Transfer theorems for finitely subdirectly irreducible algebras

George Metcalfe

Mathematical Institute University of Bern

Joint work with Wesley Fussner

Topology, Algebra and Categories in Logic, Coimbra, 20-24 June 2022

It is well known that . . .

Under certain conditions, some algebraic properties lift from the class of **subdirectly irreducibles** of a variety to the whole variety.

< ⊒ >

We show that ...

Under certain (weaker) conditions, some algebraic properties lift from the class of **finitely subdirectly irreducibles** of a variety to the whole variety.

★ ∃ ▶

Fix a variety \mathcal{V} and let \mathcal{V}_{FSI} and \mathcal{V}_{SI} denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of \mathcal{V} , respectively.

Remark

If \mathcal{V} has equationally definable principal meets, \mathcal{V}_{FSI} is a **universal class**. For example, if \mathcal{V} is a variety of semilinear residuated lattices, \mathcal{V}_{FSI} is the class of totally ordered members of \mathcal{V} .

Fix a variety \mathcal{V} and let \mathcal{V}_{FSI} and \mathcal{V}_{SI} denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of \mathcal{V} , respectively.

Remark

If $\mathcal V$ has equationally definable principal meets, $\mathcal V_{\text{FSI}}$ is a **universal class**. For example, if $\mathcal V$ is a variety of semilinear residuated lattices, $\mathcal V_{\text{FSI}}$ is the class of totally ordered members of $\mathcal V.$

Fix a variety \mathcal{V} and let \mathcal{V}_{FSI} and \mathcal{V}_{SI} denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of \mathcal{V} , respectively.

Remark

If $\mathcal V$ has equationally definable principal meets, $\mathcal V_{\text{FSI}}$ is a **universal class**. For example, if $\mathcal V$ is a variety of semilinear residuated lattices, $\mathcal V_{\text{FSI}}$ is the class of totally ordered members of $\mathcal V.$

Fix a variety $\mathcal V$ and let $\mathcal V_{\text{FSI}}$ and $\mathcal V_{\text{SI}}$ denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of $\mathcal V$, respectively.

Remark

If $\mathcal V$ has equationally definable principal meets, $\mathcal V_{\text{FSI}}$ is a **universal class**. For example, if $\mathcal V$ is a variety of semilinear residuated lattices, $\mathcal V_{\text{FSI}}$ is the class of totally ordered members of $\mathcal V.$

Fix a variety $\mathcal V$ and let $\mathcal V_{\text{FSI}}$ and $\mathcal V_{\text{SI}}$ denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of $\mathcal V$, respectively.

Remark

If \mathcal{V} has equationally definable principal meets, \mathcal{V}_{FSI} is a **universal class**. For example, if \mathcal{V} is a variety of semilinear residuated lattices, \mathcal{V}_{FSI} is the class of totally ordered members of \mathcal{V} .

Fix a variety $\mathcal V$ and let $\mathcal V_{\text{FSI}}$ and $\mathcal V_{\text{SI}}$ denote the classes of finitely subdirectly irreducible and subdirectly irreducible members of $\mathcal V$, respectively.

Remark

If \mathcal{V} has equationally definable principal meets, \mathcal{V}_{FSI} is a **universal class**. For example, if \mathcal{V} is a variety of semilinear residuated lattices, \mathcal{V}_{FSI} is the class of totally ordered members of \mathcal{V} .

A class \mathcal{K} has the **congruence extension property** (CEP) if for any $\mathbf{B} \in \mathcal{K}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$, we have $\operatorname{Cg}_{_{\mathsf{R}}}(\Theta) \cap A^2 = \Theta$.

Theorem (Davey 1977)

Let \mathcal{V} be a congruence-distributive variety such that \mathcal{V}_{si} is elementary. Then \mathcal{V} has the CEP if and only if \mathcal{V}_{si} has the CEP.

A class \mathcal{K} has the **congruence extension property** (CEP) if for any $\mathbf{B} \in \mathcal{K}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$, we have $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$.

Theorem (Davey 1977)

Let \mathcal{V} be a congruence-distributive variety such that \mathcal{V}_{si} is elementary. Then \mathcal{V} has the CEP if and only if \mathcal{V}_{si} has the CEP.

A class \mathcal{K} has the **congruence extension property** (CEP) if for any $\mathbf{B} \in \mathcal{K}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$, we have $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$.

