

Deduction via 2-category theory

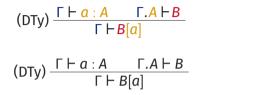
j.w.w. Ivan Di Liberti

TACL 2022

Greta Coraglia

$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

(Cut)
$$\frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$



$$(Cut) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$
$$(Cut) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \text{ Term } \quad \Gamma.A \vdash B \text{ Type}}{\Gamma \vdash B[a] \text{ Type}} \qquad (Cut) \frac{x; \Gamma \vdash \phi \text{ Form } x; \Gamma, \phi \vdash \psi \text{ Form}}{x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash \psi \text{ Form } x; \Gamma \vdash \psi \text{ Form } x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash \psi$$

$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \text{ Term} \qquad \Gamma.A \vdash B \text{ Type}}{\Gamma \vdash B[a] \text{ Type}} \qquad (Cut) \frac{x; \Gamma \vdash \phi \text{ Form} \qquad x; \Gamma, \phi \vdash \psi \text{ Form}}{x; \Gamma \vdash \psi \text{ Form}}$$

We have two different deductive systems doing similar things.

$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi} \\ (DTy) \frac{\Gamma \vdash a : A \text{ Term } \qquad \Gamma.A \vdash B \text{ Type}}{\Gamma \vdash B[a] \text{ Type}} \qquad (Cut) \frac{x; \Gamma \vdash \phi \text{ Form } x; \Gamma, \phi \vdash \psi \text{ Form }}{x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash \psi \text{ Form } x; \Gamma \vdash \psi \text{ Form } x; \Psi \vdash$$

We have two different deductive systems doing similar things. Can category theory help?

(Some) categorical models

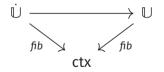
$$(DTy) \frac{\Gamma \vdash a : A \quad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

(Some) categorical models

$$(\mathsf{DTy}) \frac{\Gamma \vdash a : A \quad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

$$(Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

Categories with families¹, natural models², ...



²Awodey, "Natural models of homotopy type theory", 2018.

¹Dybjer, "Internal type theory", 1996.

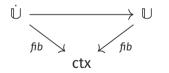
(Some) categorical models

$$(\mathsf{DTy}) \frac{\Gamma \vdash a : A \quad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

Categories with families¹, natural models², ...

(Cut)
$$\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

Doctrines and hyperdoctrines³, ...



²Awodey, "Natural models of homotopy type theory", 2018.

³Lawvere, "Adjointness in Foundations", 1969.

¹Dybjer, "Internal type theory", 1996.

$p:\mathbb{E}\to\mathbb{B}$

$p: \mathbb{E} \to \mathbb{B}$

They are functors \rightsquigarrow great for encoding dependencies

$$p: \mathbb{E} \to \mathbb{B}$$

They are functors \sim great for encoding dependencies

A is in context X iff $X \vdash A$ iff pA = X

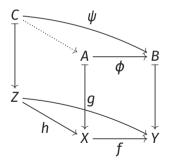
 $p:\mathbb{E}\to\mathbb{B}$

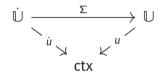
They are functors \rightsquigarrow great for encoding dependencies

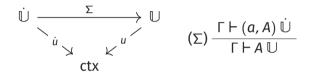
A is in context X iff $X \vdash A$ iff pA = X

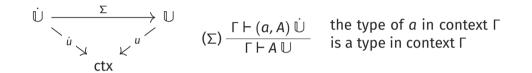
plus we ask that every map $f : X \rightarrow pB$ has a cartesian lift

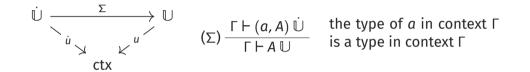
 \rightsquigarrow great for substitution





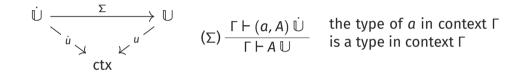






We build a theory were:

judgements = functors (fibrations)



