
Deduction via 2-category theory
j.w.w. Ivan Di Liberti

TACL 2022

Greta Coraglia



2/28

Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.
Can category theory help?



2/28

Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.
Can category theory help?



2/28

Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.
Can category theory help?



2/28

Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.

Can category theory help?



2/28

Γ ` a : A Γ.A `B(DTy)
Γ `B[a]

x; Γ ` ϕ x; Γ, ϕ `ψ
(Cut) x; Γ `ψ

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Γ ` a : A Term Γ.A ` B Type
(DTy)

Γ ` B[a] Type
x; Γ ` ϕ Form x; Γ, ϕ ` ψ Form

(Cut) x; Γ ` ψ Form

We have two di�erent deductive systems doing similar things.
Can category theory help?



3/28

(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

E

ctx

�b



3/28

(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Categories with families1,
natural models2, . . .

U̇ U

ctx
�b �b

E

ctx

�b

1Dybjer, “Internal type theory”, 1996.
2Awodey, “Natural models of homotopy type theory”, 2018.



3/28

(Some) categorical models

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Categories with families1, Doctrines and
natural models2, . . . hyperdoctrines3, . . .

U̇ U

ctx
�b �b

E

ctx

�b

1Dybjer, “Internal type theory”, 1996.
2Awodey, “Natural models of homotopy type theory”, 2018.
3Lawvere, “Adjointness in Foundations”, 1969.



4/28

Why fibrations?

p : E→ B

They are functors
; great for encoding dependencies

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution

C ψ

''

_

��

&& A
ϕ

//
_

��

B_

��

Z

h &&

g

''X
f

// Y



4/28

Why fibrations?

p : E→ B

They are functors
; great for encoding dependencies

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution

C ψ

''

_

��

&& A
ϕ

//
_

��

B_

��

Z

h &&

g

''X
f

// Y



4/28

Why fibrations?

p : E→ B

They are functors
; great for encoding dependencies

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution

C ψ

''

_

��

&& A
ϕ

//
_

��

B_

��

Z

h &&

g

''X
f

// Y



4/28

Why fibrations?

p : E→ B

They are functors
; great for encoding dependencies

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution

C ψ

''

_

��

&& A
ϕ

//
_

��

B_

��

Z

h &&

g

''X
f

// Y



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U

the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)

rules = (lax) commutative triangles



5/28

We’ve got judgements. What is a deduction?

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ
is a type in context Γ

We build a theory were:

judgements = functors (�brations)
rules = (lax) commutative triangles



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context

(ctx) a category (with terminal object �);

judgement

(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction

(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context

(ctx) a category (with terminal object �);

judgement

(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction

(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context (ctx) a category (with terminal object �);

judgement

(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction

(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context (ctx) a category (with terminal object �);

judgement
(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction

(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context (ctx) a category (with terminal object �);

judgement
(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction
(R) rules, a class of functors λ : F→ G;

(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ

F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



6/28

An account of context, judgement, deduction

Apre-judgemental theory is speci�ed through the following data:

context (ctx) a category (with terminal object �);

judgement
(J ) judgement classi�ers, a class of functors f : F→ ctx over the cat-
egory of contexts, possibly (op)�brations;

deduction
(R) rules, a class of functors λ : F→ G;
(P) policies, a class of 2-dimensional cells �lling (some) triangles in-
duced by rules (functors in R) and judgements (functors in J ).

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯
F G

H

ρ τ

λ

λ♯



7/28

Why fibrations? - reprise

p : E→ B

They are functors
; great for encoding dependencies:

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution.

Lemma (♯-li�ing)

• •

•

• •

•

�b



7/28

Why fibrations? - reprise

p : E→ B

They are functors
; great for encoding dependencies:

A is in context X i� X ` A i� pA = X

plus we ask that every map f : X → pB has a
cartesian li�

; great for substitution.

Lemma (♯-li�ing)

• •

•

• •

•

�b



8/28

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



8/28

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.

Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



8/28

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



8/28

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



8/28

Categories as syntax

F

ctx

f

F G

ctx ctx

f g

λ
F G

ctx

f g

λ

λ♯

Whenever F ∈ f−1(Γ) we read Γ ` F F.
Whenever F, F′ ∈ f−1(Γ) and F = F′ we read Γ ` F =F F′.

