Presenting quotient locales

Graham Manuell
graham@manuell.me
University of Coimbra

TACL 2022

Frame presentations

An advantage of the pointfree approach to topology is that since frames are algebraic structures, they can be presented by generators and relations.

Frame presentations

An advantage of the pointfree approach to topology is that since frames are algebraic structures, they can be presented by generators and relations.

For example, the frame of reals may be presented as

$$
\begin{aligned}
\mathcal{O} \mathbb{R}=\langle((p, q)) & \text { for } p, q \in \mathbb{Q} \sqcup\{-\infty, \infty\} \mid \\
& ((-\infty, \infty))=1, \\
& ((p, q)) \wedge\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(\max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right)\right)\right), \\
& ((p, q)) \vee\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(p, q^{\prime}\right)\right) \text { for } p \leq p^{\prime}<q \leq q^{\prime}, \\
& \left.((p, q))=\bigvee_{p<p^{\prime}<q^{\prime}<q}\left(\left(p^{\prime}, q^{\prime}\right)\right)\right\rangle .
\end{aligned}
$$

Sublocales, quotient frames, quotients locales and subframes

Sublocales $Y \hookrightarrow X$ are the pointfree analogue of subspaces and correspond to quotient frames $\mathcal{O X} \rightarrow \mathcal{O} Y$.

Sublocales, quotient frames, quotients locales and subframes

Sublocales $Y \hookrightarrow X$ are the pointfree analogue of subspaces and correspond to quotient frames $\mathcal{O X} \rightarrow \mathcal{O} Y$.

Given a presentation of a frame $\mathcal{O X}$, a presentation of a quotient of $\mathcal{O X}$ simply involves adding additional relations.

Sublocales, quotient frames, quotients locales and subframes

Sublocales $Y \hookrightarrow X$ are the pointfree analogue of subspaces and correspond to quotient frames $\mathcal{O X} \rightarrow \mathcal{O} Y$.

Given a presentation of a frame $\mathcal{O X}$, a presentation of a quotient of $\mathcal{O X}$ simply involves adding additional relations.

For example, adding $((-\infty, 0))=0$ and $((1, \infty))=0$ to our presentation of $\mathcal{O} \mathbb{R}$ gives a presentation for the frame of opens of the closed unit interval $[0,1]$.

Sublocales, quotient frames, quotients locales and subframes

Sublocales $Y \hookrightarrow X$ are the pointfree analogue of subspaces and correspond to quotient frames $\mathcal{O X} \rightarrow \mathcal{O}$.

Given a presentation of a frame \mathcal{O} X, a presentation of a quotient of $\mathcal{O X}$ simply involves adding additional relations.

For example, adding $((-\infty, 0))=0$ and $((1, \infty))=0$ to our presentation of $\mathcal{O} \mathbb{R}$ gives a presentation for the frame of opens of the closed unit interval $[0,1]$.

Quotient locales $X \rightarrow Y$ correspond to certain subframes $\mathcal{O Y} \hookrightarrow \mathcal{O X}$. We would like to obtain a presentation of $\mathcal{O Y}$ from one for $\mathcal{O X}$.

Open quotients of locales

It will be helpful to restrict to important subclasses of quotients.

Definition

A locale map $f: X \rightarrow Y$ is open if its corresponding frame map $f^{*}: \mathcal{O} Y \rightarrow \mathcal{O X}$ has a left adjoint $f_{!}: \mathcal{O X} \rightarrow \mathcal{O} Y$ and these satisfy $f_{!}\left(a \wedge f^{*}(b)\right)=f_{!}(a) \wedge b$.

Open quotients of locales

It will be helpful to restrict to important subclasses of quotients. Definition
A locale map $f: X \rightarrow Y$ is open if its corresponding frame map $f^{*}: \mathcal{O} Y \rightarrow \mathcal{O X}$ has a left adjoint $f_{!}: \mathcal{O X} \rightarrow \mathcal{O} Y$ and these satisfy $f_{!}\left(a \wedge f^{*}(b)\right)=f_{!}(a) \wedge b$.

If f is also epic, we say it is an open quotient map. In this case $f_{\text {! }}$ is a (set-theoretic) left inverse to f^{*}.