Theorem (Davey 1977)

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{si}$ is elementary. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{si}$ has the CEP.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \text{Con } \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \text{Cg}_{B}(\Theta) \cap A^{2}$ not in Θ . Zorn's Lemma yields a $\Psi^{*} \in \text{Con } \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^{2}) \vee \Theta$, and it follows easily that Ψ^{*} is meet-irreducible and $\mathbf{B}/\Psi^{*} \in \mathcal{V}_{\text{FSI}}$.

We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

 $\langle a/(\Psi^*\cap A^2), b/(\Psi^*\cap A^2)\rangle \not\in \Phi, \text{ but } \langle a/\Psi^*, b/\Psi^*\rangle \in \mathrm{Cg}_{_{B/\Psi^*}}(\Phi) \cap (A/\Psi^*)^2.$

Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra \mathbf{B}/Ψ^* that does not extend to a congruence on \mathbf{B}/Ψ^* contradicting our assumption that \mathcal{V}_{FSI} has the CEP.

< □ > < □ > < □ > < □ >

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{rst} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra **A** of **B**, and $\Theta \in \text{Con } \mathbf{A}$. Assume We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$. $\langle a/(\Psi^* \cap A^2), b/(\Psi^* \cap A^2) \rangle \notin \Phi$, but $\langle a/\Psi^*, b/\Psi^* \rangle \in \operatorname{Cg}_{\mathsf{R}/\mathsf{u}*}(\Phi) \cap (A/\Psi^*)^2$.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{rst} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra **A** of **B**, and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{p}}(\Theta) \cap A^2$ not in Θ . We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$. $\langle a/(\Psi^* \cap A^2), b/(\Psi^* \cap A^2) \rangle \notin \Phi$, but $\langle a/\Psi^*, b/\Psi^* \rangle \in \operatorname{Cg}_{\mathsf{R}/\mathsf{u}*}(\Phi) \cap (A/\Psi^*)^2$.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{rst} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra **A** of **B**, and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{p}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$. $\langle a/(\Psi^* \cap A^2), b/(\Psi^* \cap A^2) \rangle \notin \Phi$, but $\langle a/\Psi^*, b/\Psi^* \rangle \in \operatorname{Cg}_{\mathsf{R}/\mathsf{u}*}(\Phi) \cap (A/\Psi^*)^2$.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, and it follows easily that Ψ^* is meet-irreducible and $\mathbf{B}/\Psi^* \in \mathcal{V}_{FSI}$.

We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

 $\langle a/(\Psi^*\cap A^2), b/(\Psi^*\cap A^2)\rangle\not\in \Phi, \ \text{but}\ \langle a/\Psi^*, b/\Psi^*\rangle\in \mathrm{Cg}_{_{\mathsf{B}/\Psi^*}}(\Phi)\cap (A/\Psi^*)^2.$

Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra \mathbf{B}/Ψ^* that does not extend to a congruence on \mathbf{B}/Ψ^* contradicting our assumption that \mathcal{V}_{FSI} has the CEP.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, and it follows easily that Ψ^* is meet-irreducible and $\mathbf{B}/\Psi^* \in \mathcal{V}_{FSI}$.

We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

 $\langle a/(\Psi^*\cap A^2), b/(\Psi^*\cap A^2) \rangle \not\in \Phi, \text{ but } \langle a/\Psi^*, b/\Psi^* \rangle \in \mathrm{Cg}_{_{B/\Psi^*}}(\Phi) \cap (A/\Psi^*)^2.$

Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra \mathbf{B}/Ψ^* that does not extend to a congruence on \mathbf{B}/Ψ^* contradicting our assumption that \mathcal{V}_{FSI} has the CEP.

ヘロト 人間ト 人間ト 人間ト

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, and it follows easily that Ψ^* is meet-irreducible and $\mathbf{B}/\Psi^* \in \mathcal{V}_{FSI}$.

We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

 $\langle a/(\Psi^*\cap A^2), b/(\Psi^*\cap A^2)\rangle\not\in\Phi, \ \text{but}\ \langle a/\Psi^*, b/\Psi^*\rangle\in\mathrm{Cg}_{_{\mathsf{B}/\Psi^*}}(\Phi)\cap (A/\Psi^*)^2.$

Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra \mathbf{B}/Ψ^* that does not extend to a congruence on \mathbf{B}/Ψ^* contradicting our assumption that \mathcal{V}_{FSI} has the CEP.

Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, and it follows easily that Ψ^* is meet-irreducible and $\mathbf{B}/\Psi^* \in \mathcal{V}_{FSI}$.