Γ ` F F(λ)
gλF ` λF G

and, possibly, Γ and gλF and related by a map

λ♯F : gλF→ Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}

, with Σ : (a,A) 7→ A

P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx

Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx

Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx

Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx

Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇

a is a term of type A in context Γ

u : U→ ctx

Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx

Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U

A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U

the type of a in context Γ is a
type in context Γ



9/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



10/28

Example: toy MLTT

toy MLTT:



















ctx : (the syntactic category of) contexts and substitutions
J = {u̇,u}
R = {Σ}, with Σ : (a,A) 7→ A
P = {id : u ◦Σ⇒ u̇}

u̇ : U̇→ ctx Γ ` (a,A) U̇ a is a term of type A in context Γ

u : U→ ctx Γ ` A U A is a type in context Γ

U̇ U

ctx

u̇ u

Σ

id Γ ` (a,A) U̇
(Σ)

Γ ` A U
the type of a in context Γ is a
type in context Γ



11/28

This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;



11/28

This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;



11/28

This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;



11/28

This is nice and all, but we can’t do anything with it.

We impress the computational power of a deductive system
using 2-dimensional constructions.

Then
É 2 dimensions are necessary;
É 2 dimensions are su�cient!∗

∗Provided that the ambient 2-category has some structure. Here: Cat.



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that

1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that
1. R and P are closed under composition;

2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that
1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;

3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that
1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that
1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



12/28

Judgemental theories

A judgemental theory (ctx,J ,R,P) is a pre-judgemental theory such that
1. R and P are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. R and P are closed under �nite limits, ♯-li�ings, whiskering and pasting.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

We now have a calculus!



13/28

Judgemental theories: the motto

Every rule is a diagram.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

Every diagram is a rule.

; any triangle we �nd in our jt is a rule we prove



13/28

Judgemental theories: the motto

Every rule is a diagram.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

Every diagram is a rule.

; any triangle we �nd in our jt is a rule we prove



13/28

Judgemental theories: the motto

Every rule is a diagram.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

Every diagram is a rule.

; any triangle we �nd in our jt is a rule we prove



13/28

Judgemental theories: the motto

Every rule is a diagram.

• •

• • • • •

• • • • • • • • • •

•

�b
ð

Every diagram is a rule.

; any triangle we �nd in our jt is a rule we prove



14/28

Nested judgements

Pullbacks computenested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



14/28

Nested judgements

Pullbacks computenested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



14/28

Nested judgements

Pullbacks computenested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



14/28

Nested judgements

Pullbacks computenested judgements such as

Γ ` a : A Γ.A ` B

x; Γ ` ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ ` H H gλH ` F F



15/28

Nested judgements

Pullbacks computenested judgements such as

Γ `a : A Γ.A ` B

x; Γ `ϕ x; Γ, ϕ ` ψ

because
•

Fλ.H H

G

F ctxf

g

λ

f .gλ
ð

gλ.f

Fλ.H
H

F

Γ ` Fλ.H Fλ.H

really is

Γ `H H gλH ` F F



16/28

The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory
É Subobjects of a category with �nite products and (weak)pullbacks
É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .



16/28

The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory

É Subobjects of a category with �nite products and (weak)pullbacks
É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .



16/28

The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory
É Subobjects of a category with �nite products and (weak)pullbacks

É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .



16/28

The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory
É Subobjects of a category with �nite products and (weak)pullbacks
É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .



16/28

The jt of natural deduction

p : ctxop→ Pos
s.t. it has �bered products preserved by reindexing

Examples

É The Lindenbaum-Tarski algebras of well-formed formulae of a �rst order theory
É Subobjects of a category with �nite products and (weak)pullbacks
É ...

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = . . .

P = . . .



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products

R = {− × −,diag,− ∧ −}∪ {. . .}
P = {ε} ∪ {commutativity of all squares}∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products

R = {− × −,diag,− ∧ −}∪ {. . .}
P = {ε} ∪ {commutativity of all squares}∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = {− × −,diag,− ∧ −}

∪ {. . .}
P = {ε} ∪ {commutativity of all squares}∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = {− × −,diag,− ∧ −}

∪ {. . .}

P = {ε} ∪ {commutativity of all squares}

∪ {α, . . .}
then close under �nite limits, ♯-li�ing, ...



