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This Talk

It is well known that . . .

Under certain conditions, some algebraic properties lift from the class of
subdirectly irreducibles of a variety to the whole variety.
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This Talk

We show that . . .

Under certain (weaker) conditions, some algebraic properties lift from the
class of finitely subdirectly irreducibles of a variety to the whole variety.
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Subdirectly Irreducible Algebras

An algebra A is subdirectly irreducible if whenever A is isomorphic to a
subdirect product of a set of algebras, it is isomorphic to one of them;
equivalently, ∆A is completely meet-irreducible in ConA.

Fix a variety V and let V
FSI

and V
SI

denote the classes of finitely subdirectly
irreducible and subdirectly irreducible members of V, respectively.

Remark

If V has equationally definable principal meets, V
FSI

is a universal class.
For example, if V is a variety of semilinear residuated lattices, V

FSI
is the

class of totally ordered members of V.
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Finitely Subdirectly Irreducible Algebras

An algebra A is finitely subdirectly irreducible if whenever A is
isomorphic to a subdirect product of a non-empty finite set of algebras, it is
isomorphic to one of them; equivalently, ∆A is meet-irreducible in ConA.
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The Congruence Extension Property

A class K has the congruence extension property (CEP) if for any
B ∈ K, subalgebra A of B, and Θ ∈ ConA, we have Cg

B
(Θ) ∩ A2 = Θ.

Theorem (Davey 1977)

Let V be a congruence-distributive variety such that V
SI

is elementary.
Then V has the CEP if and only if V

SI
has the CEP.
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Lifting the CEP from FSIs

Theorem

Let V be a congruence-distributive variety. Then V has the CEP if and
only if V

FSI
has the CEP.

Proof sketch. Suppose for the non-trivial direction that V
FSI

has the CEP
and consider any B ∈ V, subalgebra A of B, and Θ ∈ ConA. Assume
towards a contradiction that there is some 〈a, b〉 ∈ Cg

B
(Θ) ∩ A2 not in Θ.

Zorn’s Lemma yields a Ψ∗ ∈ ConB maximal w.r.t. 〈a, b〉 6∈ (Ψ ∩ A2) ∨Θ,
and it follows easily that Ψ∗ is meet-irreducible and B/Ψ∗ ∈ V

FSI
.

We show that for Φ := ((Ψ∗ ∩ A2) ∨Θ)/(Ψ∗ ∩ A2) ∈ ConA/(Ψ∗ ∩ A2),

〈a/(Ψ∗∩A2), b/(Ψ∗∩A2)〉 6∈ Φ, but 〈a/Ψ∗, b/Ψ∗〉 ∈ Cg
B/Ψ∗ (Φ)∩(A/Ψ∗)2.

Hence we have a congruence on a subalgebra of the finitely subdirectly
irreducible algebra B/Ψ∗ that does not extend to a congruence on B/Ψ∗,
contradicting our assumption that V

FSI
has the CEP.
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The Extension Property

A class K has the extension property (EP) if for any A,B,C ∈ K,
embedding ϕB : A→ B, and surjective homomorphism ϕC : A→ C,
there exist a D ∈ K, a homomorphism ψB : B→ D, and an embedding
ψC : C→ D such that ψBϕB = ψCϕC .

C

A D

B

ψCϕC

ϕB ψB

A variety V has the CEP if and only if it has the EP, but this is not always
the case for other classes, in particular, V

FSI
.
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The CEP and EP

Theorem

Let V be a congruence-distributive variety such that V
FSI

is closed under
subalgebras. Then the following are equivalent:

(1) V has the CEP.

(2) V has the EP.

(3) V
FSI

has the CEP.

(4) V
FSI

has the EP.
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The Amalgamation Property

A V-formation in a class K consists of some A,B,C ∈ K and embeddings
ϕB : A→ B, ϕC : A→ C.

An amalgam of this V-formation in a class K′ consists of some D ∈ K′
and embeddings ψB : B→ D, ψC : C→ D satisfying ψBϕB = ψCϕC .

C

A D

B

ψCϕC

ϕB ψB

A class K has the amalgamation property (AP) if every V-formation in
K has an amalgam in K.
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Lifting the AP from SIs

Let V+
SI

denote the class of trivial or subdirectly irreducible algebras of V.

