Deduction via 2-category theory

j.w.w. Ivan Di Liberti

TACL 2022

Greta Coraglia

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \quad \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

(DTy) $\frac{\text { Гト } a: A \quad \text {. } A \vdash B}{\Gamma \vdash B[a]}$
(Cut) $\frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}$
(DTy) $\frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}$
(Cut) $\frac{x ;\ulcorner\vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ;\ulcorner\vdash \psi}$

$$
\begin{aligned}
\begin{aligned}
& \text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \\
& \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
& \text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
& \text { (DTy) } \frac{\Gamma \vdash a: A \text { Term } \quad \Gamma . A \vdash B \text { Type }}{\Gamma \vdash B[a] \text { Type }} \text { (Cut) } \frac{x ; \Gamma \vdash \phi \text { Form } x ; \Gamma, \phi \vdash \psi \text { Form }}{x ; \Gamma \vdash \psi \text { Form }}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rc}
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
\begin{aligned}
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
\text { (DTy) } \frac{\Gamma \vdash a: A \text { Term } \quad \Gamma . A \vdash B \text { Type }}{\Gamma \vdash B[a] \text { Type }} & \text { (Cut) } \frac{x ; \Gamma \vdash \phi \text { Form } x ; \Gamma, \phi \vdash \psi \text { Form }}{x ; \Gamma \vdash \psi \text { Form }}
\end{aligned}
\end{array}
$$

We have two different deductive systems doing similar things.

$$
\begin{aligned}
& \text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \\
& \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
& \text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi} \\
& \text { (DTy) } \frac{\Gamma \vdash a: A \text { Term } \quad \Gamma . A \vdash B \text { Type }}{\Gamma \vdash B[a] \text { Type }} \text { (Cut) } \frac{x ; \Gamma \vdash \phi \text { Form } x ; \Gamma, \phi \vdash \psi \text { Form }}{x ; \Gamma \vdash \psi \text { Form }}
\end{aligned}
$$

We have two different deductive systems doing similar things.
Can category theory help?

(Some) categorical models

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \quad \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

(Some) categorical models

$$
\text { (DTy) } \frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]} \quad \text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

Categories with families ${ }^{1}$, natural models ${ }^{2}, \ldots$

[^0]${ }^{2}$ Awodey, "Natural models of homotopy type theory", 2018.

(Some) categorical models

(DTy) $\frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}$
Categories with families ${ }^{1}$, natural models ${ }^{2}, \ldots$

$$
\text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

Doctrines and hyperdoctrines ${ }^{3}, \ldots$

$$
\begin{aligned}
& \text { E } \\
& \downarrow^{\text {fib }} \\
& \text { ctx }
\end{aligned}
$$

[^1]
Why fibrations?

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

Why fibrations?

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

They are functors
\leadsto great for encoding dependencies

Why fibrations?

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

They are functors
\sim great for encoding dependencies
A is in context X iff $X \vdash A$ iff $p A=X$

Why fibrations?

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

They are functors
\sim great for encoding dependencies
A is in context X iff $X \vdash A$ iff $p A=X$
plus we ask that every map $f: X \rightarrow p B$ has a cartesian lift
\leadsto great for substitution

We've got judgements. What is a deduction?

We've got judgements. What is a deduction?

We've got judgements. What is a deduction?

$$
(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}}
$$

We've got judgements. What is a deduction?

$(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U} \dot{\Gamma}}{\Gamma \vdash A \mathbb{U}} \quad \begin{aligned} & \text { the type of } a \text { in context } \Gamma \\ & \text { is a type in context } \Gamma\end{aligned}$

We've got judgements. What is a deduction?

We build a theory were:

> judgements = functors (fibrations)

We've got judgements. What is a deduction?

$$
(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}} \quad \begin{aligned}
& \text { the type of } a \text { in context } \Gamma \\
& \text { is a type in context } \Gamma
\end{aligned}
$$

We build a theory were:

> judgements = functors (fibrations)
> rules = (lax) commutative triangles

An account of context, judgement, deduction

context
judgement
deduction

An account of context, judgement, deduction

Apre-judgemental theory is specified through the following data:
context
judgement
deduction

An account of context, judgement, deduction

Apre-judgemental theory is specified through the following data:
context (ctx) a category (with terminal object \diamond);
judgement
deduction

An account of context, judgement, deduction

Apre-judgemental theory is specified through the following data:
context (ctx) a category (with terminal object \diamond);
judgement
(\mathcal{J}) judgement classifiers, a class of functors $f: \mathbb{F} \rightarrow$ ctx over the category of contexts, possibly (op)fibrations;
deduction

```
F
f
ctx
```