Open quotients of locales

It will be helpful to restrict to important subclasses of quotients. Definition
A locale map $f: X \rightarrow Y$ is open if its corresponding frame map $f^{*}: \mathcal{O} Y \rightarrow \mathcal{O X}$ has a left adjoint $f_{!}: \mathcal{O X} \rightarrow \mathcal{O} Y$ and these satisfy $f_{!}\left(a \wedge f^{*}(b)\right)=f_{!}(a) \wedge b$.

If f is also epic, we say it is an open quotient map. In this case $f_{\text {! }}$ is a (set-theoretic) left inverse to f^{*}.

Note that since 9 ! is a left adjoint, it preserves all joins.
We call a poset admitting all joins a suplattice and write Sup for the category of suplattices and join-preserving maps.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q$! is a join-preserving closure operator on $\mathcal{O X}$.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q$! is a join-preserving closure operator on $\mathcal{O X}$.

The fixed points of $q^{*} q_{!}$form a subframe of $\mathcal{O X}$ which is isomorphic to $\mathcal{O} Y$.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q$! is a join-preserving closure operator on $\mathcal{O X}$.

The fixed points of $q^{*} q_{!}$form a subframe of $\mathcal{O X}$ which is isomorphic to $\mathcal{O} Y$. The subframe inclusion corresponds to q^{*} under this isomorphism.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q$! is a join-preserving closure operator on $\mathcal{O} X$.

The fixed points of $q^{*} q_{!}$form a subframe of $\mathcal{O X}$ which is isomorphic to $\mathcal{O} Y$. The subframe inclusion corresponds to q^{*} under this isomorphism.

The closure operator $q^{*} q_{!}$restricts to a suplattice quotient map from $\mathcal{O X}$ onto the frame of fixed points.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q$! is a join-preserving closure operator on $\mathcal{O X}$.

The fixed points of $q^{*} q_{!}$form a subframe of $\mathcal{O X}$ which is isomorphic to $\mathcal{O} Y$. The subframe inclusion corresponds to q^{*} under this isomorphism.

The closure operator $q^{*} q_{!}$restricts to a suplattice quotient map from $\mathcal{O X}$ onto the frame of fixed points. This quotient map corresponds to q ! under the isomorphism.

Open quotients and closure operators

If $q: X \rightarrow Y$ is an open quotient then $q^{*} q_{!}$is a join-preserving closure operator on $\mathcal{O X}$.

The fixed points of $q^{*} q_{!}$form a subframe of $\mathcal{O X}$ which is isomorphic to $\mathcal{O} Y$. The subframe inclusion corresponds to q^{*} under this isomorphism.

The closure operator $q^{*} q_{!}$restricts to a suplattice quotient map from $\mathcal{O X}$ onto the frame of fixed points. This quotient map corresponds to q ! under the isomorphism.

Open quotients of X correspond to join-preserving closure operators $j: \mathcal{O X} \rightarrow \mathcal{O} X$ satisfying $j(a) \wedge j(b)=j(a \wedge j(b))$.

Coequalisers of open maps

Proposition

Suppose $f, g: R \rightarrow X$ are open locale maps. Then their coequaliser is an open quotient.

$$
R \xrightarrow[g]{\stackrel{f}{\longrightarrow}} x \xrightarrow{e} Y
$$

Moreover, the associated closure operator is given by

$$
\bigvee_{n=0}^{\infty}\left(f_{!} g^{*}\right)^{n} \vee \bigvee_{n=0}^{\infty}\left(g!f^{*}\right)^{n} .
$$

Quotient presentations

We can now state our problem more formally.

- Suppose $\mathcal{O X}$ is given by a presentation $\langle G \mid R\rangle$.
- Let j be an 'open' closure operator on $\mathcal{O X}$ and let $\mathcal{O Y} \hookrightarrow \mathcal{O X}$ be its frame of fixed points.
- We would like an explicit presentation for \mathcal{O} Y.

Quotient presentations

We can now state our problem more formally.