We build a theory were:

judgements = functors (fibrations) rules = (lax) commutative triangles

context

judgement

deduction

Apre-judgemental theory is specified through the following data:

context

judgement

deduction

Apre-judgemental theory is specified through the following data:

context (ctx) a category (with terminal object \$);

judgement

deduction

Apre-judgemental theory is specified through the following data:

context (ctx) a category (with terminal object \$);

judgement (\mathcal{J}) *judgement classifiers*, a class of functors $f : \mathbb{F} \to \text{ctx}$ over the category of contexts, possibly (op)fibrations;

deduction

F f ctx

Apre-judgemental theory is specified through the following data:

context (ctx) a category (with terminal object \$);

judgement (\mathcal{J}) judgement classifiers, a class of functors $f : \mathbb{F} \to \text{ctx}$ over the category of contexts, possibly (op)fibrations;

(\mathcal{R}) rules, a class of functors $\lambda : \mathbb{F} \to \mathbb{G}$; deduction

$$\begin{array}{cccc} \mathbb{F} & \mathbb{F} & \stackrel{\lambda}{\longrightarrow} \mathbb{G} \\ \stackrel{i}{f} & \stackrel{i}{f} & \stackrel{g}{g} \\ \stackrel{\tau}{\xrightarrow} & \stackrel{\tau}{\xrightarrow} & \stackrel{\tau}{\xrightarrow} \\ \operatorname{ctx} & \operatorname{ctx} & \operatorname{ctx} \end{array}$$

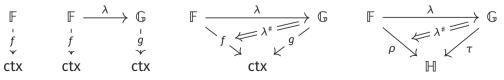
Apre-judgemental theory is specified through the following data:

(ctx) a category (with terminal object \diamond); context

judgement (*J*) *judgement classifiers*, a class of functors $f : \mathbb{F} \to \text{ctx}$ over the category of contexts, possibly (op)fibrations:

(\mathcal{R}) rules, a class of functors $\lambda : \mathbb{F} \to \mathbb{G}$:

deduction (\mathcal{P}) policies, a class of 2-dimensional cells filling (some) triangles induced by rules (functors in \mathcal{R}) and judgements (functors in \mathcal{J}).



Why fibrations? - reprise

```
p:\mathbb{E}\to\mathbb{B}
```

```
They are functors \sim great for encoding dependencies:
```

```
A is in context X iff X \vdash A iff pA = X
```

plus we ask that every map $f : X \rightarrow pB$ has a cartesian lift

 \rightsquigarrow great for substitution.

Why fibrations? - reprise

 $p:\mathbb{E}\to\mathbb{B}$

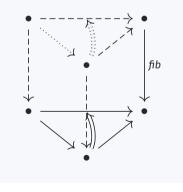
They are functors \sim great for encoding dependencies:

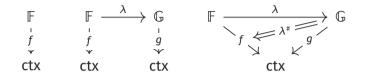
A is in context X iff $X \vdash A$ iff pA = X

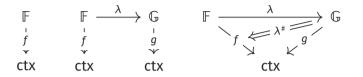
plus we ask that every map $f: X \rightarrow pB$ has a cartesian lift

 \rightsquigarrow great for substitution.

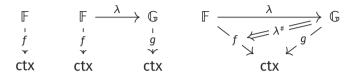
Lemma (#-lifting)



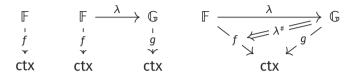




Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$.

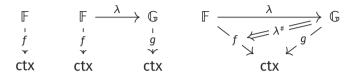


Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F' \in f^{-1}(\Gamma)$ and F = F' we read $\Gamma \vdash F =_{\mathbb{F}} F'$.



Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F' \in f^{-1}(\Gamma)$ and F = F' we read $\Gamma \vdash F =_{\mathbb{F}} F'$.

$$(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g\lambda F \vdash \lambda F \mathbb{G}}$$



Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F' \in f^{-1}(\Gamma)$ and F = F' we read $\Gamma \vdash F =_{\mathbb{F}} F'$.

$$(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g\lambda F \vdash \lambda F \mathbb{G}}$$

and, possibly, Γ and $g\lambda F$ and related by a map

$$\lambda_F^{\sharp}: g\lambda F \to \Gamma$$

toy MLTT:

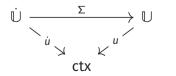
$$\begin{cases}
 ctx : (the syntactic category of) contexts and substitutions \\
 $\mathcal{J} = \{\dot{u}, u\} \\
 \mathcal{R} = \{\Sigma\} \\
 \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}
\end{cases}$

$$\dot{u} : \dot{U} \rightarrow ctx \\
 \dot{u} : \dot{U} \rightarrow ctx \\
 \dot{U} \xrightarrow{\Sigma} U \\
 \dot{ctx} \swarrow u \xrightarrow{u} U$$$$

toy MLTT:
$$\begin{cases} \text{ctx} : (\text{the syntactic category of}) \text{ contexts and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$$

$$\dot{u}:\dot{U}\rightarrow ctx$$

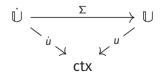
$$u: \mathbb{U} \to \mathrm{ctx}$$



toy MLTT:
$$\begin{cases} \operatorname{ctx} : (\text{the syntactic category of}) \text{ contexts and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$$

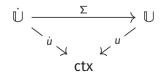
$$\dot{u}: \dot{\mathbb{U}} \to \operatorname{ctx} \qquad \Gamma \vdash (a, A) \dot{\mathbb{U}}$$

 $u: \mathbb{U} \rightarrow \mathrm{ctx}$



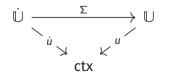
toy MLTT:

$$\begin{cases}
 ctx : (the syntactic category of) contexts and substitutions
 $\mathcal{J} = \{\dot{u}, u\} \\
 \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\
 \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \\
 \dot{u} : \dot{U} \rightarrow ctx \qquad \Gamma \vdash (a, A) \dot{U} \qquad a \text{ is a term of type } A \text{ in context } \Gamma \\
 u : U \rightarrow ctx
\end{cases}$$$

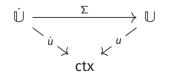


toy MLTT:

$$\begin{cases}
 ctx : (the syntactic category of) contexts and substitutions \\
 $\mathcal{J} = \{\dot{u}, u\} \\
 \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\
 \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \\
 \dot{u} : \dot{U} \rightarrow ctx \qquad \Gamma \vdash (a, A) \dot{U} \qquad a \text{ is a term of type } A \text{ in context } \Gamma \\
 u : U \rightarrow ctx \qquad \Gamma \vdash A U
\end{cases}$$$



toy MLTT:	$ \begin{array}{l} ctx : (the syntactic category \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \ with \ \Sigma : (a, A) \vdash \\ \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{array} $	y of) contexts and substitutions → A
$\dot{u}:\dot{U}\rightarrow c$	tx Г⊢(<i>a</i> , A) Ü	a is a term of type A in context Γ
$u:\mathbb{U}\to \mathbf{c}$	tx Γ⊢A U	A is a type in context Γ



toy MLTT:	ctx : (the syntactic category $\mathcal{J} = \{\dot{u}, u\}$ $\mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto$ $\mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$	The syntactic category of) contexts and substitutions $\{u, u\}$ $\{\Sigma\}$, with $\Sigma : (a, A) \mapsto A$ $d : u \circ \Sigma \Rightarrow \dot{u}\}$	
$\dot{u}:\dot{U}\rightarrow ctx$	Γ ⊢ (<i>a</i> , A) Ù	a is a term of type A in context Γ	
$u:\mathbb{U}\toctx$	$\Gamma\vdash A~\mathbb{U}$	A is a type in context Γ	
$\dot{\mathbb{U}} \xrightarrow{\Sigma}_{\dot{u}} \times \varkappa_{ctx}^{u}$	$ \stackrel{\rightarrow}{\swarrow} \mathbb{U} \qquad (\Sigma) \frac{\Gamma \vdash (a, A) \stackrel{\cup}{\mathbb{U}}}{\Gamma \vdash A \mathbb{U}} $		