We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

 $\langle \textit{a}/(\Psi^* \cap \textit{A}^2),\textit{b}/(\Psi^* \cap \textit{A}^2) \rangle \not\in \Phi, \;\; \mathsf{but} \;\; \langle \textit{a}/\Psi^*,\textit{b}/\Psi^* \rangle \in \mathrm{Cg}_{_{\mathsf{B}/\Psi^*}}(\Phi) \cap (\textit{A}/\Psi^*)^2.$

Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra \mathbf{B}/Ψ^* that does not extend to a congruence on \mathbf{B}/Ψ^* , contradicting our assumption that \mathcal{V}_{FSI} has the CEP.

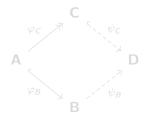
Let $\mathcal V$ be a congruence-distributive variety. Then $\mathcal V$ has the CEP if and only if $\mathcal V_{\rm FSI}$ has the CEP.

Proof sketch. Suppose for the non-trivial direction that \mathcal{V}_{FSI} has the CEP and consider any $\mathbf{B} \in \mathcal{V}$, subalgebra \mathbf{A} of \mathbf{B} , and $\Theta \in \operatorname{Con} \mathbf{A}$. Assume towards a contradiction that there is some $\langle a, b \rangle \in \operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2$ not in Θ . Zorn's Lemma yields a $\Psi^* \in \operatorname{Con} \mathbf{B}$ maximal w.r.t. $\langle a, b \rangle \notin (\Psi \cap A^2) \vee \Theta$, and it follows easily that Ψ^* is meet-irreducible and $\mathbf{B}/\Psi^* \in \mathcal{V}_{FSI}$.

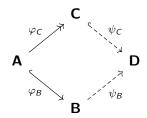
We show that for $\Phi := ((\Psi^* \cap A^2) \vee \Theta)/(\Psi^* \cap A^2) \in \operatorname{Con} \mathbf{A}/(\Psi^* \cap A^2)$,

$$\langle a/(\Psi^*\cap A^2), b/(\Psi^*\cap A^2)
angle
ot\in \Phi, ext{ but } \langle a/\Psi^*, b/\Psi^*
angle \in \operatorname{Cg}_{_{\mathbf{B}/\Psi^*}}(\Phi)\cap (A/\Psi^*)^2.$$

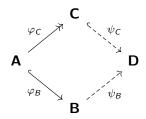
Hence we have a congruence on a subalgebra of the finitely subdirectly irreducible algebra B/Ψ^* that does not extend to a congruence on B/Ψ^* , contradicting our assumption that \mathcal{V}_{FSI} has the CEP.



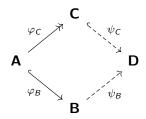
A variety \mathcal{V} has the CEP if and only if it has the EP, but this is not always the case for other classes, in particular, $\mathcal{V}_{\rm ESL}$.



A variety \mathcal{V} has the CEP if and only if it has the EP, but this is not always the case for other classes, in particular, \mathcal{V}_{ESL} .



A variety \mathcal{V} has the CEP if and only if it has the EP, but this is not always the case for other classes, in particular, \mathcal{V}_{ESL} .



A variety $\mathcal V$ has the CEP if and only if it has the EP, but this is not always the case for other classes, in particular, $\mathcal V_{\text{ESL}}$.

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- (1) \mathcal{V} has the CEP.
- (2) \mathcal{V} has the EP.
- (3) \mathcal{V}_{FSL} has the CEP.
- (4) \mathcal{V}_{FSL} has the EP.

★ ∃ ►

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- (1) \mathcal{V} has the CEP.
- (2) \mathcal{V} has the EP.
- (3) \mathcal{V}_{FSI} has the CEP.
- (4) \mathcal{V}_{FSL} has the EP.

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- (1) \mathcal{V} has the CEP.
- (2) \mathcal{V} has the EP.
- (3) \mathcal{V}_{FSI} has the CEP.
- (4) \mathcal{V}_{FSL} has the EP.

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the CEP.
- (2) \mathcal{V} has the EP.
- $(3)~~\mathcal{V}_{\rm FSI}$ has the CEP.

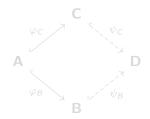
(4) \mathcal{V}_{FSL} has the EP.

Let $\mathcal V$ be a congruence-distributive variety such that $\mathcal V_{\scriptscriptstyle \mathsf{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the CEP.
- (2) \mathcal{V} has the EP.
- $(3)~~\mathcal{V}_{\rm FSI}$ has the CEP.
- $(4)~~\mathcal{V}_{\rm FSI}$ has the EP.