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = {− × −,diag,− ∧ −}

∪ {. . .}

P = {ε} ∪ {commutativity of all squares}

∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...



17/28

The jt of natural deduction

P2 P

ctx2 ctx−×−

p

diag

p2

−∧−

a

jND:



















ctx : contexts and substitutions e.g. Fin
J = {p} s.t. faithful, with �bered products
R = {− × −,diag,− ∧ −}∪ {. . .}
P = {ε} ∪ {commutativity of all squares}∪ {α, . . .}

then close under �nite limits, ♯-li�ing, ...



18/28

Weakening

P× P

ctx2 ctx−×−

p

ù



18/28

Weakening

P2

P× P

ctx2 ctx−×−

p

ù

p2

−∧−



18/28

Weakening

P2

P× P

ctx2 ctx−×−

p

ù

p2

−∧−

w



18/28

Weakening

P2

P× P ϕ ψ

ctx2 ctx x y−×−

p

ù

p2

−∧−

w



18/28

Weakening

P2

P× P ϕ ψ

x × y

ctx2 ctx x y−×−

p

ù

p2

−∧−

w

p1 p2



18/28

Weakening

P2 w(ϕ,ψ) = ϕ[p1]∧ ψ[p2]

P× P ϕ ψ

x × y

ctx2 ctx x y−×−

p

ù

p2

−∧−

w

p1 p2



19/28

Weakening

P2 P×

ctx2

ctx

p2

w

−×−

x × y ` (ϕ,ψ) P2
(w) x × y ` ϕ[p1]∧ ψ[p2] P×



19/28

Weakening

P2 P×

ctx2

ctx

p2

w

−×−

x × y ` (ϕ,ψ) P2
(w) x × y ` ϕ[p1]∧ ψ[p2] P×



20/28

Stratified contexts

x; Γ ` ψ

P→I.p→ctx ctx

P→ ctx→

P ctxp

domcod cod dom

Id

p→

ð



20/28

Stratified contexts

x; Γ ` ψ

P→I.p→ctx ctx

P→ ctx→

P ctxp

domcod cod dom

Id

p→

ð



21/28

Stratified contexts

x; Γ ` ψ

Remark
e is a �bration.

x; Γ ` ψ i�











x ` e E
x ` dom(e) =P

∧

Γ

x ` cod(e) =P ψ

E ctx

P→ ctx→

P ctxp

cod dom

Id

p→
e

c d

ð



21/28

Stratified contexts

x; Γ ` ψ

Remark
e is a �bration.

x; Γ ` ψ i�











x ` e E
x ` dom(e) =P

∧

Γ

x ` cod(e) =P ψ

E ctx

P→ ctx→

P ctxp

cod dom

Id

p→
e

c d

ð



21/28

Stratified contexts

x; Γ ` ψ

Remark
e is a �bration.

x; Γ ` ψ i�











x ` e E
x ` dom(e) =P

∧

Γ

x ` cod(e) =P ψ

E ctx

P→ ctx→

P ctxp

cod dom

Id

p→
e

c d

ð



21/28

Stratified contexts

x; Γ ` ψ

Remark
e is a �bration.

x; Γ ` ψ i�











x ` e E
x ` dom(e) =P

∧

Γ

x ` cod(e) =P ψ

E ctx

P→ ctx→

P ctxp

cod dom

Id

p→
e

c d

ð



22/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `?

(ψ ` ϕ , ψ `?)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗



22/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `?

(ψ ` ϕ , ψ `?)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗



22/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `?

(ψ ` ϕ , ψ `?)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗



22/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `?

(ψ ` ϕ , ψ `?)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗



23/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE E

Ed.dE

E P

E ctx

c

did

d

pα

(ψ ` ϕ , ϕ ` χ) ϕ ` χ ψ `χ

(ψ ` ϕ , ψ `χ)

ψ ` ϕ ϕ ψ

ψ ` ϕ x

α

α∗



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p

(ψ ` ϕ , ϕ ` χ)



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p

(ψ ` ϕ , ϕ ` χ) (ψ ` ϕ , ψ ` χ)



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p

(ψ ` ϕ , ϕ ` χ) (ψ ` ϕ , ψ ` χ)