toy MLTT:	y of) contexts and substitutions	
$\dot{u}:\dot{U}\rightarrow ctx$	Γ ⊢ (<i>a</i> , A) ∪́	a is a term of type A in context Γ
$u:\mathbb{U}\toctx$	$\Gamma \vdash A \mathbb{U}$	A is a type in context Γ
$\dot{\mathbb{U}} \xrightarrow{\Sigma}_{\dot{u}} \swarrow_{ctx} \swarrow^{u}$	Σ [□] (Σ) Γ ⊢ (<i>a</i> , <i>A</i>) Ū Γ ⊢ A U	the type of <i>a</i> in context Γ is a type in context Γ

toy MLTT:	$\begin{cases} \operatorname{ctx} : (\text{the syntactic category of}) \text{ contexts and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$			
$\dot{u}:\dot{\mathbb{U}}\rightarrow ct$	κ Γ ⊢ (<i>a</i> , A) Ū	а is a term of type A in context Г		
$u:\mathbb{U}\toct$	K F⊢AU	A is a type in context Γ		
$\dot{\mathbb{U}} \xrightarrow{\Sigma}_{i \\ i \\ j \\ k \\ k$	$\stackrel{\longrightarrow}{\longrightarrow} \mathbb{U} \qquad (\Sigma) \frac{\Gamma \vdash (a, A) \mathbb{Q}}{\Gamma \vdash A \mathbb{U}}$	ύ the type of <i>a</i> in context Γ is a type in context Γ		

We impress the computational power of a deductive system using 2-dimensional constructions.

We impress the computational power of a deductive system using 2-dimensional constructions.

Then

2 dimensions are necessary;

We impress the computational power of a deductive system using 2-dimensional constructions.

Then

- 2 dimensions are necessary;
- 2 dimensions are sufficient!*

^{*} Provided that the ambient 2-category has some structure. Here: **Cat**.

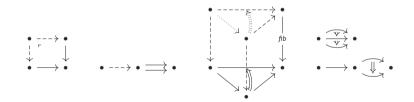
Ajudgemental theory (ctx, $\mathcal{J}, \mathcal{R}, \mathcal{P}$) is a pre-judgemental theory such that

1. ${\mathcal R} \text{ and } {\mathcal P} \text{ are closed under composition;}$

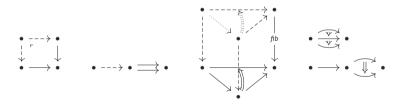
- 1. ${\mathcal R} \text{ and } {\mathcal P} \text{ are closed under composition;}$
- 2. the judgements are precisely those rules whose codomain is ctx;

- 1. ${\mathcal R} \text{ and } {\mathcal P} \text{ are closed under composition;}$
- 2. the judgements are precisely those rules whose codomain is ctx;
- 3. \mathcal{R} and \mathcal{P} are closed under finite limits, #-liftings, whiskering and pasting.

- 1. ${\mathcal R} \text{ and } {\mathcal P} \text{ are closed under composition;}$
- 2. the judgements are precisely those rules whose codomain is ctx;
- 3. \mathcal{R} and \mathcal{P} are closed under finite limits, #-liftings, whiskering and pasting.



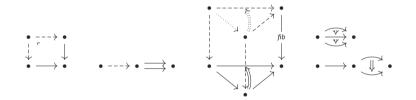
- 1. ${\mathcal R} \text{ and } {\mathcal P} \text{ are closed under composition;}$
- 2. the judgements are precisely those rules whose codomain is ctx;
- 3. \mathcal{R} and \mathcal{P} are closed under finite limits, #-liftings, whiskering and pasting.



We now have a calculus!

