{i} \Longleftrightarrow \vdash_{\mathrm{tIPC}} \prod_{i \in I} \neg \neg \alpha_{i} .
$$

(Recall: Glivenko's theorem : $\vdash_{\operatorname{CPC}} \alpha \Longleftrightarrow \vdash_{\mathrm{IPC}} \neg \neg \alpha{ }_{23}$)

Replace the Split axiom $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \vee(\alpha \rightarrow \psi)$ by other axioms?

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\perp, \wedge, \mathbb{N}, \rightarrow$], i.e., \vdots
- $\phi \rightarrow(\phi \mathbb{\vee} \psi), \psi \rightarrow(\phi \mathbb{\vee})$
- $(\phi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow((\phi \mathbb{\vee} \psi) \rightarrow \chi))$
- $\perp \rightarrow \phi$
- $(\alpha \rightarrow \phi \mathbb{\vee} \psi) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi)$
(Split)
- $\phi \vee(\psi \vee \chi) \rightarrow(\phi \vee \psi) \mathbb{V}(\phi \vee \chi)$
- $\phi \rightarrow \phi \vee \psi$
- $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi)$
- $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
- $\phi \vee \psi \rightarrow \psi \vee \phi$
- $(\phi \vee \psi) \vee \chi \rightarrow \phi \vee(\psi \vee \chi)$
- $\neg \neg \alpha \rightarrow \alpha$

No uniform substitution!
and the Modus Ponens rule.
(Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)
Replace the Split axiom $(\alpha \rightarrow \phi \mathbb{\psi}) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi)$ by other axioms?

Fix a finite set $\operatorname{Prop}_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \quad \text { iff } t=p \text { iff } \quad v(p)=1 \text { for all } v \in t
$$

- $t=\phi$ iff $M^{\circ}, t \Vdash \phi$

Over M°, Split axiom always holds.

Fix a finite set Prop $_{n}=\left\{p_{1}, \ldots, p_{n}\right\}$. The teams $t \subseteq 2^{\text {Prop }_{n}}$ over $W=2^{\text {Prop }_{n}}$ induce a powerset model $M^{\circ}=(\wp(W), \emptyset, \cup \supseteq, V)$, where the valuation $V: \operatorname{Prop}_{n} \rightarrow \wp(\wp(W))$ is defined as

$$
t \in V(p) \quad \text { iff } \quad t=p \text { iff } \quad v(p)=1 \text { for all } v \in t
$$

00

- $t=\phi$ iff $M^{\circ}, t \Vdash \phi$

Over M°, Split axiom always holds.

- The structure $(\wp(W), \supseteq, V)$ is an intuitionistic Kripke model with each $V(p)=t^{\uparrow}$ a principal upset w.r.t. \supseteq, where $t=\{v \in W \mid v(p)=1\}$.
- The structure $(\wp(W), \cup, \emptyset)$ forms a bounded join-semilattice with \subseteq the induced partial orderd (i.e., $s \subseteq t$ iff $s \cup t=t$).

General team models

Definition

A general team model is a tuple $M=(\wp(W), \emptyset, \Psi, \succcurlyeq, V)$, where

- $(\wp(W), \mathbb{(}, \emptyset)$ is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff $s \uplus t=t$);
- V : Prop $\rightarrow \wp(\wp(W))$ is such that $V(p)$ is a principle upset w.r.t. \succcurlyeq, i.e., $V(p)=t^{\uparrow}=\{s \in \wp(W) \mid t \succcurlyeq s\}$ for some $t \in \wp(W)$.
cf. (Punc̆ochár 2017), (Dmitrieva 2021)

General team models

Definition

A general team model is a tuple $M=(A, 0, ש, \succcurlyeq, V)$, where

- $(A, \mathbb{U}, 0)$ is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff s ש $t=t$);
- V : Prop $\rightarrow \wp(A)$ is such that $V(p)$ is a principle upset w.r.t. \succcurlyeq, i.e., $V(p)=t^{\uparrow}=\{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.
cf. (Punčochář 2017), (Dmitrieva 2021)

General team models

Definition

A general team model is a tuple $M=(A, 0, ש, \succcurlyeq, V)$, where

- ($A, \uplus, 0$) is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff s ש $t=t$);
- V : Prop $\rightarrow \wp(A)$ is such that $V(p)$ is a principle upset w.r.t. \succcurlyeq, i.e., $V(p)=t^{\uparrow}=\{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.
cf. (Punčochář 2017), (Dmitrieva 2021)

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see.