- Suppose $\mathcal{O X}$ is given by a presentation $\langle G \mid R\rangle$.
- Let j be an 'open' closure operator on $\mathcal{O X}$ and let $\mathcal{O Y} \hookrightarrow \mathcal{O X}$ be its frame of fixed points.
- We would like an explicit presentation for \mathcal{O} Y.

Note that j gives a suplattice quotient $\mathcal{O X} \rightarrow \mathcal{O} Y$.

Quotient presentations

We can now state our problem more formally.

- Suppose $\mathcal{O X}$ is given by a presentation $\langle G \mid R\rangle$.
- Let j be an 'open' closure operator on $\mathcal{O X}$ and let $\mathcal{O Y} \hookrightarrow \mathcal{O X}$ be its frame of fixed points.
- We would like an explicit presentation for $\mathcal{O} Y$.

Note that j gives a suplattice quotient $\mathcal{O X} \rightarrow \mathcal{O} Y$.
If we could relate suplattice and frame presentations, we could proceed in a similar way to as with a frame quotient.

The suplattice coverage theorem

Definition

Let G be a \wedge-semilattice. We will call $\langle G \wedge \text {-semilattice } \mid R\rangle_{\text {Frm }}$ a Sup-type frame presentation if every relation in R is of the form $\bigvee A \leq \bigvee B$ and furthermore, if $\bigvee A \leq \bigvee B$ is a relation, then so is $\bigvee_{a \in A} a \wedge c \leq \bigvee_{b \in B} b \wedge c$ for each $c \in G$.

The suplattice coverage theorem

Definition

Let G be a \wedge-semilattice. We will call $\langle G \wedge \text {-semilattice } \mid R\rangle_{\text {Frm }}$ a Sup-type frame presentation if every relation in R is of the form $\bigvee A \leq \bigvee B$ and furthermore, if $\bigvee A \leq \bigvee B$ is a relation, then so is $\bigvee_{a \in A} a \wedge c \leq \bigvee_{b \in B} b \wedge c$ for each $c \in G$.

Every presentation can be converted into one of this form without too much trouble.

The suplattice coverage theorem

Definition
Let G be a \wedge-semilattice. We will call $\langle G \wedge \text {-semilattice } \mid R\rangle_{\text {Frm }}$ a Sup-type frame presentation if every relation in R is of the form $\bigvee A \leq \bigvee B$ and furthermore, if $\bigvee A \leq \bigvee B$ is a relation, then so is $\bigvee_{a \in A} a \wedge c \leq \bigvee_{b \in B} b \wedge c$ for each $c \in G$.

Every presentation can be converted into one of this form without too much trouble.

Theorem (Johnstone 1982, Abramsky and Vickers 1993)
For a Sup-type frame presentation given by G and R, there is an order isomorphism

$$
\langle G \wedge \text {-semilattice } \mid R\rangle_{\text {Frm }} \cong\langle G \text { poset } \mid R\rangle_{\text {Sup }} .
$$

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O} X$.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O X}$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O X}$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.
4. Turn the resulting suplattice presentation back into a frame presentation by freely adding finite meets and then adding relations to quotient them out again.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O X}$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.
4. Turn the resulting suplattice presentation back into a frame presentation by freely adding finite meets and then adding relations to quotient them out again.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O} X$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.
4. Turn the resulting suplattice presentation back into a frame presentation by freely adding finite meets and then adding relations to quotient them out again.

The meets in these new relations should be taken in the subframe.

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O} X$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.
4. Turn the resulting suplattice presentation back into a frame presentation by freely adding finite meets and then adding relations to quotient them out again.

The meets in these new relations should be taken in the subframe. The original generators $s, t \in \mathcal{O X}$ map to $j(s), j(t)$ in the subframe and so the meet becomes $j(s) \wedge j(t)$,

The idea

We can now proceed as follows.

1. Ensure the presentation $\langle G \mid R\rangle$ for $\mathcal{O X}$ is a Sup-type frame presentation.
2. Apply the theorem to obtain a suplattice presentation for $\mathcal{O X}$.
3. Add a relation $g=j(g)$ for each generator $g \in G$ to obtain a suplattice presentation for $\mathcal{O} Y$.
4. Turn the resulting suplattice presentation back into a frame presentation by freely adding finite meets and then adding relations to quotient them out again.