A V-formation in a class \mathcal{K} consists of some $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \to \mathbf{B}, \ \varphi_C : \mathbf{A} \to \mathbf{C}.$

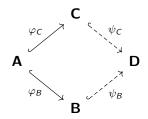
An **amalgam** of this V-formation in a class \mathcal{K}' consists of some $\mathbf{D} \in \mathcal{K}'$ and embeddings $\psi_B \colon \mathbf{B} \to \mathbf{D}, \ \psi_C \colon \mathbf{C} \to \mathbf{D}$ satisfying $\psi_B \varphi_B = \psi_C \varphi_C$.



A class \mathcal{K} has the **amalgamation property** (AP) if every V-formation in \mathcal{K} has an amalgam in \mathcal{K} .

A V-formation in a class \mathcal{K} consists of some $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \rightarrow \mathbf{B}, \ \varphi_C : \mathbf{A} \rightarrow \mathbf{C}.$

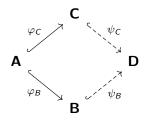
An **amalgam** of this V-formation in a class \mathcal{K}' consists of some $\mathbf{D} \in \mathcal{K}'$ and embeddings $\psi_B \colon \mathbf{B} \to \mathbf{D}, \ \psi_C \colon \mathbf{C} \to \mathbf{D}$ satisfying $\psi_B \varphi_B = \psi_C \varphi_C$.



A class \mathcal{K} has the **amalgamation property** (AP) if every V-formation in \mathcal{K} has an amalgam in \mathcal{K} .

A V-formation in a class \mathcal{K} consists of some $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \rightarrow \mathbf{B}, \ \varphi_C : \mathbf{A} \rightarrow \mathbf{C}.$

An **amalgam** of this V-formation in a class \mathcal{K}' consists of some $\mathbf{D} \in \mathcal{K}'$ and embeddings $\psi_B \colon \mathbf{B} \to \mathbf{D}, \ \psi_C \colon \mathbf{C} \to \mathbf{D}$ satisfying $\psi_B \varphi_B = \psi_C \varphi_C$.



A class \mathcal{K} has the **amalgamation property** (AP) if every V-formation in \mathcal{K} has an amalgam in \mathcal{K} .

Let $\mathcal{V}_{s_{1}}^{+}$ denote the class of trivial or subdirectly irreducible algebras of \mathcal{V} .

Theorem (Grätzer and Lakser 1971)

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{si}^+$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{si}^+$ has an amalgam in $\mathcal V.$

Let $\mathcal{V}_{s_1}^+$ denote the class of trivial or subdirectly irreducible algebras of \mathcal{V} .

Theorem (Grätzer and Lakser 1971)

Suppose that \mathcal{V} has the CEP and $\mathcal{V}_{s_{I}}^{+}$ is closed under subalgebras. Then \mathcal{V} has the AP if and only if every V-formation in $\mathcal{V}_{s_{I}}^{+}$ has an amalgam in \mathcal{V} .

Let $\mathcal{V}_{s_1}^+$ denote the class of trivial or subdirectly irreducible algebras of \mathcal{V} .

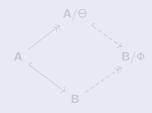
Theorem (Grätzer and Lakser 1971)

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{s_I}^+$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{s_I}^+$ has an amalgam in $\mathcal V$.

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

- (i) $\mathcal{V}_{SI} \subseteq \mathcal{S};$
- (ii) ${\cal S}$ is closed under isomorphisms and subalgebras;
- (iii) every V-formation in ${\mathcal S}$ has an amalgam in ${\mathcal V}$;
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \text{Con } \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \text{Con } \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.

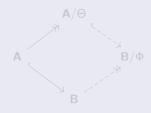


Then $\mathcal V$ has the AP.

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

- (i) $\mathcal{V}_{sl} \subseteq \mathcal{S};$
- (ii) ${\mathcal S}$ is closed under isomorphisms and subalgebras;
- m (iii) every V-formation in ${\cal S}$ has an amalgam in ${\cal V}$;
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \text{Con } \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \text{Con } \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.



Then $\mathcal V$ has the AP.

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

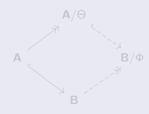
- (i) $\mathcal{V}_{SI} \subseteq \mathcal{S};$
- $\rm (ii)~{\cal S}$ is closed under isomorphisms and subalgebras;
- (iii) every V-formation in ${\mathcal S}$ has an amalgam in ${\mathcal V};$
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \operatorname{Con} \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \operatorname{Con} \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.

Then $\mathcal V$ has the AP.

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

- (i) $\mathcal{V}_{SI} \subseteq \mathcal{S};$
- $\rm (ii)~{\cal S}$ is closed under isomorphisms and subalgebras;
- (iii) every V-formation in \mathcal{S} has an amalgam in \mathcal{V} ;
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \operatorname{Con} \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \operatorname{Con} \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.

