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Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ
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Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.
Can category theory help?
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(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
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(Cut) x; Γ ` ψ
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(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Categories with families1,
natural models2, . . .

U̇ U

ctx
�b �b

E

ctx

�b

1Dybjer, “Internal type theory”, 1996.
2Awodey, “Natural models of homotopy type theory”, 2018.
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(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Categories with families1, Doctrines and
natural models2, . . . hyperdoctrines3, . . .

U̇ U

ctx
�b �b

E

ctx

�b

1Dybjer, “Internal type theory”, 1996.
2Awodey, “Natural models of homotopy type theory”, 2018.
3Lawvere, “Adjointness in Foundations”, 1969.
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Why fibrations?

p : E→ B

They are functors
; great for encoding dependencies

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution

C ψ

''

_

��

&& A
ϕ

//
_

��

B_

��

Z

h &&

g

''X
f

// Y
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We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles
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An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context

(ctx) a category (with terminal object �);

judgement

(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction

(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯
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Why fibrations? - reprise

p : E→ B

They are functors
; great for encoding dependencies:

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution.

Lemma (♯-li�ing)

• •

•

• •

•

�b
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Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ
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Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}

, with Σ : (a,A) 7→ A

P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx

Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx

Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ
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This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;
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This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;
É 2 dimensions are su�cient!∗

∗Provided that the ambient 2-category has some structure. Here: Cat.
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Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that

1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!
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• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



13/28

Judgemental theories: the motto

Every rule is a diagram.

• •
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Every diagram is a rule.

; any triangle we �nd in our jt is a rule we prove
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Nested judgements

Pullbacks computenested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F
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The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory
É Subobjects of a category with �nite products and (weak)pullbacks
É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .
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The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products

R = {− × −,diag,− ∧ −}∪ {. . .}
P = {ε} ∪ {commutativity of all squares}∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...
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Weakening

P× P

ctx2 ctx−×−

p
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Weakening
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P× P ϕ ψ

ctx2 ctx x y−×−
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Weakening

P2 w(ϕ,ψ) = ϕ[p1]∧ ψ[p2]

P× P ϕ ψ

x × y

ctx2 ctx x y−×−

p
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Weakening

P2 P×

ctx2

ctx

p2

w

−×−

x × y ` (ϕ,ψ) P2
(w) x × y ` ϕ[p1]∧ ψ[p2] P×
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Stratified contexts

x; Γ ` ψ

P→I.p→ctx ctx

P→ ctx→

P ctxp

domcod cod dom

Id

p→

ð
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Stratified contexts

x; Γ ` ψ

Remark
e is a �bration.

x; Γ ` ψ i�











x ` e E
x ` dom(e) =P

∧

Γ

x ` cod(e) =P ψ

E ctx

P→ ctx→

P ctxp

cod dom

Id

p→
e

c d

ð
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From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `?

(ψ ` ϕ , ψ `?)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗
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Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ
x;ϕΓ ∧ ϕ ` ψ

(T) x; Γ ` ψ

Ed.dSE

E Ed.cE E

E× P E Pc

d
ù

dS.d
d.dS

(id,d)

S : E→ E, (ψ ≤ ϕ) 7→ (ψ∧ ϕ ≤ ψ ≤ ϕ)

part of a monad related to the simple �bration
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Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

U̇.∆ΣU U̇× U

U

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Ed.dSE Ed.dE

P

... plus both ∆Σ and S are monads!
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In summation

We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!
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