Theorem (Grätzer and Lakser 1971)

Suppose that V has the CEP and V+
SI

is closed under subalgebras. Then V
has the AP if and only if every V-formation in V+

SI
has an amalgam in V.
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A Useful Criterion

Proposition (Metcalfe, Montagna, and Tsinakis 2014)

Let S be a subclass of V satisfying

(i) V
SI
⊆ S;

(ii) S is closed under isomorphisms and subalgebras;

(iii) every V-formation in S has an amalgam in V;

(iv) for any B ∈ V and subalgebra A of B, if Θ ∈ ConA and A/Θ ∈ S,
then there exists a Φ ∈ ConB such that Φ ∩ A2 = Θ and B/Φ ∈ S.

A/Θ

A B/Φ

B
Then V has the AP.
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Lifting the AP from FSIs

Theorem

Suppose that V has the CEP and V
FSI

is closed under subalgebras. Then V
has the AP if and only if every V-formation in V

FSI
has an amalgam in V.

Proof. Suppose for the non-trivial direction that every V-formation in V
FSI

has an amalgam in V. It suffices to check (iv) of the criterion for S = V
FSI

.

Consider a subalgebra A of B ∈ V and some meet-irreducible Θ ∈ ConA.
We need to show that Φ ∩ A2 = Θ for some meet-irreducible Φ ∈ ConB.
By the CEP, Cg

B
(Θ) ∩ A2 = Θ, so T := {Ψ ∈ ConB | Ψ ∩ A2 = Θ} 6= ∅

and, by Zorn’s Lemma, 〈T ,⊆〉 has a maximal element Φ.

Now consider Φ = Φ1 ∩ Φ2 with Φ1,Φ2 ∈ ConB. Then

(Φ1 ∩ A2) ∩ (Φ2 ∩ A2) = Φ1 ∩ Φ2 ∩ A2 = Φ ∩ A2 = Θ

and, since Θ is meet-irreducible, Φ1 ∩ A2 = Θ or Φ2 ∩ A2 = Θ. So
Φ1 ∈ T or Φ2 ∈ T . Hence, by maximality, Φ1 = Φ or Φ2 = Φ.
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Is there a Converse?

It is not the case in general that when V has the AP, also V
FSI

has the AP.

The variety DL of distributive lattices is congruence-distributive and has
the CEP and AP. Up to isomorphism, DL

FSI
contains just a trivial lattice 1

and two-element distributive lattice 2.

However, 1 embeds into 2 in two different ways, giving a V-formation in
DL

FSI
that clearly has no amalgam in DL

FSI
.
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One-Sided Amalgamation Property

We say that a class K has the one-sided amalgamation property (1AP)
if for any V-formation with A,B,C ∈ K and embeddings ϕB : A→ B,
ϕC : A→ C, there exist a D ∈ K, a homomorphism ψB : B→ D, and an
embedding ψC : C→ D such that ψBϕB = ψCϕC .

C

A D

B

ψCϕC

ϕB ψB

It is easy to see that a variety V has the 1AP if and only if it has the AP,
but this is not always the case for other classes, in particular, V

FSI
.
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Lifting the 1AP from FSIs

Theorem

Let V be a variety with the congruence extension property such that V
FSI

is
closed under subalgebras. Then the following are equivalent:

(1) V has the AP.

(2) V has the 1AP.

(3) V
FSI

has the 1AP.

(4) Every V-formation in V
FSI

has an amalgam in V
FSI
× V

FSI
.
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Deciding the CEP and AP

Let V be a congruence-distributive variety generated by a given finite set
of finite algebras of finite signature with V

FSI
closed under subalgebras.

(i) By Jónsson’s Lemma, a finite set V∗
FSI
⊆ V

FSI
of finite algebras can be

constructed such that each A ∈ V
FSI

is isomorphic to some A∗ ∈ V∗
FSI

.

(ii) It can be decided if V has the CEP by checking if each member of
V∗

FSI
has the CEP.

(iii) Since V is residually small, if V does not have the CEP, it cannot
have the AP (Kearnes 1989).

(iv) If V does have the CEP, it can be decided if V has the AP by
checking if V

FSI
has the 1AP.
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Concluding Remarks

• Under certain conditions, some properties transfer from the finitely
subdirectly irreducibles of a variety to the whole variety, and in some
cases back again.

• These include the congruence extension property, amalgamation
property, transferable injections property, and also having surjective
epimorphisms (Campercholi 2018). Is there a more general approach?

• Our results are very useful for studying semilinear residuated lattices;
e.g., we have classified the varieties generated by classes of
“one-component” totally ordered BL-algebras that have the
amalgamation property. Can they useful be in other contexts?
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