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We have two different deductive systems doing similar things.
Can category theory help?
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(Some) categorical models

Fa:A  T.AFB k¢ xToky
DT
Categories with families’, Doctrines and
natural models?, ... hyperdoctrines?, ...
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"Dybjer, “Internal type theory”, 1996.
2Awodey, “Natural models of homotopy type theory”, 2018. ol
3Lawvere, “Adjointness in Foundations”, 1969.
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We've got judgements. What is a deduction?

N /> [+ (a,A)U the type of ain context I
iy (X)—rEa0 isatypein context T

We build a theory were:

judgements = functors (fibrations)
rules = (lax) commutative triangles
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An account of context, judgement, deduction
Apre-judgemental theory is specified through the following data:
context  (ctx) a category (with terminal object ¢);

(7) judgement classifiers, a class of functors f : F — ctx over the cat-

judgement ...\ of contexts, possibly (op)fibrations;

(R) rules, a class of functors A : F — G;
(P) policies, a class of 2-dimensional cells filling (some) triangles in-
duced by rules (functors in R) and judgements (functors in 7).

deduction

F F—2 36 F A S G

A
F
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Why fibrations? - reprise
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Categories as syntax

A A
F F—> G F > G
1 I | \ & A# ¢/
f f g f
v ~ ~ N e
ctx ctx ctx ctx

Whenever Fe f~'(M we read I F F .
Whenever F, F/ € f~'(I) and F = F' weread I' - F = F’.
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and, possibly, I and gAF and related by a map

AL gAF =T
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Example: toy MLTT

ctx : (the syntactic category of) contexts and substitutions
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J={u,u}
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This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
» 2 dimensions are necessary;
» 2 dimensions are sufficient!*

*Provided that the ambient 2-category has some structure. Here: Cat.
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Judgemental theories

Ajudgemental theory (ctx, J, R, P) is a pre-judgemental theory such that
1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under finite limits, #-liftings, whiskering and pasting.
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We now have a calculus!
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Judgemental theories: the motto

Every rule is a diagram.

@ ———————= > e
I }\ A
| Lo
! P >t
e ———-> 0 } o fib e — o
| ] —
~ \L ~ ! !
° o — L S e e —— o U °
\m -
I
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Every diagram is a rule.

~» any triangle we find in our jt is a rule we prove
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The jt of natural deduction

p : ctx°? — Pos
s.t. it has fibered products preserved by reindexing

Examples

» The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
» Subobjects of a category with finite products and (weak)pullbacks
> ..

ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with fibered products
R=...
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The jt of natural deduction

|]ZD2_—A_>|]ID

2 —X=
ctx @ ctx
diag

ctx : contexts and substitutions e.g. Fin

J = {p} s.t. faithful, with fibered products
R={—x—diag,—A—=}u{...}

P = {€} u {commutativity of all squares}u{a,...}
then close under finite limits, #-lifting, ...

jND:
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Proposition
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From structure to rules

Proposition

The following rule is in jND.
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Theorem
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Cut elimination theorem

Theorem
The following rule is ianD(.C ) x[Fo X ok x
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(DTy)

U.AYU

rFa:A r.LArFB x;TH¢ X[, ok Y
'+ Bla] (Cut) XTF
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N

N

... plus both AY and S are monads!
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