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Everybody needs somebody

Everybody needs somebody is a s.
s / (np \ s) ⌦ (((np \ s) / ((s / np) \ s)) ⌦ (s / np) \ s) ` s

There are 7 different sequent derivations, but only 3 different natural
deduction (or proof net) derivations (in normal form).

Moving to a focused sequent system we have again 3 derivations in
normal form.

Different derivations correspond to different readings (where different
derivations have different axiom linking):
I Everybody > somebody > needs
I Somebody > everybody > needs

I Everybody > needs > somebody
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Structural proof theory and automatic rule generation

Structural proof theory focuses on analytic calculi: those calculi
supporting a robust form of cut elimination.

A derivation is analytic when all needed information is already contained
in its premises and conclusions.

Sequent calculi: inference rules preserving cut elimination can be
understood as analytic rules.

Automatic rule generation: characterization of classes of axioms
corresponding to analytic rules + generation algorithm
(unified correspondence & inverse unified correspondence).
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Relational calculi
Some references: the list is not exhaustive!

I Sara Negri and Jan Von Plato. 1998. Cut elimination in the presence

of axioms

Axioms-as-rules methodology: transforming universal axioms in the
language of first order classical (or intuitionistic) logics into analytic rules.
The rules are used to expand G3c.
I Sara Negri. 2003. Contraction-free sequent calculi for geometric

theories, with an application to Barr’s theorem.
Generalization to geometric implications, i.e. first order formulas of the
form 8z(A ! B) where A and B are geometric formulas (i.e. first-order
formulas not containing! or 8).
I Sara Negri. 2005. Proof analysis in modal logic.

Application to modal logic axioms: the rules are used to expand G3K.

Geometric formulas were first identified and made relevant for proof
theory in the context of natural deduction calculi in:
I Alex K. Simpson. 1994. The proof theory and semantics of

intuitionistic modal logic. (Ph.D. Dissertation)
I Luca Vigan00. Labelled non-classical logics. (book)
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Hypersequent calculi
Some references: the list is not exhaustive!

I Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. 2008.
From Axioms to Analytic Rules in Nonclassical Logics.

Substructural hierarchy: A hierarchy of classes of substructural
formulas is defined. Substructural axioms up to level N2 of this hierarchy
can be algorithmically translated into equivalent rules of a
Gentzen-style sequent calculus, and axioms up to a subclass of level
P3 into equivalent rules of a hypersequent calculus.

I Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. 2012.
Algebraic proof theory for substructural logics: cut-elimination and

completions.

Generalization to multi-conclusions hypersequents + heuristic to go
beyond P3 axioms.
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Display calculi
Some references: the list is not exhaustive!

I Marcus Kracht. 1996. Power and Weakness of the Modal Display

Calculus.
Primitive axioms in the language of classical tense modal logic can be
equivalently captured as analytic structural rules extending the minimal
display calculus for tense logic.
I Agata Ciabattoni and Revantha Ramanayake. 2016. Power and

Limits of Structural Display Rules. [CR 16]
Analogous characterization is provided in a more general setting for a
given but not fixed display calculus, by a procedure for transforming
axioms into analytic structural rules (and showing the converse direction
whenever the calculus satisfies additional conditions).
I Giuseppe Greco, Minghui Ma, Alessandra Palmigiano, Apostolos

Tzimoulis, and Zhiguang Zhao. 2018. Unified correspondence as a

proof-theoretic tool. [G. et al. 18]
Analogous characterization for arbitrary normal (D)LE-logics via
connection with generalized Sahlqvist correspondence theory: ALBA

(which computes the first-order correspondent of (analytic) inductive
(D)LE-axioms) can be used to compute analytic rule(s) too.
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A geometric theory is a FO theory whose models are preserved and reflected
by geometric morphisms.
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Our contributions
The semantic equivalence between each analytic inductive axiom

' `  and its corresponding analytic structural rule(s) R1, . . . ,Rn

is an
immediate consequence of the soundness of the rules of ALBA on
perfect normal (distributive) lattice expansions (see [G. et al. 18]).

On the syntactic side, a description of the derivation, which relies on the
proof-theoretic version of Ackermann’s Lemma and therefore involves
cuts, is presented in [CR 16].

An effective procedure P was still missing for building cut-free

derivations of ' `  in the basic proper display calculus D.(D)LE
expanded with R1, . . . ,Rn

.

