Lambek-Grishin Calculus:

Focusing, Display and Full Polarization

Giuseppe Greco ${ }^{1}$
Michael Moortgat ${ }^{2}$
Valentin D. Richard ${ }^{3}$
Apostolos Tzimoulis ${ }^{1}$

${ }^{1}$ Vrije Universiteit, the Netherlands
2 Institutes of Linguistics OTS, Universiteit Utrecht, the Netherlands
${ }^{3}$ ENS Paris-Saclay, France

TACL 2022, Coimbra 23 June

Identity of proofs

Identifying or telling apart proofs has far-reaching consequences.

- Philosophy and mathematics: when do two proofs correspond to the same argument?
- Computer science: when do two algorithms correspond to the same program?
- Linguistics: how to capture different readings of the same sentence?
- ...

Sequent calculi exhibit syntactically different proofs of the very same end-sequent often due to trivial permutations of inference rules.

Natural deduction calculi or proof nets are less sensitive to inference rule permutations and are taken as benchmarks for defining identity of proofs.

Focused sequent calculi [And92, And01, Mil04] make use of syntactic restrictions on the applicability of inference rules achieving three main goals:

1 the proof search space is reduced retaining completeness;
2 every cut-free proof comes in a special normal form;
3 criterion for defining identity of sequent calculi proofs.

What is the mathematical underpinning of focalization?
Looking for:

- (uniform and modular structural) proof theory and
- (algebraic and categorical) semantics.

Our contributions

Lambek-Grishin logic (expanded with analytic structural rules closed under mutations, i.e. an equivalence relation between structural connectives: see Appendix A.):

- (heterogenous multi-type) focused display calculus fD.LG
- fully polarized algebraic semantics $\mathbb{F P}$.LG
where:
■ fD.LG has canonical cut-elimination, strong focalization, and is complete w.r.t. $\mathbb{F P}$.LG
- fD.LG is complete w.r.t. LG-algebras $n \rightarrow$ semantic proof of completeness of focusing (given that the standard display calculus for LG is complete w.r.t. LG-algebras)
- effective translation between fD.LG-proofs and fLG-proofs [MM12] $\leadsto \rightarrow$ operational semantics (given that fLG-derivations are in a Curry-Howard correspondence with directional $\bar{\lambda} \mu \mu$-terms)

General theory:
■ heterogenous multi-type display calculi

- fully polarized algebras

We expect that the approach extends to every displayable logic (see Conclusions).

Basic Lambek-Grishin logic 1/2

Basic Lambek-Grishin algebra [Moo09]:

- Poset $\mathbb{G}=(G, \leq)$
- 6 operations $\otimes, \oplus, \backslash, \otimes, /, \varnothing$ s.t.

$$
\begin{gather*}
B \leq A \backslash C \quad \text { iff } \quad A \otimes B \leq C \quad \text { iff } \quad A \leq C / B \\
C \oslash B \leq A \quad \text { iff } \quad C \leq A \oplus B \quad \text { iff } \quad A \otimes C \leq B \tag{1}\\
\frac{\text { John }}{n p} \otimes \frac{\text { sleeps }}{n p \backslash S}
\end{gather*}
$$

Proper Multi-type Display Calculi

■ Natural generalization of Gentzen's sequent calculi;

- Display property:

$$
\frac{Y+X>Z}{\overline{X ; Y+Z}}
$$

display rules semantically justified by adjunction/residuation
■ Multi-type: Separate syntactic types for different types of semantic objects

- Proper: Rules closed under uniform substitution (Wansing '98) within each type

■ Canonical proof of cut elimination (via metatheorem)

Multi-type proper display calculi

[Greco et al. 14...]

Definition

A proper DC verifies each of the following conditions:
11 structures can disappear, formulas are forever;
2 tree-traceable formula-occurrences, via suitably defined congruence relation (same shape, position, non-proliferation)
3 principal = displayed
4 rules are closed under uniform substitution of congruent parameters within each type (Properness!);
5 reduction strategy exists when cut formulas are principal.
6 type-uniformity of derivable sequents;
7 strongly uniform cuts in each/some type(s).

Theorem

Cut elimination and subformula property hold for any proper m.DC.