An account of context, judgement, deduction

Apre-judgemental theory is specified through the following data:
context (ctx) a category (with terminal object \diamond);
judgement
(\mathcal{J}) judgement classifiers, a class of functors $f: \mathbb{F} \rightarrow$ ctx over the category of contexts, possibly (op)fibrations;
deduction (\mathcal{R}) rules, a class of functors $\lambda: \mathbb{F} \rightarrow \mathbb{G}$;

An account of context, judgement, deduction

Apre-judgemental theory is specified through the following data:
context (ctx) a category (with terminal object \diamond);
judgement
(\mathcal{J}) judgement classifiers, a class of functors $f: \mathbb{F} \rightarrow$ ctx over the category of contexts, possibly (op)fibrations;
deduction
(\mathcal{R}) rules, a class of functors $\lambda: \mathbb{F} \rightarrow \mathbb{G}$;
(\mathcal{P}) policies, a class of 2-dimensional cells filling (some) triangles induced by rules (functors in \mathcal{R}) and judgements (functors in \mathcal{J}).

Why fibrations? - reprise

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

They are functors
\leadsto great for encoding dependencies:
A is in context X iff $X \vdash A$ iff $p A=X$
plus we ask that every map $f: X \rightarrow p B$ has a cartesian lift
\leadsto great for substitution.

Why fibrations? - reprise

$$
p: \mathbb{E} \rightarrow \mathbb{B}
$$

> Lemma (\#-lifting)

They are functors
\leadsto great for encoding dependencies:
A is in context X iff $X \vdash A$ iff $p A=X$
plus we ask that every map $f: X \rightarrow p B$ has a cartesian lift
\leadsto great for substitution.

Categories as syntax

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$.

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F^{\prime} \in f^{-1}(\Gamma)$ and $F=F^{\prime}$ we read $\Gamma \vdash F=\mathbb{F} F^{\prime}$.

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F^{\prime} \in f^{-1}(\Gamma)$ and $F=F^{\prime}$ we read $\Gamma \vdash F=\mathbb{F} F^{\prime}$.

$$
(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g \lambda F \vdash \lambda F \mathbb{G}}
$$

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F^{\prime} \in f^{-1}(\Gamma)$ and $F=F^{\prime}$ we read $\Gamma \vdash F=\mathbb{F} F^{\prime}$.

$$
(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g \lambda F \vdash \lambda F \mathbb{G}}
$$

and, possibly, Γ and $g \lambda F$ and related by a map

$$
\lambda_{F}^{\#}: g \lambda F \rightarrow \Gamma
$$

Example: toy MLTT

$$
\begin{aligned}
& \text { toy MLTT: }\left\{\begin{array}{l}
\text { ctx : (the syntactic category of) contexts and substitutions } \\
\mathcal{J}=\{\dot{u}, u\} \\
\mathcal{R}=\{\Sigma\} \\
\mathcal{P}=\{i d: u \circ \Sigma \Rightarrow \dot{u}\}
\end{array}\right. \\
& \dot{u}: \dot{U} \rightarrow \operatorname{ctx} \\
& u: \mathbb{U} \rightarrow \operatorname{ctx}
\end{aligned}
$$

Example: toy MLTT

$$
\begin{aligned}
& \text { toy MLTT: }\left\{\begin{array}{l}
\text { ctx : (the syntactic category of) contexts and substitutions } \\
\mathcal{J}=\{\dot{u}, u\} \\
\mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\
\mathcal{P}=\{i d: u \circ \Sigma \Rightarrow \dot{u}\}
\end{array}\right. \\
& \dot{u}: \dot{U} \rightarrow \operatorname{ctx} \\
& u: \mathbb{U} \rightarrow \mathrm{ctx}
\end{aligned}
$$

Example: toy MLTT

$$
\begin{aligned}
& \text { toy MLTT: }\left\{\begin{array}{l}
\text { ctx : (the syntactic category of) contexts and substitutions } \\
\mathcal{J}=\{\dot{u}, u\} \\
\mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\
\mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}
\end{array}\right. \\
& \dot{u}: \dot{U} \rightarrow \mathrm{ctx} \\
& u: \mathbb{U} \rightarrow \mathrm{ctx}
\end{aligned}
$$

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx }: \text { (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{ll}
\dot{u}: \dot{U} \rightarrow \mathrm{ctx} & \Gamma \vdash(a, A) \dot{U} \quad a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \mathrm{ctx}
\end{array}
$$