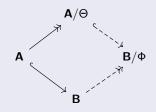


Then $\mathcal V$ has the AP.

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

- (i) $\mathcal{V}_{SI} \subseteq \mathcal{S};$
- $\rm (ii)~{\cal S}$ is closed under isomorphisms and subalgebras;
- (iii) every V-formation in \mathcal{S} has an amalgam in \mathcal{V} ;
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \operatorname{Con} \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \operatorname{Con} \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.



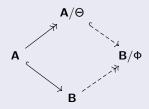
Then $\mathcal V$ has the AP.

< □ > < 凸

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let ${\mathcal S}$ be a subclass of ${\mathcal V}$ satisfying

- (i) $\mathcal{V}_{SI} \subseteq \mathcal{S};$
- $\rm (ii)~{\cal S}$ is closed under isomorphisms and subalgebras;
- (iii) every V-formation in \mathcal{S} has an amalgam in \mathcal{V} ;
- (iv) for any $\mathbf{B} \in \mathcal{V}$ and subalgebra \mathbf{A} of \mathbf{B} , if $\Theta \in \operatorname{Con} \mathbf{A}$ and $\mathbf{A}/\Theta \in S$, then there exists a $\Phi \in \operatorname{Con} \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$ and $\mathbf{B}/\Phi \in S$.



Then \mathcal{V} has the AP.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $S = \mathcal{V}_{FSI}$.

Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{B}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \operatorname{Con} \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$.

Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathsf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \operatorname{Con} \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{\text{FSI}}$.

Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathsf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \operatorname{Con} \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of **B** $\in \mathcal{V}$ and some meet-irreducible $\Theta \in \text{Con } \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \text{Con } \mathbf{B}$. By the CEP, $\text{Cg}_{B}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \text{Con } \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ . Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \text{Con } \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of **B** $\in \mathcal{V}$ and some meet-irreducible $\Theta \in \text{Con } \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \text{Con } \mathbf{B}$. By the CEP, $\text{Cg}_{B}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \text{Con } \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of **B** $\in \mathcal{V}$ and some meet-irreducible $\Theta \in \text{Con } \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \text{Con } \mathbf{B}$. By the CEP, $\text{Cg}_{B}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \text{Con } \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \text{Con } \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \text{Con } \mathbf{B}$. By the CEP, $\text{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \text{Con } \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ . Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \text{Con } \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in \mathcal{T}$ or $\Phi_2 \in \mathcal{T}$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \operatorname{Con} \mathbf{B}$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

イロト イヨト イヨト イヨト

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \text{Con } \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \text{Con } \mathbf{B}$. By the CEP, $\text{Cg}_{B}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \text{Con } \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi = \Phi_1 \cap \Phi_2$ with $\Phi_1, \Phi_2 \in \operatorname{Con} B$. Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

・ロト ・四ト ・ヨト ・ヨト

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi=\Phi_1\cap\Phi_2$ with $\Phi_1,\Phi_2\in\operatorname{Con}{\textbf{B}}.$ Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi=\Phi_1\cap\Phi_2$ with $\Phi_1,\Phi_2\in\operatorname{Con}{\textbf{B}}.$ Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in \mathcal{T}$ or $\Phi_2 \in \mathcal{T}$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi=\Phi_1\cap\Phi_2$ with $\Phi_1,\Phi_2\in\operatorname{Con}{\textbf{B}}.$ Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in T$ or $\Phi_2 \in T$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

Suppose that $\mathcal V$ has the CEP and $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ is closed under subalgebras. Then $\mathcal V$ has the AP if and only if every V-formation in $\mathcal V_{\scriptscriptstyle\mathsf{FSI}}$ has an amalgam in $\mathcal V.$

Proof. Suppose for the non-trivial direction that every V-formation in \mathcal{V}_{FSI} has an amalgam in \mathcal{V} . It suffices to check (iv) of the criterion for $\mathcal{S} = \mathcal{V}_{FSI}$. Consider a subalgebra **A** of $\mathbf{B} \in \mathcal{V}$ and some meet-irreducible $\Theta \in \operatorname{Con} \mathbf{A}$. We need to show that $\Phi \cap A^2 = \Theta$ for some meet-irreducible $\Phi \in \operatorname{Con} \mathbf{B}$. By the CEP, $\operatorname{Cg}_{\mathbf{B}}(\Theta) \cap A^2 = \Theta$, so $\mathcal{T} := \{\Psi \in \operatorname{Con} \mathbf{B} \mid \Psi \cap A^2 = \Theta\} \neq \emptyset$ and, by Zorn's Lemma, $\langle \mathcal{T}, \subseteq \rangle$ has a maximal element Φ .