Basic Lambek-Grishin logic 2/2

D.LG consists of the following rules (we consider only the Lambek fragment for brevity).

Axioms and cuts:

$$
\overline{p \vdash p}^{\text {ld }} \frac{X \vdash A \quad A \vdash Y}{X \vdash Y} \mathrm{cut}
$$

Logical rules (i.e. translation vs tonicity rules, cfr. asynchronous vs synchronous [And01]):

$$
\begin{aligned}
& \otimes_{\llcorner } \frac{A \hat{\otimes} B \vdash X}{A \otimes B \vdash X} \quad \frac{X \vdash A \quad Y \vdash B}{X \hat{\otimes} Y \vdash A \otimes B} \otimes_{R} \\
& \varliminf_{\llcorner } \frac{X \vdash A \quad B \vdash Y}{A \backslash B+X \backslash Y} \frac{X \vdash A \backslash B}{X \vdash A \backslash B} \backslash_{R} \quad \iota \frac{B+Y \quad X \vdash A}{B / A+Y / X} \frac{X \vdash B / A}{X \vdash B / A} /_{R}
\end{aligned}
$$

Display postulates:

We may expand the calculus with so-called Structural rules, e.g.:

$$
\frac{(X \hat{\otimes} Y) \hat{\otimes} Z \vdash W}{X \hat{\otimes}(Y \hat{\otimes} Z) \vdash W}
$$

Everybody needs somebody

There are 7 different sequent derivations, but only 3 different natural deduction (or proof net) derivations (in normal form).

Moving to a focused sequent system (fLG or fD.LG) we have again 3 derivations in normal form (with the bias assignment $n p::$ positive, $s::$ negative).

Two derivations use associativity and correspond to the following readings:

- $\forall-\exists$ reading: Everybody $>$ somebody $>$ needs

■ $\exists-\forall$ reading: Somebody $>$ everybody $>$ needs

Focalization (1/2)

The key idea relies on the following distinction.

- A focused phase is a proof-section where a formula is decomposed "as much as possible" only by means of non-invertible logical rules. This formula and all its immediate subformulas in this proof-section are said 'in focus'.
- A neutral phase is a non-focused phase, i.e. a proof section built by translation rules (applied greedily) or structural rules.

A strongly focalized proof exhibits a strict alternation between focused and neutral phases:

Non-focused phase
Focused phase

Definition

A sequent proof π is strongly focalized if cut-free and, for every formula A occurring in π, every PIA subtree of A is constructed by a proof-section of π containing only tonicity rules.

Focalization via polarization

Two focalized phases:
■ positive phase: only non-invertible logical rules for positive connectives are applied;
■ negative phase: only non-invertible logical rules for negative connectives are applied.

How to categorize a connective as "positive" or "negative"?
The usual answer has to do with the distinction: "right" versus "left" logical rules.

The mathematical underpinning is the following:
■ Positive formulas: the main connective is a left-adjoint/residual (LG: $\otimes, \varnothing, \otimes)$;

- Negative formulas: the main connective is a right-adjoint/residual (LG: $\oplus, \backslash, /$).

The key idea of polarization "naturally" calls for a type distinction.
So, multi-type calculi seem a good candidate. . . but we need a further generalization.

A step back: focalization via "implicit" polarization

State of the art: fLG by Moortgat and Moot 2011 [MM12]

- Every proof is strongly focalized
- Focus implemented by a meta-linguistical marker A
- Restrictions on the applicability of rules

If A is positive:

$$
\begin{array}{ccc}
\text { Axiom } & \text { Focusing } & \text { Defocusing } \\
\frac{A+\boxed{A}}{\boxed{A}+\Delta} & -\frac{X+\boxed{A}}{X+A} &
\end{array}
$$

If A is negative:

$$
\begin{array}{lll}
\text { Co-axiom } & \text { Focusing } & \text { Defocusing } \\
\frac{X+A}{A+A} & \frac{X+\sqrt{A}}{X+\sqrt{A}} & \leftharpoonup \frac{\Delta+X}{A+X}
\end{array}
$$

Tonicity rules have auxiliary and principal formulas in focus.

$\forall-\exists$ reading: fLG

Bias assignment: $n p::$ positive, $s::$ negative.