The meets in these new relations should be taken in the subframe. The original generators $s, t \in \mathcal{O X}$ map to $j(s), j(t)$ in the subframe and so the meet becomes $j(s) \wedge j(t)$, which equals $j(s \wedge j(t))$.

Presentations of open quotients

Proposition

Suppose $\mathcal{O X}=\langle G \wedge \text {-semilattice } \mid R\rangle_{\text {Frm }}$ is a Sup-type presentation and let $q: X \rightarrow Y$ be an open quotient. Then

$$
\begin{aligned}
\mathcal{O} Y \cong\langle\Delta g \text { for } g \in G| & R, \Delta 1=1, \\
& \left.\diamond s \wedge \diamond t=\diamond\left(s \wedge q^{*} q!(t)\right), s, t \in G\right\rangle_{\mathrm{Fr}},
\end{aligned}
$$

where we interpret $\diamond\left(s \wedge q^{*} q_{!}(t)\right)=\bigvee_{\beta} \diamond\left(s \wedge t_{\beta}\right)$ for specified representation $q^{*} q_{!}(t)=\bigvee_{\beta} t_{\beta}$.

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

Recall our presentation for $\mathcal{O} \mathbb{R}$ from before.

$$
\begin{aligned}
\mathcal{O} \mathbb{R}=\langle((p, q)) & \text { for } p, q \in \mathbb{Q} \sqcup\{-\infty, \infty\} \mid \\
& ((-\infty, \infty))=1, \\
& ((p, q)) \wedge\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(\max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right)\right)\right), \\
& ((p, q)) \vee\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(p, q^{\prime}\right)\right) \text { for } p \leq p^{\prime}<q \leq q^{\prime}, \\
& \left.((p, q))=\bigvee_{p<p^{\prime}<q^{\prime}<q}\left(\left(p^{\prime}, q^{\prime}\right)\right)\right\rangle .
\end{aligned}
$$

We note that this is a Sup-type presentation.

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

Recall our presentation for $\mathcal{O} \mathbb{R}$ from before.

$$
\begin{aligned}
\mathcal{O} \mathbb{R}=\langle((p, q)) & \text { for } p, q \in \mathbb{Q} \sqcup\{-\infty, \infty\} \mid \\
& ((-\infty, \infty))=1, \\
& ((p, q)) \wedge\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(\max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right)\right)\right), \\
& ((p, q)) \vee\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(p, q^{\prime}\right)\right) \text { for } p \leq p^{\prime}<q \leq q^{\prime}, \\
& \left.((p, q))=\bigvee_{p<p^{\prime}<q^{\prime}<q}\left(\left(p^{\prime}, q^{\prime}\right)\right)\right\rangle .
\end{aligned}
$$

We note that this is a Sup-type presentation.
Let us find a presentation for the circle \mathbb{T} from the coequaliser

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \rightarrow \mathbb{T}
$$

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \longrightarrow \mathbb{T}
$$

The corresponding closure operator is

$$
\bigvee_{n \in \mathbb{N}}\left(\mathrm{id}_{!} \circ(+1)^{*}\right)^{n} \vee \bigvee_{n \in \mathbb{N}}\left((+1)!\circ \mathrm{id}^{*}\right)^{n}
$$

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \longrightarrow \mathbb{T}
$$

The corresponding closure operator is

$$
\begin{aligned}
& \bigvee_{n \in \mathbb{N}}\left(\mathrm{id}_{!} \circ(+1)^{*}\right)^{n} \vee \bigvee_{n \in \mathbb{N}}\left((+1)!\circ \mathrm{id}^{*}\right)^{n} \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(+n)!
\end{aligned}
$$

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \longrightarrow \mathbb{T}
$$

The corresponding closure operator is

$$
\begin{aligned}
& \bigvee_{n \in \mathbb{N}}\left(\mathrm{id}!\circ(+1)^{*}\right)^{n} \vee \bigvee_{n \in \mathbb{N}}\left((+1)!\circ \mathrm{id}^{*}\right)^{n} \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(+n)! \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(-n)^{*}
\end{aligned}
$$

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \longrightarrow \mathbb{T}
$$

