Projective unification through duality TACL 2022

Philippe Balbiani Quentin Gougeon*

Solving logical equations

Find x so that the following sentence is valid.

$$
p \vee x
$$

Solving logical equations

Find x so that the following sentence is valid.

$$
p \vee x
$$

Possible solutions: $\mathrm{x}:=\neg p, \mathrm{x}:=\mathrm{T}, \ldots$

Solving logical equations

Find x so that the following sentence is valid.

$$
x \rightarrow\langle\text { Tomorrow }\rangle \neg x
$$

Solving logical equations

Find x so that the following sentence is valid.

$$
x \rightarrow\langle\text { Tomorrow }\rangle \neg x
$$

$x:=p \wedge\langle$ Tomorrow $\rangle \neg p$ is a solution.

Solving logical equations

Find x so that the following sentence is valid.

$$
x \rightarrow\langle\text { Tomorrow }\rangle \neg x
$$

$x:=p \wedge\langle$ Tomorrow $\rangle \neg p$ is a solution.
But also
$\mathrm{x}:=p \wedge q \wedge\langle$ Tomorrow $\rangle \neg p$
$x:=p \wedge q \wedge r \wedge\langle$ Tomorrow $\rangle \neg p$

How to describe the set of solutions?
(1) Unification and projectivity
(2) A characterization via duality
(3) Application: projectivity results
(4) Application: non-projectivity results

The problem of unification

The modal language \mathcal{L}_{P} is defined by

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

with $p \in P$.

The problem of unification

The modal language \mathcal{L}_{P} is defined by

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_{P}$ is unifiable in a normal modal logic \mathbf{L} if there exists a substitution $\sigma: \mathcal{L}_{P} \rightarrow \mathcal{L}_{Q}$ such that $\vdash_{\mathbf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ.

The problem of unification

The modal language \mathcal{L}_{P} is defined by

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_{P}$ is unifiable in a normal modal logic \mathbf{L} if there exists a substitution $\sigma: \mathcal{L}_{P} \rightarrow \mathcal{L}_{Q}$ such that $\vdash_{\mathbf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ.

We write $\sigma \equiv \mathbf{L} \tau$ if $\sigma(p) \equiv \mathbf{L} \tau(p)$ for all variables $p \in P$.

The problem of unification

The modal language \mathcal{L}_{P} is defined by

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_{P}$ is unifiable in a normal modal logic \mathbf{L} if there exists a substitution $\sigma: \mathcal{L}_{P} \rightarrow \mathcal{L}_{Q}$ such that $\vdash_{\mathbf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ.

We write $\sigma \equiv \mathbf{L} \tau$ if $\sigma(p) \equiv \mathbf{L} \tau(p)$ for all variables $p \in P$.
We write $\sigma \preceq_{\mathbf{L}} \tau$ whenever $\tau \equiv \mathbf{L} \mu \circ \sigma$ for some substitution μ. $\sigma \preceq_{\mathbf{L}} \tau$ reads " σ is at least as general as τ ".

Structural concerns

How nice unification is in \mathbf{L} depends on the properties of $\preceq \mathbf{L}$.

Unifiers of $p \rightarrow \square p$ in $\mathbf{K}+\diamond \top$

Unifiers of $p \rightarrow \square p$ in K (Jěábek 2015)

Projective unification

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathbf{L}} \sigma(p) \leftrightarrow p$ for all variables p.

Projective unification

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathbf{L}} \sigma(p) \leftrightarrow p$ for all variables p.
If σ is projective then it is a most general unifier of φ, i.e. $\sigma \preceq_{\mathbf{L}} \tau$ for all unifiers τ of φ.

Projective unification

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathbf{L}} \sigma(p) \leftrightarrow p$ for all variables p.
If σ is projective then it is a most general unifier of φ, i.e. $\sigma \preceq_{\mathbf{L}} \tau$ for all unifiers τ of φ.

Example

The substitution σ defined by $\sigma(p):=p \wedge \square \neg p$ is a projective unifier of $p \rightarrow \square \neg p$ in \mathbf{K}.

Projective unification

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathbf{L}} \sigma(p) \leftrightarrow p$ for all variables p.
If σ is projective then it is a most general unifier of φ, i.e. $\sigma \preceq_{\mathbf{L}} \tau$ for all unifiers τ of φ.

