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Solving logical equations

Find x so that the following sentence is valid.

p ∨ x

Possible solutions: x := ¬p, x := >, . . .
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Solving logical equations

Find x so that the following sentence is valid.

x→ 〈Tomorrow〉¬x

x := p ∧ 〈Tomorrow〉¬p is a solution.

But also
x := p ∧ q ∧ 〈Tomorrow〉¬p
x := p ∧ q ∧ r ∧ 〈Tomorrow〉¬p
. . .

How to describe the set of solutions?
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1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results
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The problem of unification

The modal language LP is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ

with p ∈ P.

Definition

A formula ϕ ∈ LP is unifiable in a normal modal logic L if there
exists a substitution σ : LP → LQ such that `L σ(ϕ).
In this case σ is called a unifier of ϕ.

We write σ ≡L τ if σ(p) ≡L τ(p) for all variables p ∈ P.

We write σ �L τ whenever τ ≡L µ ◦ σ for some substitution µ.
σ �L τ reads “σ is at least as general as τ”.
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Structural concerns

How nice unification is in L depends on the properties of �L.

Unifiers of p → �p in K
(Jěrábek 2015)

Unifiers of p → �p in K + ♦>

p 7→ > p 7→ ⊥
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Projective unification

A unifier σ of ϕ is projective if we have ϕ `L σ(p)↔ p for all
variables p.

If σ is projective then it is a most general unifier of ϕ, i.e. σ �L τ
for all unifiers τ of ϕ.

Example

The substitution σ defined by σ(p) := p ∧�¬p is a projective
unifier of p → �¬p in K.

Definition

A logic L is projective if every unifiable formula possesses a
projective unifier.

The logics K45, S4.3 and S5 are projective. There are not many
examples. . .
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Duality

We denote by AP the Lindenbaum algebra of L over the variables
in P. A substitution σ : LP → LQ can be identified to a
homomorphism σ : AP → AQ .

AP AQ

FP FQ

σ

σ∗

Here FP is the canonical Kripke frame over P.

9 / 24



Duality

We denote by AP the Lindenbaum algebra of L over the variables
in P. A substitution σ : LP → LQ can be identified to a
homomorphism σ : AP → AQ .

AP AQ

FP FQ

σ

σ∗

Here FP is the canonical Kripke frame over P.

9 / 24



Dual unifiers

Let ϕ̂ denote the extension of a formula ϕ ∈ LP within FP . We
then define the tight extension of ϕ as

ϕ̂∞ :=
⋂
n∈N
�̂nϕ.

A dual unifier of ϕ ∈ LP is a map f : FQ → FP such that:

1 f is a bounded morphism;

2 for all ψ ∈ LP there exists θ ∈ LQ such that f −1[ψ̂] = θ̂
(continuity);

3 Im(f ) ⊆ ϕ̂∞.

Theorem

σ is a unifier of ϕ iff σ∗ is a dual unifier of ϕ.
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Projective dual unifiers

A projective dual unifier of ϕ is a dual unifier f : FP → FP of ϕ
such that

f (x) = x for all x ∈ ϕ̂∞.

Theorem

σ is a projective unifier of ϕ iff σ∗ is a projective dual unifier of ϕ.
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4 Application: non-projectivity results

12 / 24



Application to K4nBk

All extensions of
K4nBk := K + (�≤np → �n+1p) + (p → �≤k♦≤kp) are known to
be projective (Kostrzycka, 2022).
We propose a proof based on duality.

Proof sketch.
We fix ϕ ∈ LP .
Since `L p → �≤k♦≤kp the frame FP = (X ,R) is k-symmetric:

xR≤ky =⇒ yR≤kx

Hence ϕ̂∞ :=
⋂

n∈N �̂
nϕ is both upward closed and downward

closed (with respect to R).
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Application to K4nBk

ϕ̂∞ X \ ϕ̂∞
id

Suppose that ϕ has a dual unifier f : FP → FP in L. !

Define g(x) :=

{
x if x ∈ ϕ̂∞

f (x) otherwise
.

Im(g) ⊆ ϕ̂∞
g bounded morphism
g(x) = x for all x ∈ ϕ̂∞
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Application to K4nBk

ϕ̂∞ X \ ϕ̂∞
id f

g(x) :=

{
x if x ∈ ϕ̂∞

f (x) otherwise

Continuity: `L �≤np → �n+1p yields ϕ̂∞ :=
⋂

n∈N �̂
nϕ = �̂≤nϕ,

whence

g−1[ψ̂] = (ψ̂ ∩ ϕ̂∞) ∪ (f −1[ψ̂] ∩ X \ ϕ̂∞)

= (ψ̂ ∩ �̂≤nϕ) ∪ (f −1[ψ̂] ∩ ¬̂�≤nϕ).
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Application to K4D1

Kost (2018) showed that the projective extensions of K4 are
exactly the extensions of

K4D1 := K4 +�(�p → q) ∨�(�q → p).

We partially recover this result.

Definition

A logic L is locally tabular if AP is finite for all finite P.

Theorem

If K4D1 ⊆ L and L is locally tabular then L is projective.
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Application to K4D1

Proof sketch. Since K4D1 ⊆ L, the frame FP = (X ,R) is
transitive and linear:

xRy and xRz =⇒ yRz or zRy

= cluster

. . .

. . .

. . .
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Application to K4D1

. . .

. . .

. . .

ϕ̂∞

= cluster

id

Suppose that ϕ has a dual unifier f : FP → FP in L.
We define

g(x) :=


x if x ∈ ϕ̂∞

some R-mininal y ∈ ϕ̂∞ s.t. xRy otherwise, if such y exists

f (x) otherwise
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1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results
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The projective extensions of K5

The projective character of K5 used to be unknown.

K5︸ ︷︷ ︸
?

K45 · · ·︸ ︷︷ ︸
projective

Theorem

If K5 ⊆ L but K45 6⊆ L then ♦♦p → ♦p is unifiable but not
projective in L.

K5︸ ︷︷ ︸
not projective

K45 · · ·︸ ︷︷ ︸
projective
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The projective extensions of K4nD1n

We write

K4n := K +�≤np → �n+1p,

K4nD1n := K4n +�(�≤np → q) ∨�(�≤nq → p).

Theorem

If K4n ⊆ L and K4nD1n 6⊆ L then �(�≤np → q) ∨�(�≤nq → p)
is unifiable but not projective in L.

K4n︸ ︷︷ ︸
not projective

K4nD1n · · ·
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Future work

A unifier σ of ϕ satisfies

σ∗[FQ ] ⊆ ϕ̂∞.

What if we have
σ∗[θ̂∞] ⊆ ϕ̂∞?

Then σ is an unifier of ϕ relatively to θ:

θ `L σ(ϕ).

Thanks for listening!
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