Now consider $\Phi=\Phi_1\cap\Phi_2$ with $\Phi_1,\Phi_2\in\operatorname{Con}{\boldsymbol{\mathsf{B}}}.$ Then

$$(\Phi_1 \cap A^2) \cap (\Phi_2 \cap A^2) = \Phi_1 \cap \Phi_2 \cap A^2 = \Phi \cap A^2 = \Theta$$

and, since Θ is meet-irreducible, $\Phi_1 \cap A^2 = \Theta$ or $\Phi_2 \cap A^2 = \Theta$. So $\Phi_1 \in \mathcal{T}$ or $\Phi_2 \in \mathcal{T}$. Hence, by maximality, $\Phi_1 = \Phi$ or $\Phi_2 = \Phi$.

It is not the case in general that when ${\cal V}$ has the AP, also ${\cal V}_{_{\text{FSI}}}$ has the AP.

The variety \mathcal{DL} of distributive lattices is congruence-distributive and has the CEP and AP. Up to isomorphism, \mathcal{DL}_{FSI} contains just a trivial lattice **1** and two-element distributive lattice **2**.

However, 1 embeds into 2 in two different ways, giving a V-formation in $\mathcal{DL}_{\text{ESI}}$ that clearly has no amalgam in $\mathcal{DL}_{\text{ESI}}$.

It is not the case in general that when $\mathcal V$ has the AP, also $\mathcal V_{FSI}$ has the AP. The variety $\mathcal D\mathcal L$ of distributive lattices is congruence-distributive and has the CEP and AP. Up to isomorphism, $\mathcal D\mathcal L_{FSI}$ contains just a trivial lattice 1 and two-element distributive lattice 2.

However, 1 embeds into 2 in two different ways, giving a V-formation in $\mathcal{DL}_{\text{FSI}}$ that clearly has no amalgam in $\mathcal{DL}_{\text{FSI}}$.

It is not the case in general that when ${\cal V}$ has the AP, also ${\cal V}_{_{\text{FSI}}}$ has the AP.

The variety \mathcal{DL} of distributive lattices is congruence-distributive and has the CEP and AP. Up to isomorphism, \mathcal{DL}_{FSI} contains just a trivial lattice **1** and two-element distributive lattice **2**.

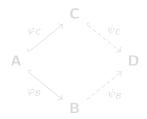
However, 1 embeds into 2 in two different ways, giving a V-formation in $\mathcal{DL}_{\text{FSI}}$ that clearly has no amalgam in $\mathcal{DL}_{\text{FSI}}$.

It is not the case in general that when ${\cal V}$ has the AP, also ${\cal V}_{_{\text{FSI}}}$ has the AP.

The variety \mathcal{DL} of distributive lattices is congruence-distributive and has the CEP and AP. Up to isomorphism, \mathcal{DL}_{FSI} contains just a trivial lattice **1** and two-element distributive lattice **2**.

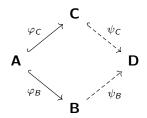
However, 1 embeds into 2 in two different ways, giving a V-formation in $\mathcal{DL}_{\text{FSI}}$ that clearly has no amalgam in $\mathcal{DL}_{\text{FSI}}$.

We say that a class \mathcal{K} has the **one-sided amalgamation property** (1AP) if for any V-formation with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B \colon \mathbf{A} \to \mathbf{B}$, $\varphi_C \colon \mathbf{A} \to \mathbf{C}$, there exist a $\mathbf{D} \in \mathcal{K}$, a homomorphism $\psi_B \colon \mathbf{B} \to \mathbf{D}$, and an embedding $\psi_C \colon \mathbf{C} \to \mathbf{D}$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.



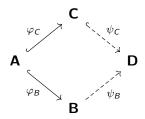
It is easy to see that a variety \mathcal{V} has the 1AP if and only if it has the AP, but this is not always the case for other classes, in particular, \mathcal{V}_{FSL} .

We say that a class \mathcal{K} has the **one-sided amalgamation property** (1AP) if for any V-formation with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \to \mathbf{B}$, $\varphi_C : \mathbf{A} \to \mathbf{C}$, there exist a $\mathbf{D} \in \mathcal{K}$, a homomorphism $\psi_B : \mathbf{B} \to \mathbf{D}$, and an embedding $\psi_C : \mathbf{C} \to \mathbf{D}$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.