Example

The substitution σ defined by $\sigma(p):=p \wedge \square \neg p$ is a projective unifier of $p \rightarrow \square \neg p$ in \mathbf{K}.

Definition

A logic \mathbf{L} is projective if every unifiable formula possesses a projective unifier.

The logics K45, S4.3 and S5 are projective. There are not many examples...
(1) Unification and projectivity
(2) A characterization via duality
(3) Application: projectivity results
(4) Application: non-projectivity results

Duality

We denote by \mathbf{A}_{P} the Lindenbaum algebra of \mathbf{L} over the variables in P. A substitution $\sigma: \mathcal{L}_{P} \rightarrow \mathcal{L}_{Q}$ can be identified to a homomorphism $\sigma: \mathbf{A}_{P} \rightarrow \mathbf{A}_{Q}$.

Duality

We denote by \mathbf{A}_{P} the Lindenbaum algebra of \mathbf{L} over the variables in P. A substitution $\sigma: \mathcal{L}_{P} \rightarrow \mathcal{L}_{Q}$ can be identified to a homomorphism $\sigma: \mathbf{A}_{P} \rightarrow \mathbf{A}_{Q}$.

Here \mathfrak{F}_{P} is the canonical Kripke frame over P.

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_{P}$ within \mathfrak{F}_{P}. We then define the tight extension of φ as

$$
\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n} \varphi} .
$$

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_{P}$ within \mathfrak{F}_{P}. We then define the tight extension of φ as

$$
\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n}} \varphi .
$$

A dual unifier of $\varphi \in \mathcal{L}_{P}$ is a map $f: \mathfrak{F}_{Q} \rightarrow \mathfrak{F}_{P}$ such that:
(1) f is a bounded morphism;
(2) for all $\psi \in \mathcal{L}_{P}$ there exists $\theta \in \mathcal{L}_{Q}$ such that $f^{-1}[\widehat{\psi}]=\widehat{\theta}$ (continuity);
(3) $\operatorname{lm}(f) \subseteq \widehat{\varphi}^{\infty}$.

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_{P}$ within \mathfrak{F}_{P}. We then define the tight extension of φ as

$$
\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n} \varphi}
$$

A dual unifier of $\varphi \in \mathcal{L}_{P}$ is a map $f: \mathfrak{F}_{Q} \rightarrow \mathfrak{F}_{P}$ such that:
(1) f is a bounded morphism;
(2) for all $\psi \in \mathcal{L}_{P}$ there exists $\theta \in \mathcal{L}_{Q}$ such that $f^{-1}[\widehat{\psi}]=\widehat{\theta}$ (continuity);
(3) $\operatorname{lm}(f) \subseteq \widehat{\varphi}^{\infty}$.

Theorem

σ is a unifier of φ iff σ^{*} is a dual unifier of φ.

Projective dual unifiers

A projective dual unifier of φ is a dual unifier $f: \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{P}$ of φ such that

$$
f(x)=x \text { for all } x \in \widehat{\varphi}^{\infty} .
$$

Theorem
σ is a projective unifier of φ iff σ^{*} is a projective dual unifier of φ.
(1) Unification and projectivity
(2) A characterization via duality
(3) Application: projectivity results
(4) Application: non-projectivity results

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

All extensions of
$\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}:=\mathbf{K}+\left(\square^{\leq n} p \rightarrow \square^{n+1} p\right)+\left(p \rightarrow \square^{\leq k} \delta \leq k p\right)$ are known to be projective (Kostrzycka, 2022).
We propose a proof based on duality.

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

All extensions of
$\mathbf{K} 4_{n} \mathbf{B}_{k}:=\mathbf{K}+\left(\square^{\leq n} p \rightarrow \square^{n+1} p\right)+\left(p \rightarrow \square^{\leq k} \Delta \leq^{k} p\right)$ are known to be projective (Kostrzycka, 2022).
We propose a proof based on duality.

Proof sketch.

