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Frame presentations

An advantage of the pointfree approach to topology is that since
frames are algebraic structures, they can be presented by
generators and relations.

For example, the frame of reals may be presented as

OR = (((p,q)) forp,q € QU {—o0, 00} |
—00,00)) =1,
(p,a) A(p',a") = (max(p, p'), min(g,q"))),
p.a)V(p.q)=(p,q") forp<p' <qg<q,
PA) =V oo 0D):

—_~ o~

P~



Sublocales, quotient frames, quotients locales and subframes

Sublocales Y < X are the pointfree analogue of subspaces and
correspond to quotient frames OX — OY.



Sublocales, quotient frames, quotients locales and subframes

Sublocales Y < X are the pointfree analogue of subspaces and
correspond to quotient frames OX — OY.

Given a presentation of a frame OX, a presentation of a quotient
of OX simply involves adding additional relations.



Sublocales, quotient frames, quotients locales and subframes

Sublocales Y < X are the pointfree analogue of subspaces and
correspond to quotient frames OX — OY.

Given a presentation of a frame OX, a presentation of a quotient
of OX simply involves adding additional relations.

For example, adding ((—o0,0)) = 0 and ((1,00)) = 0 to our
presentation of OR gives a presentation for the frame of opens of
the closed unit interval [0, 1].



Sublocales, quotient frames, quotients locales and subframes

Sublocales Y < X are the pointfree analogue of subspaces and
correspond to quotient frames OX — OY.

Given a presentation of a frame OX, a presentation of a quotient
of OX simply involves adding additional relations.

For example, adding ((—o0,0)) = 0 and ((1,00)) = 0 to our
presentation of OR gives a presentation for the frame of opens of
the closed unit interval [0, 1].

Quotient locales X — Y correspond to certain subframes QY — OX.

We would like to obtain a presentation of QY from one for OX.



Open quotients of locales

It will be helpful to restrict to important subclasses of quotients.

Definition
Alocale map f: X — Yis open if its corresponding frame map
f*: OY — OX has a left adjoint fi: OX — OY and these satisfy

filanfr(b)) = fi(a) A b.



Open quotients of locales

It will be helpful to restrict to important subclasses of quotients.

Definition
Alocale map f: X — Yis open if its corresponding frame map

f*: OY — OX has a left adjoint fi: OX — OY and these satisfy
filanfr(b)) = fi(a) A b.

If fis also epic, we say it is an open quotient map. In this case fi is
a (set-theoretic) left inverse to f*.



Open quotients of locales

It will be helpful to restrict to important subclasses of quotients.

Definition
Alocale map f: X — Yis open if its corresponding frame map
f*: OY — OX has a left adjoint fi: OX — OY and these satisfy

filanfr(b)) = fi(a) A b.
If fis also epic, we say it is an open quotient map. In this case fi is
a (set-theoretic) left inverse to f*.

Note that since g is a left adjoint, it preserves all joins.

We call a poset admitting all joins a suplattice and write Sup for
the category of suplattices and join-preserving maps.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.

The fixed points of g*q: form a subframe of OX which is
isomorphic to OY.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.

The fixed points of g*q: form a subframe of OX which is
isomorphic to OY. The subframe inclusion corresponds to g*
under this isomorphism.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.

The fixed points of g*q: form a subframe of OX which is
isomorphic to OY. The subframe inclusion corresponds to g*
under this isomorphism.

The closure operator g*q, restricts to a suplattice quotient map
from OX onto the frame of fixed points.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.

The fixed points of g*q: form a subframe of OX which is
isomorphic to OY. The subframe inclusion corresponds to g*
under this isomorphism.

The closure operator g*q, restricts to a suplattice quotient map
from OX onto the frame of fixed points. This quotient map
corresponds to g, under the isomorphism.



Open quotients and closure operators

If g: X — Yis an open quotient then g*q is a join-preserving
closure operator on OX.

The fixed points of g*q: form a subframe of OX which is
isomorphic to OY. The subframe inclusion corresponds to g*
under this isomorphism.

The closure operator g*q, restricts to a suplattice quotient map
from OX onto the frame of fixed points. This quotient map
corresponds to g, under the isomorphism.

Open quotients of X correspond to join-preserving closure
operators j: OX — OX satisfying j(a) A j(b) = j(a A j(b)).



Coequalisers of open maps

Proposition
Suppose f,g: R — X are open locale maps. Then their coequaliser
IS an open quotient.

f
R X—>Y

g

Moreover, the associated closure operator is given by

\ (fig")" v \/ (@f)".
n=0 n=0



Quotient presentations

We can now state our problem more formally.

- Suppose OX is given by a presentation (G | R).

- Letj be an ‘open’ closure operator on OX and let OY — OX be
its frame of fixed points.

- We would like an explicit presentation for OY.
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Quotient presentations

We can now state our problem more formally.

- Suppose OX is given by a presentation (G | R).

- Letj be an ‘open’ closure operator on OX and let OY — OX be
its frame of fixed points.

- We would like an explicit presentation for OY.

Note that j gives a suplattice quotient OX — OY.

If we could relate suplattice and frame presentations, we could
proceed in a similar way to as with a frame quotient.
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The suplattice coverage theorem

Definition

Let G be a A-semilattice. We will call (G A-semilattice | R)grm a
Sup-type frame presentation if every relation in R is of the form
VA <\/Band furthermore, if \/ A < \/ B is a relation, then so is
Vaea @A C < Vpegb Acforeach ce.