General team models

Definition

A general team model is a tuple $M=(A, 0, \Psi, \succcurlyeq, V)$, where

- ($A, \mathbb{,}, 0$) is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff $s \uplus t=t$);
- V : Prop $\rightarrow \wp(A)$ is such that $V(p)$ is a principle upset w.r.t. \succcurlyeq, i.e., $V(p)=t^{\uparrow}=\{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.
cf. (Punčochář 2017), (Dmitrieva 2021)

Def. A bounded semi-lattice $(A, ש, 0)$ is called atomistic if every non-zero element $t \in A$ is a finite join of atoms, i.e., $t=v_{1} ש \cdots \mathbb{U} v_{n}$ for some atoms $v_{1}, \ldots, v_{n} \in A$.

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see (especially in atomistic semi-lattices).

General team models

Definition

A general team model is a tuple $M=(A, 0, ש, \succcurlyeq, V)$, where

- ($A, \Theta, 0$) is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff $s \in t=t$);
- V : Prop $\rightarrow \wp(A)$ is such that $V(p)$ is a principle upset w.r.t. \succcurlyeq, i.e., $V(p)=t \uparrow=\{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.
cf. (Punčochár 2017), (Dmitrieva 2021)

Def. A bounded semi-lattice $(A, ש, 0)$ is called atomistic if every non-zero element $t \in A$ is a finite join of atoms, i.e., $t=v_{1} ש \cdots \mathbb{U} v_{n}$ for some atoms $v_{1}, \ldots, v_{n} \in A$.

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see (especially in atomistic semi-lattices).

Functional dependence

Standard team semantics: Given the powerset model

 $M=\left(\wp\left(2^{\text {Prop }_{n}}\right), \emptyset, \cup, \supseteq, V\right)$, and a team $t \subseteq 2^{\text {Prop }_{n}}$,- $M, t==(p, q) \quad$ iff \quad for all $\{u\},\{v\} \subseteq t$:

$$
u \models p \Leftrightarrow v \vDash p \quad \text { implies } \quad u \models q \Leftrightarrow v \models q
$$

Functional dependence

Generalized team semantics: Given a general team model $M=(A, 0, ש, \succcurlyeq, V)$ and a team $t \in A$,

- $M, t \vDash=(p, q)$ iff for all atoms $u, v \preccurlyeq t$:

$$
u \models p \Leftrightarrow v \models p \text { implies } \quad u \models q \Leftrightarrow v \models q
$$

Generalized team semantics: Given a general team model $M=(A, 0, ש, \succcurlyeq, V)$ and a team $t \in A$,

- $M, t \models=(p, q) \quad$ iff for all atoms $u, v \preccurlyeq t$:

$$
u \models p \Leftrightarrow v \models p \text { implies } \quad u \models q \Leftrightarrow v \models q
$$

- Amstrong's axioms for functional dependence still hold.

Generalized team semantics

Standard team semantics:
Given the powerset model $M=(\wp(W), \emptyset, \cup \supseteq, V)$ with $W=2^{\text {Prop }}$, and a team $t \subseteq W$.

- $M, t=\perp$ iff $t=\emptyset$
- $M, t \models \phi \vee \psi$ iff there are $s, r \in \wp(W)$ such that $t \subseteq s \cup r, M, s \models \phi$ and $M, r \models \psi$
- $M, t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, M, s \models \phi$ implies $M, s \models \psi$

Generalized team semantics

Given a general team model $M=(A, 0, ש, \succcurlyeq, V)$, and a team $t \in A$.

- $M, t=\perp$ iff $t=\emptyset$
- $M, t=\phi \vee \psi$ iff there are $s, r \in \wp(W)$ such that $t \subseteq s \cup r, M, s \models \phi$ and $M, r=\psi$
- $M, t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s, M, s \models \phi$ implies $M, s \models \psi$

Generalized team semantics

Given a general team model $M=(A, 0, ש, \succcurlyeq, V)$, and a team $t \in A$.

- $M, t=\perp$ iff $t=0$
- $M, t \models \phi \vee \psi$ iff there are $s, r \in A$ such that $t \preccurlyeq s \in r, M, s \models \phi$ and $M, r=\psi$
- $M, t=\phi \rightarrow \psi$ iff for all $s \in A$ with $t \succcurlyeq s, M, s \models \phi$ implies $M, s \models \psi$

Generalized team semantics

Given a general team model $M=(A, 0, ש, \succcurlyeq, V)$, and a team $t \in A$.