ق-V reading: fLG

Bias assignment: $n p::$ positive, $s::$ negative.

Focalization via "explicit" polarization

In the proof-theoretical literature, so-called shifts "operator" have been considered.
The key idea is the following:
\square if A is negative, then $\downarrow A$ is positive;
\square if A is positive, then $\uparrow A$ is negative.
But their status as operators is obscure.

On the other hand, in algebraic/categorical polarized semantics we have:

- \uparrow + \downarrow;
- $\uparrow \downarrow \uparrow \varphi=\uparrow \varphi ; \downarrow \uparrow \varphi=\varphi ;$
$\square \downarrow \uparrow \downarrow \varphi=\downarrow \varphi ; \uparrow \downarrow \varphi=\varphi$.

Problem: the focusing policy could be destroyed.
The usual solution is to consider only sequents where \uparrow (resp. \downarrow) does not immediately occurr under the scope of \downarrow (resp. \uparrow).

Our solution: we distinguish between positive (resp. negative) pure formulas and positive (resp. negative) shifted formulas, i.e. formulas under the scope of a shift operator.

Weakening relations

W.R. are the order-theoretic equivalents of profunctors (aka distributors or bimodules) [Ben73]. W.R. are generalizations of partial orders: take $\mathcal{A}=\mathcal{B}$ and $\leq_{\mathcal{A}}=\leq_{\mathcal{B}}$.

Definition

A weakening relation is a relation $\leqslant \subseteq \mathcal{A} \times \mathcal{B}$ on two partially ordered set $\left(\mathcal{A}, \leq_{\mathcal{A}}\right)$ and ($\mathcal{B}, \leq_{\mathcal{B}}$) that is compatible with the orders $\leq_{\mathcal{A}}$ and $\leq_{\mathcal{B}}$ in the following sense

$$
\begin{array}{cc}
A^{\prime} \leq_{\mathcal{A}} A & A \leqslant B \\
\hline A^{\prime} \leqslant B^{\prime} & B \leq_{\mathcal{B}} B^{\prime} \\
\hline
\end{array}
$$

Definition

Given two w.r. $\leqslant \mathcal{A} \subseteq \mathcal{A} \times \mathcal{A}^{\prime}$ and $\leqslant \mathcal{B} \subseteq \mathcal{B} \times \mathcal{B}^{\prime}$, we say that the order-preserving functions $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B}^{\prime} \rightarrow \mathcal{A}^{\prime}$ form a heterogeneous adjoint pair $L \dashv_{<\mathcal{A}}^{\leqslant \mathcal{B}} R$ if for every $A \in \mathcal{A}$ and $B^{\prime} \in \mathcal{B}^{\prime}$,

$$
L(A) \leqslant_{\mathcal{B}} B^{\prime} \text { iff } A \leqslant \mathcal{A} R\left(B^{\prime}\right)
$$

If $\mathcal{A}^{\prime}=\mathcal{A}, \leqslant_{\mathcal{A}}=\leq_{\mathcal{A}}, \mathcal{B}^{\prime}=\mathcal{B}$ and $\leqslant_{\mathcal{B}}=\leq_{\mathcal{B}}$, we recover the usual definition of adjunction. Heterogeneous adjunctions also appear in the theory of Chu spaces.

Full polarization (1/2)

Fully polarized LG-algebras $\mathbb{F P} . L \mathbb{G}$

(Heterogeneous) operations and their residuals (we consider the Lambek fragment for brevity):

$$
\begin{align*}
& \otimes: \stackrel{P}{P} \times \stackrel{P}{\mathbb{P}} \rightarrow \mathbb{P} \quad \mid: \mathbb{P}^{\partial} \times \mathbb{N} \rightarrow \mathbb{N} \quad /: \quad \dot{N} \times \mathbb{P}^{\partial} \rightarrow \mathbb{N} \tag{2}
\end{align*}
$$

Shifts:

For all $P \in \mathbb{P}$ and $N \in \mathbb{N}, \preceq^{+} \subseteq \mathbb{P} \times \dot{\mathbb{P}}, \leq \subseteq \mathbb{P} \times \mathbb{N}$ and $\leq^{-} \subseteq \dot{\mathbb{N}} \times \mathbb{N}$ are s.t.:

$$
\begin{equation*}
\uparrow P \cdot \leq^{-} N \text { iff } P \leq N \text { iff } P \leq \cdot^{+} \downarrow N \tag{4}
\end{equation*}
$$

i.e. \leq is the weakening relation represented by the heterogeneous adjunction \uparrow t- \downarrow.