ϕ ` χ← ψ ` χ



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p

(ψ ` ϕ , ϕ ` χ) (ψ ` ϕ , ψ ` χ)

ϕ ` χ← ψ ` χ

x



24/28

From structure to rules

Proposition
The following rule is in jND.

x;ψ ` ϕ x;ϕ ` χ
(T) x;ψ ` χ

Ed.cE Ed.dE

E

P

ctx

!

d

p

(ψ ` ϕ , ϕ ` χ) (ψ ` ϕ , ψ ` χ)

ϕ ` χ← ψ ` χ

ϕ≥ ψ

x



25/28

Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ
x;ϕΓ ∧ ϕ ` ψ

(T) x; Γ ` ψ

Ed.dSE

E Ed.cE E

E× P E Pc

d
ù

dS.d
d.dS

(id,d)

S : E→ E, (ψ ≤ ϕ) 7→ (ψ∧ ϕ ≤ ψ ≤ ϕ)

part of a monad related to the simple �bration



25/28

Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ
x;ϕΓ ∧ ϕ ` ψ

(T) x; Γ ` ψ

Ed.dSE

E Ed.cE E

E× P E Pc

d
ù

dS.d
d.dS

(id,d)

S : E→ E, (ψ ≤ ϕ) 7→ (ψ∧ ϕ ≤ ψ ≤ ϕ)

part of a monad related to the simple �bration



25/28

Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ
x;ϕΓ ∧ ϕ ` ψ

(T) x; Γ ` ψ

Ed.dSE

E Ed.cE E

E× P E Pc

d
ù

dS.d
d.dS

(id,d)

S : E→ E, (ψ ≤ ϕ) 7→ (ψ∧ ϕ ≤ ψ ≤ ϕ)

part of a monad related to the simple �bration



25/28

Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ
x;ϕΓ ∧ ϕ ` ψ

(T) x; Γ ` ψ

Ed.dSE

E Ed.cE E

E× P E Pc

d
ù

dS.d
d.dS

(id,d)

S : E→ E, (ψ ≤ ϕ) 7→ (ψ∧ ϕ ≤ ψ ≤ ϕ)

part of a monad related to the simple �bration



26/28

Cut elimination theorem

Theorem
The following rule is in jND.

x; Γ ` ϕ x; Γ, ϕ ` χ
(Cut) x; Γ ` χ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ ` ϕ

x; Γ ` ϕΓ ∧ ϕ

x; Γ ` ϕ x; Γ, ϕ ` ψ
x; Γ, ϕ ` ψ

x;ϕΓ ∧ ϕ ` ψ
(T) x; Γ ` ψ

Ed.dSE

Ed.cE Ed.dE

E

ctx

!

(T)

e



27/28

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

U̇.∆ΣU U̇× U

U

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Ed.dSE Ed.dE

P

... plus both ∆Σ and S are monads!



27/28

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

U̇.∆ΣU U̇× U

U

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Ed.dSE Ed.dE

P

... plus both ∆Σ and S are monads!



27/28

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

U̇.∆ΣU U̇× U

U

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Ed.dSE Ed.dE

P

... plus both ∆Σ and S are monads!



27/28

Γ ` a : A Γ.A ` B(DTy)
Γ ` B[a]

U̇.∆ΣU U̇× U

U

x; Γ ` ϕ x; Γ, ϕ ` ψ
(Cut) x; Γ ` ψ

Ed.dSE Ed.dE

P

... plus both ∆Σ and S are monads!



28/28

In summation

We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:

É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;

É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:

É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;

É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;

É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;

É ... suggestions? Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions?

Thank you for listening!



28/28

In summation
We describe a general theory of judgement via 2-categorical means and show that:
É out of a few choices of judgement classi�ers, rules, and policies, one can recover
structural rules (and easily add quanti�ers/connectives or type constructors);

É in the case of ND we can recover cut elimination;
É in the case of DTT we can give a general algebraic de�nition of type constructor.

Still, there are plenty of things that should be looked into, for example:
É prove a completeness result;
É understand what monads have to do with “cut-like” rules;
É study rules and policies induced by all (co)monads;
É extend the theory and the de�nition to type constructors not included (inductive,
coinductive);

É express new logics (e.g. linear? modal?) in this framework;
É ... suggestions? Thank you for listening!