P establishes, via syntactic means, that:
I for any properly displayable (D)LE-logic L , the proper display

calculus D.L derives all the theorems (or derivable sequents) of L :
syntactic completeness.

I
P generate a cut-free derivation of a particular shape we call in
pre-normal form.
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Analytic-inductive inequalities
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Examples

The definition of analytic inductive inequalities is uniform in each
signature.

I Analytic inductive axioms
(A ! B) _ (B ! A)

(^A ! ⇤B)! ⇤(A ! B)

I Sahlqvist but non-analytic axioms
A ! ^⇤A

(⇤A ! ^B)! (A ! B)
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Basic normal LE-logics and associated display calculi

We define the proper display calculus D.LE for the basic normal
L

LE

-logic in a fixed but arbitrary LE-signature L = L(F ,G).

Let SF := {̂f | f 2 F ⇤} and SG := {ǧ | g 2 G⇤} be the sets of structural
connectives associated with F ⇤ and G⇤ respectively (fully residuated

signature).

Each such structural connective comes with an arity and an order-type

which coincides with those of its associated operational connective in F ⇤
and G⇤.

Theorem
The logic L

⇤
LE

is a conservative extension of L

LE

, i.e. every L
LE

-sequent

' `  is derivable in L

LE

if and only if ' `  is derivable in L

⇤
LE

(we use

canonical extensions).

10 / 23



Display calculi for basic normal LE-logics
The calculus D.LE manipulates sequents ⇧ ` ⌃ where the structures ⇧
(for precedent) and ⌃ (for succedent) are defined by the following
simultaneous recursion:

StrF 3 ⇧ ::= ' | >̂ | f̂ (⇧("
f

)
)

StrG 3 ⌃ ::= ' | ?̌ | ǧ (⌃
("

g

)
)

For any connective h of arity n � 1, the notational convention
I

ĥ conveys also the information that h is a left-adjoint/residual

I
ȟ conveys the information that h is a right-adjoint/residual

We use ⌥1, . . . ,⌥n

as structure metavariables in StrF [ StrG.

The introduction rules of the calculus below will guarantee that:
I ⌥ 2 StrF whenever it occurs in precedent position

I and ⌥ 2 StrG whenever it occurs in succedent position
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Lattice reduct
I Identity and cut rules:

Id
p ` p

⇧ ` ' ' ` ⌃
Cut

⇧ ` ⌃

I Structural rules for lattice connectives:

>̂ ` ⌃>
W

⇧ ` ⌃
⇧ ` ?̌ ?

W

⇧ ` ⌃

I Logical introduction rules for lattice connectives:

>̂ ` ⌃>
L > ` ⌃

>
R>̂ ` >

?
L ? ` ?̌

⇧ ` ?̌ ?
R

⇧ ` ?

 ` ⌃^
L2

' ^  ` ⌃
' ` ⌃^

L1
' ^  ` ⌃

⇧ ` ' ⇧ `  ^
R

⇧ ` ' ^  

' ` ⌃  ` ⌃_
L

' _  ` ⌃
⇧ ` ' _

R1
⇧ ` ' _  

⇧ `  _
R2

⇧ ` ' _  
12 / 23



Display postulates for f 2 F and g 2 G

I for any 1  i, j  n

f

and 1  h, k  n

g

,

If "
f

(i) = 1 and "
g

(h) = 1,

f̂ (⌥1, . . . ,⇧i

, . . . ,⌥
n

f

) ` ⌃
f̂ a f̌

]
i

⇧
i

` f̌

]
i

(⌥1, . . . ,⌃, . . . ,⌥n

f

)

⇧ ` ǧ (⌥1 . . . ,⌃h

, . . .⌥
n

g

)
ĝ

[
h

a ǧ

ĝ

[
h

(⌥1, . . . ,⇧, . . . ,⌥n

g

) ` ⌃
h

If "
f

(j) = @ and "
g

(k) = @,

f̂ (⌥1, . . . ,⌃j

, . . . ,⌥
n

f

) ` ⌃
(̂f , f̂ ]

j

)

f̂

]
j

(⌥1, . . . ,⌃, . . . ,⌥n

f

) ` ⌃
j

⇧ ` ǧ (⌥1, . . . ,⇧k

, . . . ,⌥
n

g

)
(ǧ, ǧ [

k

)
⇧

k

` ǧ

[
k

(⌥1, . . . ,⇧, . . . ,⌥n

g

)
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Logical rules for f 2 F and g 2 G
We omit the rules for a generic connective h 2 (F \ G) of arity n = 1.