We fix $\varphi \in \mathcal{L}_{P}$.
Since $\vdash_{\mathbf{L}} p \rightarrow \square^{\leq k} \delta^{\leq k} p$ the frame $\mathfrak{F}_{P}=(X, R)$ is k-symmetric:

$$
x R^{\leq k} y \Longrightarrow y R^{\leq k} x
$$

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

All extensions of
$\mathbf{K} 4_{n} \mathbf{B}_{k}:=\mathbf{K}+\left(\square^{\leq n} p \rightarrow \square^{n+1} p\right)+\left(p \rightarrow \square^{\leq k} \Delta \leq^{k} p\right)$ are known to be projective (Kostrzycka, 2022).
We propose a proof based on duality.

Proof sketch.

We fix $\varphi \in \mathcal{L}_{P}$.
Since $\vdash_{\mathrm{L}} p \rightarrow \square^{\leq k} \delta^{\leq k} p$ the frame $\mathfrak{F}_{P}=(X, R)$ is k-symmetric:

$$
x R^{\leq k} y \Longrightarrow y R^{\leq k} x
$$

Hence $\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n}} \varphi$ is both upward closed and downward closed (with respect to R).

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

Suppose that φ has a dual unifier $f: \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{P}$ in L. \triangle

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

Suppose that φ has a dual unifier $f: \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{P}$ in L. \triangle Define $g(x):=\left\{\begin{array}{ll}x & \text { if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text { otherwise }\end{array}\right.$.

Application to $\mathbf{K} \mathbf{4}_{n} \mathbf{B}_{k}$

Suppose that φ has a dual unifier $f: \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{P}$ in L. \triangle Define $g(x):=\left\{\begin{array}{ll}x & \text { if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text { otherwise }\end{array}\right.$.
$\operatorname{Im}(g) \subseteq \widehat{\varphi}^{\infty}$
g bounded morphism \checkmark $g(x)=x$ for all $x \in \widehat{\varphi}^{\infty}$
(since $\left.\operatorname{Im}(f) \subseteq \widehat{\varphi}^{\infty}\right)$
(since f bounded morphism)

Application to $\mathrm{K}_{n} \mathrm{~B}_{k}$

$g(x):= \begin{cases}x & \text { if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text { otherwise }\end{cases}$
Continuity: $\vdash_{\mathbf{L}} \square^{\leq n} p \rightarrow \square^{n+1} p$ yields $\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n} \varphi}=\widehat{\square \leq n} \varphi$,

Application to $\mathrm{K4}_{n} \mathrm{~B}_{k}$

$g(x):= \begin{cases}x & \text { if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text { otherwise }\end{cases}$
Continuity: $\vdash_{\mathbf{L}} \square^{\leq n} p \rightarrow \square^{n+1} p$ yields $\widehat{\varphi}^{\infty}:=\bigcap_{n \in \mathbb{N}} \widehat{\square^{n} \varphi}=\widehat{\square \leq n} \varphi$, whence

$$
\left.\begin{array}{rl}
g^{-1}[\widehat{\psi}] & =\left(\widehat{\psi} \cap \hat{\varphi}^{\infty}\right) \cup\left(f^{-1}[\widehat{\psi}] \cap X \backslash \widehat{\varphi}^{\infty}\right) \\
& =(\widehat{\psi} \cap \widehat{\square \leq n} \varphi) \cup\left(f^{-1}[\widehat{\psi}] \cap \neg \widehat{\square} \leq n\right.
\end{array}\right) .
$$

Application to K4D1

Kost (2018) showed that the projective extensions of $\mathbf{K} 4$ are exactly the extensions of

$$
\text { K4D1 }:=\mathrm{K} 4+\square(\square p \rightarrow q) \vee \square(\square q \rightarrow p)
$$

We partially recover this result.

Definition

A logic \mathbf{L} is locally tabular if \mathbf{A}_{P} is finite for all finite P.
Theorem
If $\mathbf{K} 4 \mathbf{D} 1 \subseteq \mathbf{L}$ and \mathbf{L} is locally tabular then \mathbf{L} is projective.