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx : (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{lcl}
\dot{u}: \dot{U} \rightarrow \mathrm{ctx} & \Gamma \vdash(a, A) \dot{U} & a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \mathrm{ctx} & \Gamma \vdash A \mathbb{U}
\end{array}
$$

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx }: \text { (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{lcl}
\dot{u}: \dot{U} \rightarrow \mathrm{ctx} & \Gamma \vdash(a, A) \dot{U} & a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \mathrm{ctx} & \Gamma \vdash A \mathbb{U} & A \text { is a type in context } \Gamma
\end{array}
$$

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx : (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{lcl}
\dot{u}: \dot{U} \rightarrow \mathrm{ctx} & \Gamma \vdash(a, A) \dot{U} & a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \mathrm{ctx} & \Gamma \vdash A \mathbb{U} & A \text { is a type in context } \Gamma
\end{array}
$$

$$
(\Sigma) \frac{\Gamma \vdash(a, A) \mathscr{U}}{\Gamma \vdash A \mathbb{U}}
$$

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx : (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{lcl}
\dot{u}: \dot{U} \rightarrow \mathrm{ctx} & \Gamma \vdash(a, A) \dot{U} & a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \mathrm{ctx} & \Gamma \vdash A \mathbb{U} & A \text { is a type in context } \Gamma
\end{array}
$$

$$
(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}}
$$

the type of a in context Γ is a type in context Γ

Example: toy MLTT

toy MLTT: $\quad\left\{\begin{array}{l}\text { ctx }: \text { (the syntactic category of) contexts and substitutions } \\ \mathcal{J}=\{\dot{u}, u\} \\ \mathcal{R}=\{\Sigma\}, \text { with } \Sigma:(a, A) \mapsto A \\ \mathcal{P}=\{\text { id }: u \circ \Sigma \Rightarrow \dot{u}\}\end{array}\right.$

$$
\begin{array}{lcl}
\dot{u}: \dot{U} \rightarrow \operatorname{ctx} & \Gamma \vdash(a, A) \dot{U} & a \text { is a term of type } A \text { in context } \Gamma \\
u: \mathbb{U} \rightarrow \operatorname{ctx} & \Gamma \vdash A \mathbb{U} & A \text { is a type in context } \Gamma
\end{array}
$$

$(\Sigma) \frac{\Gamma \vdash(a, A) \dot{U}}{\Gamma \vdash A \mathbb{U}} \quad \begin{aligned} & \text { the type of } a \text { in context } \Gamma \text { is a } \\ & \text { type in context } \Gamma\end{aligned}$

This is nice and all, but we can't do anything with it.

This is nice and all, but we can't do anything with it.
We impress the computational power of a deductive system using 2-dimensional constructions.

This is nice and all, but we can't do anything with it.
We impress the computational power of a deductive system using 2 -dimensional constructions.

Then

- 2 dimensions are necessary;

This is nice and all, but we can't do anything with it.
We impress the computational power of a deductive system using 2-dimensional constructions.

Then

- 2 dimensions are necessary;
- 2 dimensions are sufficient!*

[^2]
Judgemental theories

Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

Judgemental theories

Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{P} are closed under composition;

Judgemental theories

Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{P} are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;

Judgemental theories

Ajudgemental theory ($\operatorname{ctx}, \mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{P} are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. \mathcal{R} and \mathcal{P} are closed under finite limits, \#-liftings, whiskering and pasting.

Judgemental theories

Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{P} are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. \mathcal{R} and \mathcal{P} are closed under finite limits, \#-liftings, whiskering and pasting.

- $\underset{\substack{r}}{\substack{r}}$

Judgemental theories

Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. \mathcal{R} and \mathcal{P} are closed under composition;
2. the judgements are precisely those rules whose codomain is ctx;
3. \mathcal{R} and \mathcal{P} are closed under finite limits, \#-liftings, whiskering and pasting.

We now have a calculus!

Judgemental theories: the motto

Judgemental theories: the motto

Every rule is a diagram.

Judgemental theories: the motto

Every rule is a diagram.

- $\frac{\forall \rightarrow r}{v \rightarrow}$

Every diagram is a rule.

Judgemental theories: the motto

Every rule is a diagram.