The corresponding closure operator is

$$
\begin{aligned}
& \bigvee_{n \in \mathbb{N}}\left(\mathrm{id}!\circ(+1)^{*}\right)^{n} \vee \bigvee_{n \in \mathbb{N}}\left((+1)!\circ \mathrm{id}^{*}\right)^{n} \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(+n)! \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(-n)^{*} \\
= & \bigvee_{n \in \mathbb{Z}}(+n)^{*} .
\end{aligned}
$$

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

$$
\mathbb{R} \xrightarrow[+1]{\mathrm{id}} \mathbb{R} \longrightarrow \mathbb{T}
$$

The corresponding closure operator is

$$
\begin{aligned}
& \bigvee_{n \in \mathbb{N}}\left(\mathrm{id}_{!} \circ(+1)^{*}\right)^{n} \vee \bigvee_{n \in \mathbb{N}}\left((+1)!\circ \mathrm{id}^{*}\right)^{n} \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(+n)! \\
= & \bigvee_{n \in \mathbb{N}}(+n)^{*} \vee \bigvee_{n \in \mathbb{N}}(-n)^{*} \\
= & \bigvee_{n \in \mathbb{Z}}(+n)^{*} .
\end{aligned}
$$

This sends $((p, q))$ to $\bigvee_{n \in \mathbb{Z}}((p-n, q-n))$.

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

We then have the same generators for $\mathcal{O T}$ as for $\mathcal{O} \mathbb{R}: ~((p, q))$ for $p, q \in \mathbb{Q} \sqcup\{-\infty, \infty\}$.

The relations become:

- $((-\infty, \infty))=1$,
$\cdot((p, q)) \wedge\left(\left(p^{\prime}, q^{\prime}\right)\right)=\bigvee_{n \in \mathbb{Z}}\left(\left(\max \left(p, p^{\prime}-n\right), \min \left(q, q^{\prime}-n\right)\right)\right)$,
- $((p, q)) \vee\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(p, q^{\prime}\right)\right)$ for $p \leq p^{\prime}<q \leq q^{\prime}$,
$\cdot((p, q))=\bigvee_{p<p^{\prime}<q^{\prime}<q}\left(\left(p^{\prime}, q^{\prime}\right)\right)$.

The circle via $\mathbb{R} \rightarrow \mathbb{T}$

We then have the same generators for $\mathcal{O T}$ as for $\mathcal{O} \mathbb{R}:((p, q))$ for $p, q \in \mathbb{Q} \sqcup\{-\infty, \infty\}$.

The relations become:

- $((-\infty, \infty))=1$,
$\cdot((p, q)) \wedge\left(\left(p^{\prime}, q^{\prime}\right)\right)=\bigvee_{n \in \mathbb{Z}}\left(\left(\max \left(p, p^{\prime}-n\right), \min \left(q, q^{\prime}-n\right)\right)\right)$,
- $((p, q)) \vee\left(\left(p^{\prime}, q^{\prime}\right)\right)=\left(\left(p, q^{\prime}\right)\right)$ for $p \leq p^{\prime}<q \leq q^{\prime}$,
$\cdot((p, q))=\bigvee_{p<p^{\prime}<q^{\prime}<q}\left(\left(p^{\prime}, q^{\prime}\right)\right)$.

Proper quotients and triquotients

A similar result can be proved for proper quotients. In this case, the map $q^{*} q_{*}$ is an interior operator that is also a preframe homomorphism.

Proper quotients and triquotients

A similar result can be proved for proper quotients. In this case, the map $q^{*} q_{*}$ is an interior operator that is also a preframe homomorphism.

This time we make use of the preframe coverage theorem and the resulting presentations involve modifying the finite joins in a 'PreFrm-type' frame presentation.

Proper quotients and triquotients

A similar result can be proved for proper quotients. In this case, the map $q^{*} q_{*}$ is an interior operator that is also a preframe homomorphism.

This time we make use of the preframe coverage theorem and the resulting presentations involve modifying the finite joins in a 'PreFrm-type' frame presentation.

In fact, the result can even be generalised to triquotients by replacing suplattices and preframes by dcpos.