Collage posets: $\left(\mathbb{P}^{\circ}, \stackrel{\circ}{ }^{+}\right):=\left(\mathbb{P} \sqcup \dot{P}, \leq^{+} \sqcup \leq r^{+} \sqcup \cdot \leq^{+}\right),\left(\mathbb{N}^{\circ}, \stackrel{\circ}{-}^{-}\right):=\left(\mathbb{N} \sqcup \dot{\mathbb{N}}, \leq^{-} \sqcup \cdot \leq^{-} \sqcup \cdot \leq^{-}\right)$.
Collage weakening relation: $\mathfrak{\circ}:=\leq \sqcup \leq \sqcup \leq \subseteq \mathbb{P} \times \mathbb{N}$.

（Heterogeneous multi－type proper）focused display calculus fD．LG

Notation：$\dot{P} \in\{P, \dot{P}\}$ ，resp．$\check{N} \in\{N, \dot{N}\}$ ．

$$
\begin{array}{lll}
P:=p|\dot{P} \otimes \dot{P}|(\dot{P} \oslash \hat{N}) \mid(\dot{N} \otimes \mathscr{P}) & \text { Pure positive formulas }(\check{L} \dot{\Delta}) \\
N:=n|(\dot{N} \oplus \dot{N})| \dot{P} \backslash \dot{N} \mid \dot{N} / \dot{P} & \text { Pure negative formulas }(\hat{\jmath} \dot{X}) \\
\dot{P}:=\downarrow N & \text { Shifted positive formulas } \\
\dot{N}:=\uparrow P & \text { Shifted negative formulas }
\end{array}
$$

Well－formed sequents（sequents in grey cells are not derivable）：

Positive sequents	$X \vdash^{+} Y$	$\dot{X}+{ }^{+} Y$	$X{ }^{+}{ }^{+} \dot{Y}$	$\dot{X} \cdot+{ }^{+} \dot{Y}$
Negative sequents	$\Delta \vdash^{-}$「	$\dot{\Delta} \cdot r^{-} \Gamma$	Δ ヶ．${ }^{-}$「	$\Delta \times \cdot{ }^{-}$
Neutral sequents	$X+\Delta$	$\dot{X}+{ }^{\text {d }}$	$X \vdash \cdot \Delta$	$\dot{X}+\cdots \dot{\Delta}$

Each consequence relation is interpreted by a W．R．as follows：

t	${ }^{+}$	r．＋	．r．＋	\vdash^{-}	$+^{-}$	－．．－		＋	－．	${\stackrel{1}{ }{ }^{+}}^{+}$	\vdash^{-}	$\stackrel{\circ}{\circ}$
$t^{\mathbb{F} P \cdot L \mathbb{L G}}$	\leq^{+}	ऽ．${ }^{+}$	－.$^{+}$	$\leq{ }^{-}$	－${ }^{-}$	－ －$^{-}$	\leq	－	$\leq \cdot$	Σ^{+}	$\stackrel{5}{-}^{-}$	$\stackrel{\square}{\square}$

Axioms and cuts

$$
\begin{aligned}
& {\bar{p} \vdash^{+} p}^{p-\mathrm{ld}} \quad n \quad n \cdot \mathrm{ld} \overline{n \vdash^{-} n}
\end{aligned}
$$

Logical rules

Structural rules

Display postulates:

Structural rules for shifts:

Phases and phase transitions 1/2

Positive sequents

Negative sequents

Phases and phase transitions 2/2

$\forall-\exists$ reading: fD.LG

Conclusions

What we did.

Lambek-Grishin logic:

- (heterogenous multi-type) focused display calculus fD.LG (canonical cut-elimination and strong focalization)
■ fully polarized algebraic semantics $\mathbb{F P} . \mathbb{L} \mathbb{G}$ (semantic proof of completeness of focusing)

Future work.