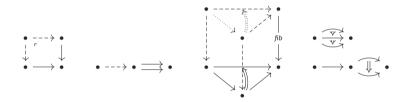
Every rule is a diagram.

Every rule is a diagram.



Every diagram is a rule.

Every rule is a diagram.



Every diagram is a rule.

\rightsquigarrow any triangle we find in our jt is a rule we prove

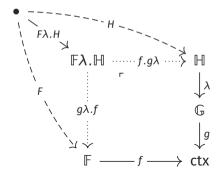
Pullbacks compute nested judgements such as

 $\Gamma \vdash a : A \qquad \Gamma.A \vdash B$

 $x; \Gamma \vdash \phi$ $x; \Gamma, \phi \vdash \psi$

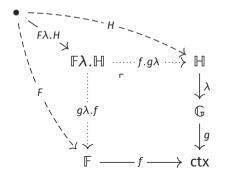
Pullbacks compute nested judgements such as

 $\Gamma \vdash a : A \qquad \Gamma.A \vdash B$



Pullbacks compute nested judgements such as

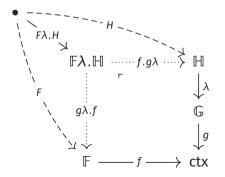
because



 $\Gamma \vdash F\lambda.H \mathbb{F}\lambda.\mathbb{H}$

Pullbacks compute nested judgements such as

because



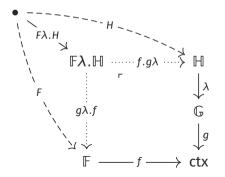
 $\Gamma \vdash F\lambda.H \mathbb{F}\lambda.\mathbb{H}$

really is

 $\Gamma \vdash H \blacksquare g \lambda H \vdash F \Bbb F$

Pullbacks compute nested judgements such as

because



 $\Gamma \vdash F\lambda.H \mathbb{F}\lambda.\mathbb{H}$

really is

 $\Gamma \vdash H \boxplus g\lambda H \vdash F \mathbb{F}$

 $p: \operatorname{ctx}^{op} \to \operatorname{Pos}$

s.t. it has fibered products preserved by reindexing

 $p: \operatorname{ctx}^{op} \to \operatorname{Pos}$

s.t. it has fibered products preserved by reindexing

Examples

► The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory

 $p: \operatorname{ctx}^{op} \to \operatorname{Pos}$

s.t. it has fibered products preserved by reindexing

Examples

- > The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks

 $p: \operatorname{ctx}^{op} \to \operatorname{Pos}$

s.t. it has fibered products preserved by reindexing

Examples

▶ ...

- > The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks

 $p: \operatorname{ctx}^{op} \to \operatorname{Pos}$

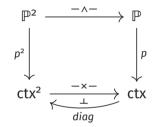
s.t. it has fibered products preserved by reindexing

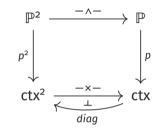
Examples

► ...

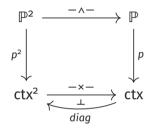
- ► The Lindenbaum-Tarski algebras of well-formed formulae of a first order theory
- Subobjects of a category with finite products and (weak)pullbacks

 $\begin{cases} \text{ctx}: \text{contexts and substitutions } e.g. \text{ Fin} \\ \mathcal{J} = \{p\} \text{ s.t. faithful, with fibered products} \\ \mathcal{R} = \dots \\ \mathcal{P} = \dots \end{cases}$

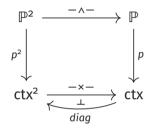




jND: $\begin{cases} ctx : contexts and substitutions e.g. Fin \\ \mathcal{J} = \{p\} s.t. faithful, with fibered products \end{cases}$

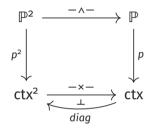


ND:
$$\begin{cases} \operatorname{ctx} : \operatorname{contexts} \operatorname{and} \operatorname{substitutions} e.g. \operatorname{Fin} \\ \mathcal{J} = \{p\} \text{ s.t. faithful, with fibered products} \\ \mathcal{R} = \{-\times -, \operatorname{diag}, - \wedge -\} \end{cases}$$