✓
⌥

i

` '
i

'
j

` ⌥
j

| 1  i, j  n

f

, "
f

(i) = 1 and "
f

(j) = @
◆

f

R

f̂ (⌥1, . . . ,⌥n

f

) ` f('1, . . . ,'n

f

)
✓
'

i

` ⌥
i

⌥
j

` '
j

| 1  i, j  n

g

, "
g

(i) = 1 and "
g

(j) = @
◆

g

L

g('1, . . . ,'n

g

) ` ǧ (⌥1, . . . ,⌥n

g

)

f̂ ('1, . . . ,'n

f

) ` ⌃
f

L

f('1, . . . ,'n

f

) ` ⌃
⇧ ` ǧ ('1, . . . ,'n

g

)
g

R

⇧ ` g('1, . . . ,'n

g

)

Proposition
The calculus D.LE (hence also D.LE) is sound w.r.t. the class of

complete L-algebras.

Proposition
The calculus D.LE is a proper display calculus, and hence cut

elimination holds for it as a consequence of a Belnap-style cut

elimination meta-theorem.
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Distributive lattice reduct

The language of D.DLE for the basic L
DLE

-logic is obtained by
augmenting the language of D.LE with:

Structural symbols >̂ ?̌ ˆ̂ _̌ >̂ !̌ ˆ >  ̌
Operational symbols > ? ^ _ (> ) (!) ( >) ( )

Since ^ and _ distribute over each other, besides being �-adjoints, they
can also be treated as elements of F and G respectively: the display

postulates and logical rules follow the same pattern and we omit them.

The structural rules encoding the characterizing properties of the lattice
connectives are as expected and we omit them.

15 / 23



Derivations in pre-normal form
If ' `  is a definite analytic inductive axiom (Ax), then ALBA yields a
single analytic structural rule R(Ax) corresponding to it.

Both in the general and in the distributive settings, the Skeleton part of
the derivation of ' `  in pre-normal form will only have one branch,
yielding the following simpler shape of ⇡:

· · ·

· · ·

p1.1 ` p1.1 · · · p1.k ` p1.k

. . .
... . .
.

⇧1 ` ⌃1

p

n.1 ` p

n.1 · · · p

n.` ` p

n.`

. . .
... . .
.

⇧
n

` ⌃
n

R(Ax)
⇧ ` ⌃
...

' `  

|
 
 
 
 
 {z

 
 
 
 
 }

Skeleton(⇡)

|
 
 
 
 
 
 {z

 
 
 
 
 
 }

PIA(⇡)

If ' `  is not definite, it can be equivalently transformed into a set of
definite axioms Ax1, . . . ,An

, each of which will correspond to one analytic
structural rule R(Ax1), . . . ,R(A

n

). In this case, the Skeleton part of the
derivation is branching.
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Lattice

(i) Skeleton(⇡) is the proof-subtree of ⇡ containing the root of ⇡ and
applications of invertible rules for the introduction of all connectives
occurring in the Skeleton of ' `  (possibly modulo applications of
display rules);

(ii) PIA(⇡) is a collection of proof-subtrees of ⇡ containing the initial
axioms of ⇡ and all the applications of non-invertible rules for the
introduction of connectives occurring in the maximal PIA-subtrees in
the signed generation trees of ' `  (possibly modulo applications of
display rules) and such that

(iii) the root of each proof-subtree in PIA(⇡) coincides with a premise of
the application of R(Ax) in ⇡, where the atomic structural variables
are suitably instantiated with maximal PIA-subformulas of ' `  .
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Distributive lattice
(i) Skeleton(⇡) is the proof-subtree of ⇡ containing, possibly modulo

applications of display rules, the root of ⇡ and applications of
(a) invertible rules for the introduction of all connectives occurring as

SLR nodes (+f ,�g with n � 1) in the Skeleton of ' `  ;
(b) non-invertible rules and Contraction for the introduction of all

connectives occurring as �-adjoint nodes (+_,�^) in the Skeleton of
' `  ;

(ii) PIA(⇡) is a collection of proof-subtrees of ⇡ containing, possibly
modulo applications of display rules, the initial axioms of ⇡ and
applications of
(a) non-invertible rules for the introduction of all connectives occurring

as unary SRA nodes (+g,�f ) or as SRR nodes (+_,�^ and +g,�f

with n � 2) in the maximal PIA-subtrees in the signed generation trees
of ' `  ;