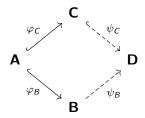
It is easy to see that a variety \mathcal{V} has the 1AP if and only if it has the AP, but this is not always the case for other classes, in particular, \mathcal{V}_{ESL} .

We say that a class \mathcal{K} has the **one-sided amalgamation property** (1AP) if for any V-formation with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \to \mathbf{B}$, $\varphi_C : \mathbf{A} \to \mathbf{C}$, there exist a $\mathbf{D} \in \mathcal{K}$, a homomorphism $\psi_B : \mathbf{B} \to \mathbf{D}$, and an embedding $\psi_C : \mathbf{C} \to \mathbf{D}$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.



It is easy to see that a variety $\mathcal V$ has the 1AP if and only if it has the AP, but this is not always the case for other classes, in particular, $\mathcal V_{\text{FSI}}$.

We say that a class \mathcal{K} has the **one-sided amalgamation property** (1AP) if for any V-formation with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $\varphi_B : \mathbf{A} \to \mathbf{B}$, $\varphi_C : \mathbf{A} \to \mathbf{C}$, there exist a $\mathbf{D} \in \mathcal{K}$, a homomorphism $\psi_B : \mathbf{B} \to \mathbf{D}$, and an embedding $\psi_C : \mathbf{C} \to \mathbf{D}$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.



It is easy to see that a variety \mathcal{V} has the 1AP if and only if it has the AP, but this is not always the case for other classes, in particular, \mathcal{V}_{FSI} .

Let $\mathcal V$ be a variety with the congruence extension property such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- (1) \mathcal{V} has the AP.
- (2) \mathcal{V} has the 1AP.
- (3) \mathcal{V}_{FSL} has the 1AP.
- (4) Every V-formation in \mathcal{V}_{FSI} has an amalgam in $\mathcal{V}_{FSI} \times \mathcal{V}_{FSI}$.

Let $\mathcal V$ be a variety with the congruence extension property such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the AP.
- (2) \mathcal{V} has the 1AP.
- (3) \mathcal{V}_{FSL} has the 1AP.
- (4) Every V-formation in \mathcal{V}_{FSI} has an amalgam in $\mathcal{V}_{FSI} \times \mathcal{V}_{FSI}$.

Let $\mathcal V$ be a variety with the congruence extension property such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the AP.
- (2) \mathcal{V} has the 1AP.
- (3) \mathcal{V}_{FSL} has the 1AP.

(4) Every V-formation in \mathcal{V}_{FSI} has an amalgam in $\mathcal{V}_{\text{FSI}} \times \mathcal{V}_{\text{FSI}}$.

Let $\mathcal V$ be a variety with the congruence extension property such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the AP.
- (2) \mathcal{V} has the 1AP.
- $(3)~~\mathcal{V}_{\rm FSI}$ has the 1AP.

(4) Every V-formation in \mathcal{V}_{FSI} has an amalgam in $\mathcal{V}_{FSI} \times \mathcal{V}_{FSI}$.

Let $\mathcal V$ be a variety with the congruence extension property such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. Then the following are equivalent:

- $(1) \ \mathcal{V}$ has the AP.
- (2) \mathcal{V} has the 1AP.
- $(3)~~\mathcal{V}_{\rm FSI}$ has the 1AP.
- (4) Every V-formation in $\mathcal{V}_{_{\text{FSI}}}$ has an amalgam in $\mathcal{V}_{_{\text{FSI}}}\times\mathcal{V}_{_{\text{FSI}}}$.

- (i) By Jónsson's Lemma, a finite set $\mathcal{V}_{FSI}^* \subseteq \mathcal{V}_{FSI}$ of finite algebras can be constructed such that each $\mathbf{A} \in \mathcal{V}_{FSI}$ is isomorphic to some $\mathbf{A}^* \in \mathcal{V}_{FSI}^*$.
- (ii) It can be decided if ${\cal V}$ has the CEP by checking if each member of ${\cal V}^*_{\rm FSI}$ has the CEP.
- (iii) Since \mathcal{V} is residually small, if \mathcal{V} does not have the CEP, it cannot have the AP (Kearnes 1989).
- $(iv) \ \mbox{If \mathcal{V} does have the CEP, it can be decided if \mathcal{V} has the AP by checking if $\mathcal{V}_{\rm FSI}$ has the 1AP. }$