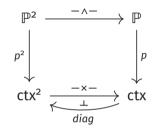
jND:

$$\begin{cases}
 ctx : contexts and substitutions e.g. Fin \\
 $\mathcal{J} = \{p\} \text{ s.t. faithful, with fibered products} \\
 \mathcal{R} = \{-x -, diag, - \wedge -\} \\
 \mathcal{P} = \{\epsilon\} \cup \{\text{commutativity of all squares}\}
\end{cases}$$$



jND: $\begin{cases} \text{ctx}: \text{contexts and substitutions } e.g. \text{ Fin} \\ \mathcal{J} = \{p\} \text{ s.t. faithful, with fibered products} \\ \mathcal{R} = \{-\times -, diag, - \wedge -\} \\ \mathcal{P} = \{\epsilon\} \cup \{\text{commutativity of all squares}\} \end{cases}$

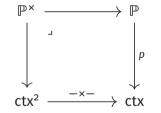
then close under finite limits, #-lifting, ...

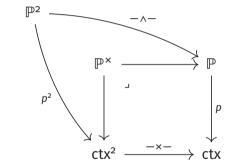


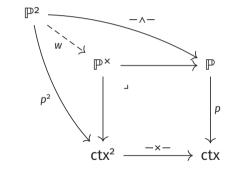
jND: $\begin{cases}
 ctx : contexts and substitutions e.g. Fin \\
 <math>\mathcal{J} = \{p\} \text{ s.t. faithful, with fibered products} \\
 \mathcal{R} = \{-x -, diag, - \wedge -\} \cup \{\dots\} \\
 \mathcal{P} = \{\epsilon\} \cup \{\text{commutativity of all squares}\} \cup \{\alpha, \dots\} \\
 then close under finite limits, #-lifting, ...
}$

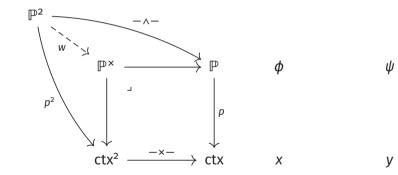
Università di Genova

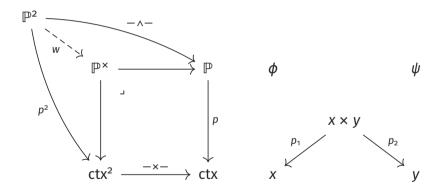
Weakening

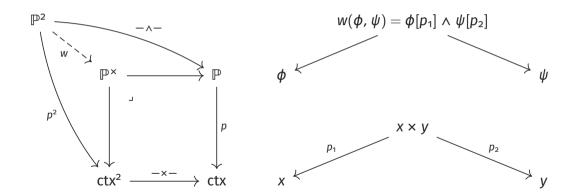


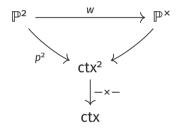


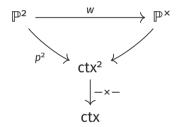








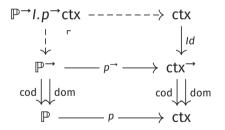




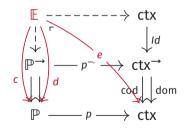
(w)
$$\frac{x \times y \vdash (\phi, \psi) \mathbb{P}^2}{x \times y \vdash \phi[p_1] \land \psi[p_2] \mathbb{P}^{\times}}$$

$x; \Gamma \vdash \psi$

 $x; \Gamma \vdash \psi$



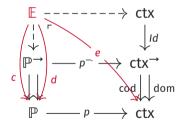
 $x; \Gamma \vdash \psi$



 $x; \Gamma \vdash \psi$

Remark

e is a fibration.