An example of a proper quotient

An appropriate presentation for $\mathcal{O}[0,1]$ is given by

$$
\begin{aligned}
\mathcal{O}[0,1]= & \langle D p, q(\text { for } p, q \in \mathbb{Q} \cap[0,1] \mid \\
& D 0,10=0, \\
& D p, q\left(\vee \vee D p^{\prime}, q^{\prime}\left(=D \max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right) 0,\right.\right. \\
& D p, q(\wedge \wedge) p^{\prime}, q^{\prime}\left(=D p, q^{\prime}\left(\text { for } p \leq p^{\prime} \leq q \leq q^{\prime},\right.\right. \\
& D p, q 0=1 \text { for } p>q, \\
& \left.D p, q 0=\bigvee_{p^{\prime}<p \leq q<q^{\prime}}^{\uparrow}\right) p^{\prime}, q^{\prime}(\text { for } p>0, q<1\rangle .
\end{aligned}
$$

An example of a proper quotient

Now consider the following proper coequaliser.

$$
1 \underset{1}{0}[0,1] \longrightarrow \mathbb{T}
$$

An example of a proper quotient

Now consider the following proper coequaliser.

$$
1 \underset{1}{\stackrel{0}{\Longrightarrow}}[0,1] \longrightarrow \mathbb{T} \text {. }
$$

The resulting interior operators acts on generators as follows.

$$
D p, q 0 \mapsto \begin{cases}D p, q(\wedge D 0,00 \wedge D 1,10 & \text { if } p=0 \text { or } q=1 \\ D p, q 0 & \text { otherwise }\end{cases}
$$

An example of a proper quotient

We arrive at the following presentation for \mathbb{T}.

$$
\begin{aligned}
\mathcal{O T}= & \langle D p, q 0 \text { for } p, q \in \mathbb{Q} \cap[0,1]| \\
& D 0,10=0, \\
& D p, q \cap \vee D p^{\prime}, q^{\prime}\left(=D \max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right)\left(\text { for } p^{\prime} \neq 0, q^{\prime} \neq 1,\right.\right. \\
& D p, q \cap \vee D, q^{\prime}\left(=D p, \min \left(q, q^{\prime}\right) D \wedge D 1, q 0,\right. \\
& D p, q 0 \vee D p^{\prime}, 10=D \max \left(p, p^{\prime}\right), q(\wedge D p, 00, \\
& D p, q 0 \wedge D p^{\prime}, q^{\prime}\left(=D p, q^{\prime}\left(\text { for } p \leq p^{\prime} \leq q \leq q^{\prime},\right.\right. \\
& D p, q 0=1 \text { for } p>q, \\
& D p, q 0=\bigvee_{p^{\prime}<p \leq q<q^{\prime}}^{\uparrow} D p^{\prime}, q^{\prime}(\text { for } p>0, q<1\rangle .
\end{aligned}
$$

An example of a proper quotient

We arrive at the following presentation for \mathbb{T}.

$$
\begin{aligned}
\mathcal{O T}= & \langle D p, q 0 \text { for } p, q \in \mathbb{Q} \cap[0,1]| \\
& D 0,10=0, \\
& D p, q \cap \vee D p^{\prime}, q^{\prime}\left(0=D \max \left(p, p^{\prime}\right), \min \left(q, q^{\prime}\right)\right) \text { for } p^{\prime} \neq 0, q^{\prime} \neq 1, \\
& D p, q 0 \vee D 0, q^{\prime} 0=D p, \min \left(q, q^{\prime}\right) \cap \wedge D, q 0, \\
& D p, q 0 \vee D p^{\prime}, 10=D \max \left(p, p^{\prime}\right), q 0 \wedge D p, 00, \\
& D p, q 0 \wedge D p^{\prime}, q^{\prime}\left(=D p, q^{\prime}\left(\text { for } p \leq D^{\prime} \leq q \leq q^{\prime},\right.\right. \\
& D p, q 0=1 \text { for } p>q, \\
& D p, q 0=\bigvee_{p^{\prime}<p \leq q<q^{\prime}}^{\uparrow} D p^{\prime}, q^{\prime}(\text { for } p>0, q<1\rangle .
\end{aligned}
$$