- $M, t=\perp$ iff $t=0$
- $M, t \models \phi \vee \psi$ iff there are $s, r \in A$ such that $t \preccurlyeq s \in r, M, s \models \phi$ and $M, r \vDash \psi$
- $M, t=\phi \rightarrow \psi$ iff for all $s \in A$ with $t \succcurlyeq s, M, s \models \phi$ implies $M, s \models \psi$

Persistency / Downward closure: If $M, t \models \phi$ and $t \succcurlyeq s$, then $M, s \models \phi$.
Empty team property: $\quad M, 0 \models \phi$ for all ϕ.

Under the generalized semantics, all tCPC axioms hold except for
(1) $\neg \neg \alpha \rightarrow \alpha \quad$ (Double negation elimination)
(2) $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \mathbb{V}(\alpha \rightarrow \psi) \quad$ (Split)
(3) $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi) \quad$ (Monotonicity)
(4) $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
where $\alpha \in[\perp, \wedge, \vee, \rightarrow]$ is a standard formula

Under the generalized semantics, all tCPC axioms hold except for
(1) $\neg \neg \alpha \rightarrow \alpha \quad$ (Double negation elimination)
(2) $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \vee(\alpha \rightarrow \psi) \quad$ (Split)
(3) $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi) \quad$ (Monotonicity)
(9) $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
where $\alpha \in[\perp, \wedge, \vee, \rightarrow]$ is a standard formula
Standard formulas are not any more closed under joins, where: Join Closure Property: $\boldsymbol{M}, \boldsymbol{t} \models \alpha$ and $\boldsymbol{M}, \boldsymbol{s} \models \alpha \Longrightarrow \boldsymbol{M}, \boldsymbol{t} ש \boldsymbol{s} \models \alpha$ (If $\mathbb{ש}=\cup$, join closure is the union closure property)

The logic of the generalized semantics, and distributivity

Under the generalized semantics, all tCPC axioms hold except for
(1) $\neg \neg \alpha \rightarrow \alpha \quad$ (Double negation elimination)
(2) $(\alpha \rightarrow \phi \vee \psi) \rightarrow(\alpha \rightarrow \phi) \vee(\alpha \rightarrow \psi) \quad$ (Split)
(3) $(\phi \rightarrow \chi) \rightarrow(\phi \vee \psi \rightarrow \chi \vee \psi) \quad$ (Monotonicity)
(9) $(\phi \rightarrow \alpha) \rightarrow((\psi \rightarrow \alpha) \rightarrow(\phi \vee \psi \rightarrow \alpha))$
where $\alpha \in[\perp, \wedge, \vee, \rightarrow]$ is a standard formula
Standard formulas are not any more closed under joins, where: Join Closure Property: $\boldsymbol{M}, \boldsymbol{t} \models \alpha$ and $\boldsymbol{M}, \boldsymbol{s} \models \alpha \Longrightarrow \boldsymbol{M}, \boldsymbol{t} ש \boldsymbol{s} \models \alpha$ (If $\mathbb{ש}=\cup$, join closure is the union closure property)

Fact: Split axiom holds over distributive frames F, i.e., semi-lattices

$$
\begin{aligned}
F= & (A, 0, ש, \succcurlyeq) \text { s.t. } \\
& t \preccurlyeq r \uplus s \Longrightarrow \exists r^{\prime}, s^{\prime} \in A: r^{\prime} \preccurlyeq r, s^{\prime} \preccurlyeq s, \text { and } t=r^{\prime} ש s^{\prime} .
\end{aligned}
$$

Thm. For finite frames F, we have that F satisfies join closure over standard formulas and validates $(3$ and (4) iff F is distributive.

Flatness of standard formulas

Over standard team semantics:
Def. A formula ϕ is said to be flat , if

$$
t \models \phi \Longleftrightarrow \text { for all }\{v\} \subseteq t:\{v\} \models \phi
$$

Prop. Standard formulas $\alpha \in[\perp, \wedge, \vee, \rightarrow]$ are flat.

Flatness of standard formulas

Over generalized team semantics:
Def. A formula ϕ is said to be flat over M, if

$$
M, t \models \phi \Longleftrightarrow \text { for all atoms } v \preccurlyeq t: M, v \models \phi
$$

Prop. Standard formulas $\alpha \in[\perp, \wedge, \vee, \rightarrow]$ are flat.

Flatness of standard formulas

Over generalized team semantics:
Def. A formula ϕ is said to be flat over M, if

$$
M, t \models \phi \Longleftrightarrow \text { for all atoms } v \preccurlyeq t: M, v \models \phi
$$

Prop. Standard formulas $a \in[\perp, \wedge, V, \rightarrow]$ are flat.

Thm. Let F be a finite frame. Then,
F is atomistic iff all standard formulas α are flat over F iff $\quad F \models \neg \neg \alpha \rightarrow \alpha$ for all standard formulas α.