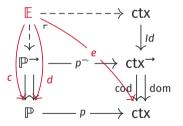


 $x; \Gamma \vdash \psi$

Remark

e is a fibration.

 $x; \Gamma \vdash \psi$ iff

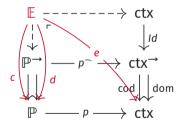


 $x; \Gamma \vdash \psi$

Remark

e is a fibration.

$$x; \Gamma \vdash \psi \text{ iff } \begin{cases} x \vdash e \mathbb{E} \\ x \vdash \operatorname{dom}(e) =_{\mathbb{P}} \bigwedge \Gamma \\ x \vdash \operatorname{cod}(e) =_{\mathbb{P}} \psi \end{cases}$$

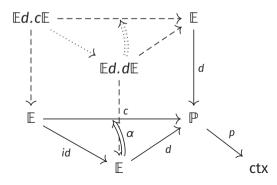


Proposition

$$(T) \frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$

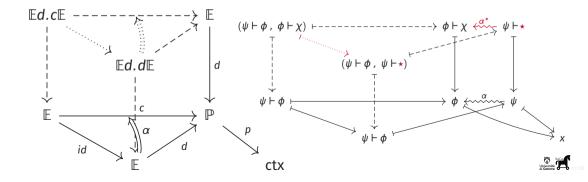
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



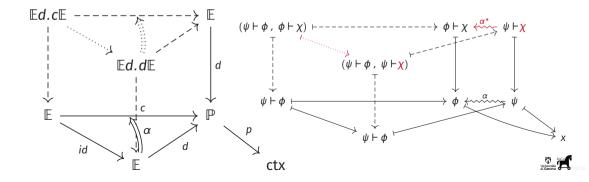
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



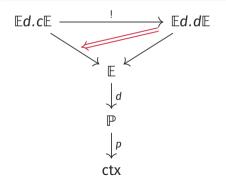
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



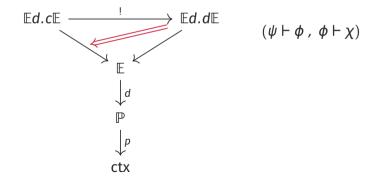
Proposition

(T)
$$\frac{x; \psi \vdash \phi \quad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



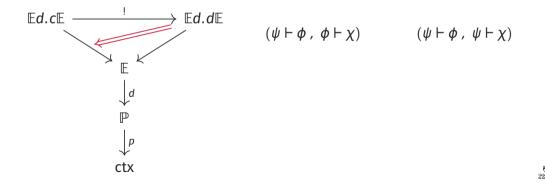
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



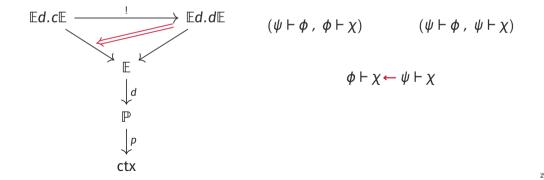
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



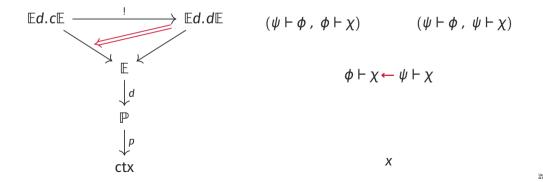
Proposition

(T)
$$\frac{x; \psi \vdash \phi \quad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



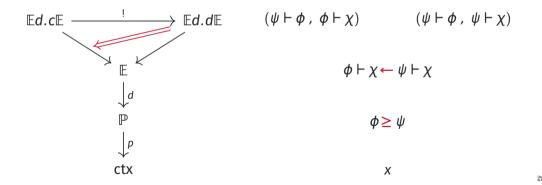
Proposition

(T)
$$\frac{x; \psi \vdash \phi \qquad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



Proposition

(T)
$$\frac{x; \psi \vdash \phi \quad x; \phi \vdash \chi}{x; \psi \vdash \chi}$$