- $\frac{\forall \rightarrow r}{v \rightarrow}$

Every diagram is a rule.
\leadsto any triangle we find in our j t is a rule we prove

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & \text { Г.АトВ } \\
x ;\ulcorner\vdash \phi & x ; \Gamma, \phi \vdash \psi
\end{array}
$$

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & \text { Г.AトВ } \\
x ;\ulcorner\vdash \phi & x ; Г, \phi \vdash \psi
\end{array}
$$

because

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & \text { Г.AトВ } \\
x ;\ulcorner\vdash \phi & x ; Г, \phi \vdash \psi
\end{array}
$$

because

「トF $\boldsymbol{C} \cdot \mathrm{H} \mathbb{F} \lambda . \mathbb{H}$

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & \text { Г.AトВ } \\
x ;\ulcorner\vdash \phi & x ; Г, \phi \vdash \psi
\end{array}
$$

because

「トF $\boldsymbol{F} \cdot \mathrm{H} \mathbb{F} \lambda . \mathbb{H}$
really is

$$
\Gamma \vdash H \mathbb{H} \quad g \lambda H \vdash F \mathbb{F}
$$

Nested judgements

Pullbacks compute nested judgements such as

$$
\begin{array}{cc}
\ulcorner\vdash a: A & Г . А \vdash B \\
x ;\ulcorner\vdash \phi & x ;\ulcorner, \phi \vdash \psi
\end{array}
$$

because

「トF $\boldsymbol{F} . \mathrm{HF} \boldsymbol{F}$. \mathbb{H}
really is

$$
\Gamma \vdash H \mathbb{H} \quad g \lambda H \vdash F \mathbb{F}
$$

The jt of natural deduction

$$
p: \operatorname{ctx}^{o p} \rightarrow \operatorname{Pos}
$$
s.t. it has fibered products preserved by reindexing

The jt of natural deduction

$$
\begin{gathered}
p: c t x^{o p} \rightarrow \text { Pos } \\
\text { s.t. it has fibered products preserved by reindexing }
\end{gathered}
$$

Examples

- The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory

The jt of natural deduction

$$
\begin{gathered}
p: c t x^{o p} \rightarrow \text { Pos } \\
\text { s.t. it has fibered products preserved by reindexing }
\end{gathered}
$$

Examples

- The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks

The jt of natural deduction

$$
\begin{gathered}
p: \mathrm{ctx}^{o p} \rightarrow \text { Pos } \\
\text { s.t. it has fibered products preserved by reindexing }
\end{gathered}
$$

Examples

- The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks
- ...

The jt of natural deduction

$$
p: \operatorname{ctx}^{o p} \rightarrow \mathrm{Pos}
$$

s.t. it has fibered products preserved by reindexing

Examples

- The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks
- ...

The jt of natural deduction

The jt of natural deduction

jND: $\quad\left\{\begin{array}{l}\text { ctx : contexts and substitutions e.g. Fin } \\ \mathcal{J}=\{p\} \text { s.t. faithful, with fibered products }\end{array}\right.$

The jt of natural deduction

$\mathrm{jND}: \quad\left\{\begin{array}{l}\text { ctx : contexts and substitutions e.g. Fin } \\ \mathcal{J}=\{p\} \text { s.t. faithful, with fibered products } \\ \mathcal{R}=\{-\times-, \text { diag, }-\wedge-\}\end{array}\right.$

The jt of natural deduction

jND: $\left\{\begin{array}{l}\text { ctx }: \text { contexts and substitutions e.g. Fin } \\ \mathcal{J}=\{p\} \text { s.t. faithful, with fibered products } \\ \mathcal{R}=\{-\times- \text { diag, }-\wedge-\} \\ \mathcal{P}=\{\epsilon\} \cup\{\text { commutativity of all squares }\}\end{array}\right.$

The jt of natural deduction

then close under finite limits, \#-lifting, ...

The jt of natural deduction

j ND: $\quad\left\{\begin{array}{l}\text { ctx }: \text { contexts and substitutions e.g. Fin } \\ \mathcal{J}=\{p\} \text { s.t. faithful, with fibered products } \\ \mathcal{R}=\{-\times-, \text { diag, }-\wedge-\} \cup\{\ldots\} \\ \mathcal{P}=\{\epsilon\} \cup\{\text { commutativity of all squares }\} \cup\{\alpha, \ldots\}\end{array}\right.$
then close under finite limits, \#-lifting, ...

Weakening

Weakening

Weakening

Weakening

Weakening

Weakening

Weakening

Weakening

$$
\text { (w) } \frac{x \times y \vdash(\phi, \psi) \mathbb{P}^{2}}{x \times y \vdash \phi\left[p_{1}\right] \wedge \psi\left[p_{2}\right] \mathbb{P}^{x}}
$$

Stratified contexts

$x ;\ulcorner\vdash \psi$

Stratified contexts

$$
x ;\ulcorner\vdash \psi
$$

Stratified contexts

$$
x ;\ulcorner\vdash \psi
$$

Stratified contexts

$$
x ;\ulcorner\vdash \psi
$$

Remark
e is a fibration.