Every presentation can be converted into one of this form without
too much trouble.

Theorem (Johnstone 1982, Abramsky and Vickers 1993)
For a Sup-type frame presentation given by G and R, there is an
order isomorphism

(G A-semilattice | R)prm = (G poset | R)syp-
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We can now proceed as follows.

1. Ensure the presentation (G | R) for OX is a Sup-type frame
presentation.

2. Apply the theorem to obtain a suplattice presentation for OX.

3. Add a relation g = j(g) for each generator g € G to obtain a
suplattice presentation for OY.

4. Turn the resulting suplattice presentation back into a frame
presentation by freely adding finite meets and then adding
relations to quotient them out again.

The meets in these new relations should be taken in the subframe.
The original generators s,t € OX map to j(s),j(t) in the subframe
and so the meet becomes j(s) AJ(t), which equals j(s A j(t)).



Presentations of open quotients

Proposition
Suppose OX = (G A-semilattice | R)grm IS a Sup-type presentation
and let g: X — Y be an open quotient. Then

OY=(0g forge G|R, 01=1,
Os A Ot =0(s A g qi(t)), s,t € G)rrm,

where we interpret O(s A g*qi(t)) = V5 O(s A tg) for specified
representation g*q\(t) = Vg ts.

10



The circleviaR — T

Recall our presentation for OR from before.
OR = (((p,q)) forp,q € QU {—o0,00} |
(—o0,00) =1,
(p.a) A (P, a)
(p,q

(max(p,p’), min(q,q'))),
(pa) v (p,ad)=(p,g") forp<p’'<qg<d,
(p,q) =\ (', ).

We note that this is a Sup-type presentation.
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The circleviaR — T

Recall our presentation for OR from before.
OR = (((p,q)) forp,q € QU {—o0, 00} |
(—00,00)) =1,
(p.a) A (P, q") = (max(p, p’), min(q, q"))),
(p,a) v (p,a)=(p.q") forp<p'<qg<d,

(p,q) =\ (', ).

We note that this is a Sup-type presentation.

p<p’'<q’<q

Let us find a presentation for the circle T from the coequaliser
id
R R—T.

+1

n
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The circleviaR — T

id
R——R—T.
+1

The corresponding closure operator is
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The circleviaR — T

id
R——R—T.
+1

The corresponding closure operator is

\/n (1d| o —|-1 \/ +1 | o ld*)
- \/neN —H’) Y \/neN ’
- \/neN(+n)* v \/neN(_n)*
Voo
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The circleviaR — T

id
R——R—T.
+1

The corresponding closure operator is

\/n (ids o (+1)* \/ ((+1)1 0 id*)"
= Voent") V\/neN |
=\, (v \/neN(_n)*
A
This sends ((p, q)) to V,ez(p — n,q — n)).

12



The circleviaR — T

We then have the same generators for OT as for OR: ((p, q)) for
p,q & QU {—O0,00}

The relations become:

* (—o0,00) =1,
(P a) AP, a") = Vpez(max(p, p’ — n), min(g,q" — n))),
(p,a)v(r,a)=(p,q) forp<p <qg<q,
p,q

=
=
I

\/p<p’<q’<q((plv q,))
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The circleviaR — T

We then have the same generators for OT as for OR: ((p, q)) for
p,q & QU {—O0,00}

The relations become:

* (—o0,00) =1,
“(P,a) A (P ") = Vyez(max(p, p’ — n), min(g, q" — n))),
(pa) v ((P',a") =(p,q") forp<p'<qg<q,
p,q

=
=
I

\/p<p’<q’<q((plv q,))
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Proper quotients and triquotients

A similar result can be proved for proper quotients. In this case,
the map g*q. is an interior operator that is also a preframe
homomorphism.
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Proper quotients and triquotients

A similar result can be proved for proper quotients. In this case,

the map g*q. is an interior operator that is also a preframe
homomorphism.

This time we make use of the preframe coverage theorem and the
resulting presentations involve modifying the finite joins in a
‘PreFrm-type’ frame presentation.

In fact, the result can even be generalised to triquotients by
replacing suplattices and preframes by dcpos.
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An example of a proper quotient

An appropriate presentation for O[0,1] is given by

0[0,1] = <Dp q( forp,geQno,1]|
d

D q'( =) max(p,p’), min(q, q’)(;
AD q'(=)p,q'( forp<p’'<qg<q,
=1 forp > g,

p <p<g<gq’ p',q'( forp>0,q9 < 1>.

15
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An example of a proper quotient

Now consider the following proper coequaliser.
1—=1[0,1] —T.

The resulting interior operators acts on generators as follows.

T Dp,q(ADO,04AD1,1( iFp=0o0rg=1
’ I, q( otherwise



An example of a proper quotient

We arrive at the following presentation for T.

)p’,q'( = ) max(p,p’), min(q,q)( for p’ #0,q" #1,
D0, q"( = Dp, min(q,q")( A D1, q(,

)p’,1( = ) max(p, p), q( A )p, O,
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An example of a proper quotient

We arrive at the following presentation for T.

OT = <p,qq forp,g € QN[0,1] |

q’d =) max(p, p), min(q, q")( forp’ #0,q9" #1,
0,9'(=Dp,min(q,q")( A1, q(,
1( =) max(p,p), a( A Dp, O,
,q'(=Dp,q'( forp<p’'<qg<d,
1 forp > q,
b <p<q<q’ )p’,q'( forp >0, <1).