Theorem

$$(Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \chi}{x; \Gamma \vdash \chi}$$

Theorem

$$(Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \chi}{x; \Gamma \vdash \chi}$$

$$\frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{(T) \frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \phi_{\Gamma} \land \phi}} \xrightarrow{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{x; \varphi_{\Gamma} \land \phi \vdash \psi}$$

Theorem

The following rule is in jND.

$$(Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \chi}{x; \Gamma \vdash \chi}$$

$$\frac{x; \Gamma \vdash \phi \quad x; \Gamma, \phi \vdash \psi}{(T) \frac{x; \Gamma \vdash \phi_{\Gamma} \land \phi}{x; \Gamma \vdash \phi_{\Gamma} \land \phi}} \xrightarrow[x; \Gamma \vdash \psi]{x; \Gamma \vdash \phi \land \phi \vdash \psi} \frac{x; \Gamma, \phi \vdash \psi}{x; \phi_{\Gamma} \land \phi \vdash \psi}$$

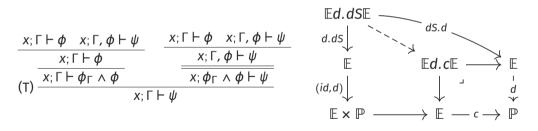
$$\mathsf{S}:\mathbb{E}\to\mathbb{E},\quad (\psi\leq\phi)\,\mapsto\,(\psi\wedge\phi\leq\psi\leq\phi)$$

part of a monad related to the simple fibration

Theorem

The following rule is in jND.

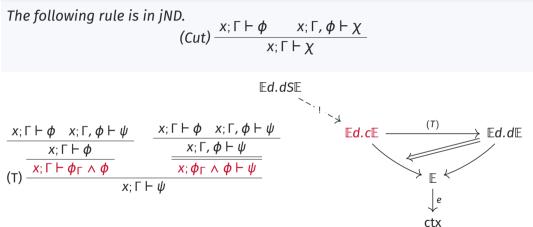
$$(Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \chi}{x; \Gamma \vdash \chi}$$



$$\mathsf{S}:\mathbb{E}\to\mathbb{E},\quad (\psi\leq\phi)\,\mapsto\,(\psi\wedge\phi\leq\psi\leq\phi)$$

part of a monad related to the simple fibration

Theorem

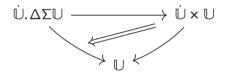


$$(\mathsf{DTy}) \xrightarrow{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

(Cut)
$$\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

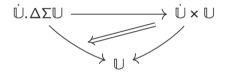
$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

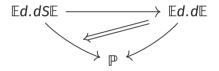
(Cut)
$$\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

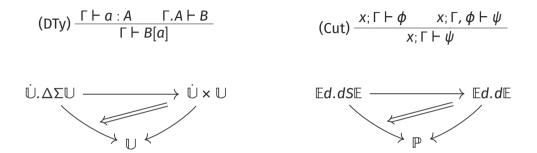


$$(DTy) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

$$(Cut) \frac{x; \Gamma \vdash \phi}{x; \Gamma \vdash \psi} \frac{x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$







... plus both $\Delta\Sigma$ and S are monads!

We describe a general theory of judgement via 2-categorical means and show that:

We describe a general theory of judgement via 2-categorical means and show that:

 out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

Still, there are plenty of things that should be looked into, for example:

prove a completeness result;

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;
- ... suggestions?

We describe a general theory of judgement via 2-categorical means and show that:

- out of a few choices of judgement classifiers, rules, and policies, one can recover structural rules (and easily add quantifiers/connectives or type constructors);
- ▶ in the case of ND we can recover cut elimination;
- ▶ in the case of DTT we can give a general algebraic definition of type constructor.

- prove a completeness result;
- understand what monads have to do with "cut-like" rules;
- study rules and policies induced by all (co)monads;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- express new logics (e.g. linear? modal?) in this framework;
- ... suggestions? Thank you for listening!