Application to K4D1

Proof sketch. Since K4D1 $\subseteq \mathbf{L}$, the frame $\mathfrak{F}_{P}=(X, R)$ is transitive and linear:

$$
x R y \text { and } x R z \Longrightarrow y R z \text { or } z R y
$$

$$
\bigcirc=\text { cluster }
$$

Application to K4D1

Proof sketch. Since K4D1 $\subseteq \mathbf{L}$, the frame $\mathfrak{F}_{P}=(X, R)$ is transitive and linear:

$$
x R y \text { and } x R z \Longrightarrow y R z \text { or } z R y
$$

$$
\bigcirc=\text { cluster }
$$

Application to K4D1

$$
\bigcirc=\text { cluster }
$$

Suppose that φ has a dual unifier $f: \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{P}$ in \mathbf{L}. We define
$g(x):= \begin{cases}x & \text { if } x \in \widehat{\varphi}^{\infty} \\ \text { some } R \text {-mininal } y \in \widehat{\varphi}^{\infty} \text { s.t. } x R y & \text { otherwise, if such } y \text { exists } \\ f(x) & \text { otherwise }\end{cases}$
(1) Unification and projectivity
(2) A characterization via duality
(3) Application: projectivity results
(4) Application: non-projectivity results

The projective extensions of K5

The projective character of $\mathbf{K} 5$ used to be unknown.

The projective extensions of K5

The projective character of $\mathbf{K} 5$ used to be unknown.

Theorem
If $\mathbf{K 5} \subseteq \mathbf{L}$ but $\mathbf{K} \mathbf{4 5} \nsubseteq \mathbf{L}$ then $\diamond \diamond p \rightarrow \diamond p$ is unifiable but not projective in \mathbf{L}.

The projective extensions of $\mathrm{K} \mathbf{4}_{n} \mathbf{D} \mathbf{1}_{n}$

We write

$$
\begin{aligned}
\mathbf{K} \mathbf{4}_{n} & :=\mathbf{K}+\square^{\leq n} p \rightarrow \square^{n+1} p \\
\mathbf{K 4}_{n} \mathbf{D} 1_{n} & :=\mathbf{K} \mathbf{4}_{n}+\square\left(\square^{\leq n} p \rightarrow q\right) \vee \square\left(\square^{\leq n} q \rightarrow p\right) .
\end{aligned}
$$

The projective extensions of $\mathbf{K} \mathbf{4}_{n} \mathbf{D} \mathbf{1}_{n}$

We write

$$
\begin{aligned}
\mathbf{K} \mathbf{4}_{n} & :=\mathbf{K}+\square^{\leq n} p \rightarrow \square^{n+1} p \\
\mathbf{K 4}_{n} \mathbf{D} 1_{n} & :=\mathbf{K} \mathbf{4}_{n}+\square\left(\square^{\leq n} p \rightarrow q\right) \vee \square\left(\square^{\leq n} q \rightarrow p\right)
\end{aligned}
$$

Theorem
If $\mathbf{K} \mathbf{4}_{n} \subseteq \mathbf{L}$ and $\mathbf{K} \mathbf{4}_{n} \mathbf{D} \mathbf{1}_{n} \nsubseteq \mathbf{L}$ then $\square\left(\square^{\leq n} p \rightarrow q\right) \vee \square\left(\square^{\leq n} q \rightarrow p\right)$ is unifiable but not projective in \mathbf{L}.

Future work

A unifier σ of φ satisfies

$$
\sigma^{*}\left[\mathfrak{F}_{Q}\right] \subseteq \widehat{\varphi}^{\infty} .
$$

Future work

A unifier σ of φ satisfies

$$
\sigma^{*}\left[\mathfrak{F}_{Q}\right] \subseteq \widehat{\varphi}^{\infty}
$$

What if we have

$$
\sigma^{*}\left[\widehat{\theta}^{\infty}\right] \subseteq \widehat{\varphi}^{\infty} ?
$$

Future work

A unifier σ of φ satisfies

$$
\sigma^{*}\left[\mathfrak{F}_{Q}\right] \subseteq \widehat{\varphi}^{\infty} .
$$

What if we have

$$
\sigma^{*}\left[\widehat{\theta}^{\infty}\right] \subseteq \widehat{\varphi}^{\infty} ?
$$

Then σ is an unifier of φ relatively to θ :

$$
\theta \vdash_{\mathbf{L}} \sigma(\varphi) .
$$

Thanks for listening!