- (i) By Jónsson's Lemma, a finite set $\mathcal{V}_{FSI}^* \subseteq \mathcal{V}_{FSI}$ of finite algebras can be constructed such that each $\mathbf{A} \in \mathcal{V}_{FSI}$ is isomorphic to some $\mathbf{A}^* \in \mathcal{V}_{FSI}^*$.
- (ii) It can be decided if ${\cal V}$ has the CEP by checking if each member of ${\cal V}_{\rm FSI}^*$ has the CEP.
- (iii) Since \mathcal{V} is residually small, if \mathcal{V} does not have the CEP, it cannot have the AP (Kearnes 1989).
- $(iv) \ \mbox{If \mathcal{V} does have the CEP, it can be decided if \mathcal{V} has the AP by checking if $\mathcal{V}_{\rm FSI}$ has the 1AP. }$

- (i) By Jónsson's Lemma, a finite set $\mathcal{V}_{FSI}^* \subseteq \mathcal{V}_{FSI}$ of finite algebras can be constructed such that each $\mathbf{A} \in \mathcal{V}_{FSI}$ is isomorphic to some $\mathbf{A}^* \in \mathcal{V}_{FSI}^*$.
- (ii) It can be decided if ${\cal V}$ has the CEP by checking if each member of ${\cal V}^*_{\rm FSI}$ has the CEP.
- (iii) Since \mathcal{V} is residually small, if \mathcal{V} does not have the CEP, it cannot have the AP (Kearnes 1989).
- $(iv) \ \mbox{If \mathcal{V} does have the CEP, it can be decided if \mathcal{V} has the AP by checking if $\mathcal{V}_{\rm FSI}$ has the 1AP. }$

- (i) By Jónsson's Lemma, a finite set $\mathcal{V}_{FSI}^* \subseteq \mathcal{V}_{FSI}$ of finite algebras can be constructed such that each $\mathbf{A} \in \mathcal{V}_{FSI}$ is isomorphic to some $\mathbf{A}^* \in \mathcal{V}_{FSI}^*$.
- (ii) It can be decided if ${\cal V}$ has the CEP by checking if each member of ${\cal V}_{\rm FSI}^*$ has the CEP.
- (iii) Since ${\cal V}$ is residually small, if ${\cal V}$ does not have the CEP, it cannot have the AP (Kearnes 1989).
- $(iv) \ \mbox{If \mathcal{V} does have the CEP, it can be decided if \mathcal{V} has the AP by checking if $\mathcal{V}_{\rm FSI}$ has the 1AP. }$

- (i) By Jónsson's Lemma, a finite set $\mathcal{V}_{FSI}^* \subseteq \mathcal{V}_{FSI}$ of finite algebras can be constructed such that each $\mathbf{A} \in \mathcal{V}_{FSI}$ is isomorphic to some $\mathbf{A}^* \in \mathcal{V}_{FSI}^*$.
- (ii) It can be decided if ${\cal V}$ has the CEP by checking if each member of ${\cal V}_{\rm FSI}^*$ has the CEP.
- (iii) Since ${\cal V}$ is residually small, if ${\cal V}$ does not have the CEP, it cannot have the AP (Kearnes 1989).
- $(iv) \ \mbox{If \mathcal{V} does have the CEP, it can be decided if \mathcal{V} has the AP by checking if $\mathcal{V}_{\rm FSI}$ has the 1AP. }$

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts*?

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts?*

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts?*

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts?*

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts*?

- Under certain conditions, some properties transfer from the finitely subdirectly irreducibles of a variety to the whole variety, and in some cases back again.
- These include the congruence extension property, amalgamation property, transferable injections property, and also having surjective epimorphisms (Campercholi 2018). *Is there a more general approach?*
- Our results are very useful for studying semilinear residuated lattices; e.g., we have classified the varieties generated by classes of "one-component" totally ordered BL-algebras that have the amalgamation property. *Can they useful be in other contexts?*

References

M. Campercholi. Dominions and primitive positive functions. *J. Symbolic Logic* 83, 4–54, 2018.

B.A. Davey. Weak injectivity and congruence extension in congruence-distributive equational classes. *Canadian J. Math.* 29(3), 449–459, 1977.

W. Fussner and G. Metcalfe. Transfer theorems for finitely subdirectly irreducible algebras. https://arxiv.org/pdf/2205.05148.

G. Grätzer and H. Lakser. The structure of pseudocomplemented distributive lattices II: Congruence extension and amalgamation. *Trans. Amer. Math. Soc.* 156, 343–358, 1971.

K.A. Kearnes, On the relationship between AP, RS and CEP. *Proc. Amer. Math. Soc.* 105(4), 827–839, 1989.

G. Metcalfe, F. Montagna, and C. Tsinakis. Amalgamation and interpolation in ordered algebras. *J. Algebra* 402, 21–82, 2014.