■ We expect that the approach extends to every displayable logic. We conjecture that:
■ Every displayable logic \mathbf{L} can be endowed with a focalized (heterogenous multi-type) display calculus fD.L and a fully polarized algebraic semantics $\mathbb{F P} . \mathbb{L}$ (where $\mathrm{fD} . \mathrm{L}$ is complete w.r.t. $\mathbb{F} \mathbb{P} . \mathbb{L}$).
■ Every focalized (heterogenous multi-type) display calculus enjoys a (i) canonical semantic proof of completeness of focusing AND a (ii) canonical syntactic proof of completeness of focusing.

- We expect that the approach can be lifted at the level of categories (using profunctors instead of weakening relations) providing a fully-fledged semantics of proofs for a given displayable logic \mathbf{L}.

Appendix A. Mutations

Let C be a heterogeneous multi-type calculus and let Q be the set of types of C.
$\mathcal{S}_{\mathcal{F}}$ (resp. $\mathcal{S}_{\mathcal{G}}$) is the set of structural \mathcal{F}-connectives (resp. \mathcal{G}-connectives), $\mathcal{S}=\mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{G}}$. \mathcal{T} is the set of turnstiles.

We call sort of H, $\operatorname{sort}(H) \in Q^{n}$, the n-tuple of types that the connective takes as input.
We call sort of $t, \operatorname{sort}(t) \in Q^{2}$, the pair of types that t connects.

Definition

The mutation relation of $\mathcal{C}, \mu_{\mathcal{C}} \subseteq \mathcal{S} \times \mathcal{S}$, is an equivalence relation between structural connectives s.t.:
1 if $H \mu_{C} H^{\prime}$ then $H \in \mathcal{S}_{\mathcal{F}}$ if and only if $H^{\prime} \in \mathcal{S}_{\mathcal{F}}$;
2 if $H \mu_{C} H^{\prime}$ then H and H^{\prime} have the same arity;
si if $H \mu_{C} H^{\prime}$ and $\operatorname{sort}(H)=\operatorname{sort}\left(H^{\prime}\right)$ then $H=H^{\prime}$.

Informally, the mutation relation describes into which structural connectives the structural connective H can be mutated.

We can extend the relation to (not necessarily well typed) structures recursively on the generation tree of a structure: We say that $\Phi \mu \Psi$ if the generation trees of Φ and ψ are identical modulo μ.

By condition 3 of Definition 4, given a structure Φ, there exists at most one well typed structure in $\mu[\Phi]=\{\Psi \mid \Phi \mu \Psi\}$, which we denote with $\mu(\Phi)$.

Appendix A. Cut-elimination

Appendix B. Focused phases and maximal PIA subtrees

The purple area is the proof-section including all the tonicity rules used to build the PIA subtree of everyone:

References

[And92] Jean-Marc Andreoli.
Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297-347, 1992.
[And01] Jean-Marc Andreoli.
Focussing and proof construction.
Annals of Pure and Applied Logic, 107(1):131-163, 2001.
[Bas12] Arno Bastenhof.
Polarized Montagovian semantics for the Lambek-Grishin calculus.
In P. de Groote and MJ. Nederhof, editors, Formal Grammar, volume
7395 of Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2012
[Ben73] Jean Benabou.
Les distributeurs: d'après le cours de questions spéciales de
mathématique.
Rapport n. 33 du Séminaire de Mathématique Pure. Institut de
mathématique pure et appliquée, Université Catholique de Louvain,
1973.
[GJL ${ }^{+}$18] Giuseppe Greco, Peter Jipsen, Fei Liang, Alessandra Palmigiano, and Apostolos Tzimoulis.
Algebraic proof theory for LE-logics, 2018.
[Mil04] Dale Miller.
An Overview of Linear Logic Programming, page 119-150.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.
[MM12] Michael Moortgat and Richard Moot.
Proof nets and the categorial flow of information.
In A. Baltag, D. Grossi, A. Marcoci, B. Rodenhäuser, and S. Smets, editors, Logic and Interactive RAtionality. Yearbook 2011, pages 270-302. ILLC, University of Amsterdam, 2012.
[Moo09] Michael Moortgat.
Symmetric categorial grammar.
Journal of Philosophical Logic, 38(6):681-710, 2009.