(b) invertible rules and Weakening for the introduction of all lattice
connectives occurring as SRA nodes (+^,�_) in the maximal
PIA-subtrees in the signed generation trees of ' `  ;

(iii) the root of each proof-subtree in PIA(⇡) coincides with a premise of
the application of R(Ax) in ⇡, where the atomic structural variables
are suitably instantiated with operational maximal PIA-subtrees of
' `  .
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Syntactic completeness

Theorem
Any analytic inductive LE-axiom (resp. DLE-axiom) ' `  
can be effectively derived in the corresponding basic cut-free calculus

D.LE (resp. D.DLE) enriched with the structural analytic rules R1, . . . ,Rn

corresponding to ' `  .

Moreover, the cut-free derivation is in pre-normal form.
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...to prove the theorem we need a few lemmas

I Two key-lemmas provide the tools for obtaining the sub-derivations
in PIA(⇡). An inspection on the proofs of these results reveals that
indeed only non-invertible logical rules and display rules are applied.

I Two key-lemmas provide the tools involving the introduction of the
lattice connectives. An inspection on the proofs reveals that only
introduction rules of one type are applied in each component.

We represent (⌦, ")-analytic inductive inequalities/sequents as follows:

('   )[↵/!x, �/!y, �/!z, �/!w] (' `  )[↵/!x, �/!y, �/!z, �/!w],

where:
I ('   )[!x, !y, !z, !w] is the skeleton of the given inequality, ↵

(resp. �) denotes the vector of positive (resp. negative) maximal PIA
subformulas

I � (resp. �) denotes the vector of positive (resp. negative) maximal
"@-uniform PIA subformulas

20 / 23



Computing the analytic-inductive rule

ALBA-run computing the structural rule for ^⇤(p ^ q) ` ⇤^p _ ⇤^q:

^⇤(p ^ q) ` ⇤^p _ ⇤^q

iff 8p8q8x8y8z [ x ` ⇤(p ^ q) & ^p ` y & ^q ` z ) ^x ` ⇤y _ ⇤z ]
iff 8p8q8x8y8z [ x ` ⇤(p ^ q) & p ` ⌅y & q ` ⌅z ) ^x ` ⇤y _ ⇤z ]
iff 8x8y8z [ x ` ⇤(⌅y ^ ⌅z)) ^x ` ⇤y _ ⇤z ]
iff 8x8y8z [ x ` ⇤⌅y & x ` ⇤⌅z ) ^x ` ⇤y _ ⇤z ]
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Producing the derivation in pre-normal form

p ` p

^
R

ˆ̂
p ` ^p

ˆ̂ a ⌅̌
p ` ⌅̌^p

W

L

p

ˆ̂
q ` ⌅̌^p^

L

p ^ q ` ⌅̌^p

⇤
L

⇤(p ^ q) ` ⇤̌⌅̌^p

q ` q

^
R

ˆ̂
q ` ^q

ˆ̂ a ⌅̌
q ` ⌅̌^q

W

L

q

ˆ̂
p ` ⌅̌^q

E

L

p

ˆ̂
q ` ⌅̌^q^

L

p ^ q ` ⌅̌^q

⇤
L

⇤(p ^ q) ` ⇤̌⌅̌^q

R

ˆ̂⇤(p ^ q) ` ⇤̌^p _̌ ⇤̌^q

ˆ >a _̌
ˆ̂⇤(p ^ q) ˆ >⇤̌^q ` ⇤̌^p

⇤
R

ˆ̂⇤(p ^ q) ˆ >⇤̌^q ` ⇤^p

ˆ >a _̌
ˆ̂⇤(p ^ q) ` ⇤^p _̌ ⇤̌^q

>̂ a _̌
⇤^p >̂ ˆ̂⇤(p ^ q) ` ⇤̌^q

⇤
R

^p >̂ ˆ̂⇤(p ^ q) ` ⇤^q

>̂ a _̌
ˆ̂⇤(p ^ q) ` ⇤^p _̌ ⇤^q

_
R

ˆ̂⇤(p ^ q) ` ⇤^p _ ⇤^q

^
L

^⇤(p ^ q) ` ⇤^p _ ⇤^q

|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }

(Lemma)

|{
z} (Lemma)
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Conclusions

p
Proper display calculi enjoys syntactic completeness and derivations
in pre normal form can be effectively produced.

I Provide formal translations between derivations in different
formalisms.
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