Stratified contexts

$$
x ;\ulcorner\vdash \psi
$$

Remark

e is a fibration.
$x ;\ulcorner\vdash \psi$ iff

Stratified contexts

$$
x ;\ulcorner\vdash \psi
$$

Remark e is a fibration.

$$
x ;\left\ulcorner\vdash \psi \text { iff } \left\{\begin{array}{l}
x \vdash e \mathbb{E} \\
x \vdash \operatorname{dom}(e)=\mathbb{P} \bigwedge \Gamma \\
x \vdash \operatorname{cod}(e)=\mathbb{P} \psi
\end{array}\right.\right.
$$

From structure to rules

From structure to rules

Proposition

The following rule is in $j N D$.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in $j N D$.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
(T) \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
(T) \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
\text { (T) } \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

From structure to rules

Proposition

The following rule is in jND.

$$
(T) \frac{x ; \psi \vdash \phi \quad x ; \phi \vdash \chi}{x ; \psi \vdash \chi}
$$

Cut elimination theorem

Theorem

The following rule is in jND.

$$
\text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \chi}{x ; \Gamma \vdash \chi}
$$

Cut elimination theorem

Theorem
The following rule is in jND.

$$
\text { (Cut) } \frac{x ;\ulcorner\vdash \phi \quad x ; \Gamma, \phi \vdash \chi}{x ;\ulcorner\vdash \chi}
$$

$$
\begin{aligned}
& \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \phi} \\
& \text { (T) } \frac{\frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \phi \Gamma \wedge \phi}}{\frac{x ; \Gamma, \phi \vdash \psi}{x ; \phi_{\Gamma} \wedge \phi \vdash \psi}} \\
& x ; \Gamma \vdash \psi
\end{aligned}
$$

Cut elimination theorem

Theorem

The following rule is in jND.

$$
\text { (Cut) } \frac{x ;\ulcorner\vdash \phi \quad x ;\ulcorner, \phi \vdash \chi}{x ;\ulcorner\vdash \chi}
$$

$$
\frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \phi} \quad \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{\frac{x ; \Gamma, \phi \vdash \psi}{x ; \phi \Gamma \wedge \phi \vdash \psi}}
$$

$$
S: \mathbb{E} \rightarrow \mathbb{E}, \quad(\psi \leq \phi) \mapsto(\psi \wedge \phi \leq \psi \leq \phi)
$$

part of a monad related to the simple fibration

Cut elimination theorem

Theorem

The following rule is in jND.

$$
(\text { Cut }) \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \chi}{x ; \Gamma \vdash \chi}
$$

$$
S: \mathbb{E} \rightarrow \mathbb{E}, \quad(\psi \leq \phi) \mapsto(\psi \wedge \phi \leq \psi \leq \phi)
$$

Cut elimination theorem

Theorem

The following rule is in jND.

$$
\text { (Cut) } \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \chi}{x ; \Gamma \vdash \chi}
$$

Ed.dSE
$\frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{\frac{x ; \Gamma \vdash \phi}{x ; \Gamma \vdash \phi \Gamma \wedge \phi}} \quad \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{\frac{x ; \Gamma, \phi \vdash \psi}{x ; \phi \Gamma \wedge \phi \vdash \psi}}$
(Т; $\frac{x \vdash \psi}{}$

$$
(C u t) \frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

(DTy) $\frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}$

$$
(\mathrm{Cut}) \frac{x ;\ulcorner\vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

(DTy) $\frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}$

(Cut) $\frac{x ; \Gamma \vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}$

(DTy) $\frac{\Gamma \vdash a: A \quad \Gamma . A \vdash B}{\Gamma \vdash B[a]}$

$$
(\text { Cut }) \frac{x ;\ulcorner\vdash \phi \quad x ; \Gamma, \phi \vdash \psi}{x ; \Gamma \vdash \psi}
$$

... plus both $\Delta \Sigma$ and S are monads!

In summation

In summation

We describe a general theory of judgement via 2-categorical means and show that:

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;
- ... suggestions?

In summation

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- in the case of ND we can recover cut elimination;
- in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;
- ... suggestions?

Thank you for listening!

[^0]: ${ }^{1}$ Dybjer, "Internal type theory", 1996.

[^1]: ${ }^{1}$ Dybjer, "Internal type theory", 1996.
 ${ }^{2}$ Awodey, "Natural models of homotopy type theory", 2018.
 ³Lawvere, "Adjointness in Foundations", 1969.

[^2]: * Provided that the ambient 2-category has some structure. Here: Cat.

