Projective unification through duality TACL 2022

Philippe Balbiani Quentin Gougeon*

Find \mathbf{x} so that the following sentence is valid.

 $p \lor \mathbf{x}$

Find \mathbf{x} so that the following sentence is valid.

 $p \vee \mathbf{x}$

Possible solutions: $\mathbf{x} := \neg p, \mathbf{x} := \top, \ldots$

Find \mathbf{x} so that the following sentence is valid.

 $\mathbf{x} \rightarrow \langle \text{Tomorrow} \rangle \neg \mathbf{x}$

Find \mathbf{x} so that the following sentence is valid.

 $\mathbf{x} \rightarrow \langle \mathsf{Tomorrow} \rangle \neg \mathbf{x}$

x := $p \land \langle \text{Tomorrow} \rangle \neg p$ is a solution.

Find \mathbf{x} so that the following sentence is valid.

 $\mathbf{x} \rightarrow \langle \mathsf{Tomorrow} \rangle \neg \mathbf{x}$

x := $p \land \langle \text{Tomorrow} \rangle \neg p$ is a solution.

```
But also

\mathbf{x} := p \land q \land \langle \text{Tomorrow} \rangle \neg p

\mathbf{x} := p \land q \land r \land \langle \text{Tomorrow} \rangle \neg p

...
```

How to describe the set of solutions?

1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results

The modal language \mathcal{L}_P is defined by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box \varphi$$

with $p \in P$.

The modal language \mathcal{L}_P is defined by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box \varphi$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_P$ is unifiable in a normal modal logic **L** if there exists a substitution $\sigma : \mathcal{L}_P \to \mathcal{L}_Q$ such that $\vdash_{\mathsf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ .

The modal language \mathcal{L}_P is defined by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box \varphi$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_P$ is unifiable in a normal modal logic **L** if there exists a substitution $\sigma : \mathcal{L}_P \to \mathcal{L}_Q$ such that $\vdash_{\mathsf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ .

We write $\sigma \equiv_{\mathsf{L}} \tau$ if $\sigma(p) \equiv_{\mathsf{L}} \tau(p)$ for all variables $p \in P$.

The modal language \mathcal{L}_P is defined by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \Box \varphi$$

with $p \in P$.

Definition

A formula $\varphi \in \mathcal{L}_P$ is unifiable in a normal modal logic **L** if there exists a substitution $\sigma : \mathcal{L}_P \to \mathcal{L}_Q$ such that $\vdash_{\mathsf{L}} \sigma(\varphi)$. In this case σ is called a unifier of φ .

We write $\sigma \equiv_{\mathsf{L}} \tau$ if $\sigma(p) \equiv_{\mathsf{L}} \tau(p)$ for all variables $p \in P$.

We write $\sigma \preceq_{\mathbf{L}} \tau$ whenever $\tau \equiv_{\mathbf{L}} \mu \circ \sigma$ for some substitution μ . $\sigma \preceq_{\mathbf{L}} \tau$ reads " σ is at least as general as τ ".

Structural concerns

How nice unification is in **L** depends on the properties of \leq_{L} .

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathsf{L}} \sigma(p) \leftrightarrow p$ for all variables p.

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathsf{L}} \sigma(p) \leftrightarrow p$ for all variables p. If σ is projective then it is a most general unifier of φ , i.e. $\sigma \preceq_{\mathsf{L}} \tau$

for all unifiers τ of φ .

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathsf{L}} \sigma(p) \leftrightarrow p$ for all variables p.

If σ is projective then it is a most general unifier of φ , i.e. $\sigma \preceq_{\mathsf{L}} \tau$ for all unifiers τ of φ .

Example

The substitution σ defined by $\sigma(p) := p \land \Box \neg p$ is a projective unifier of $p \to \Box \neg p$ in **K**.

A unifier σ of φ is projective if we have $\varphi \vdash_{\mathsf{L}} \sigma(p) \leftrightarrow p$ for all variables p.

If σ is projective then it is a most general unifier of φ , i.e. $\sigma \preceq_{\mathsf{L}} \tau$ for all unifiers τ of φ .

Example

The substitution σ defined by $\sigma(p) := p \land \Box \neg p$ is a projective unifier of $p \rightarrow \Box \neg p$ in **K**.

Definition

A logic **L** is projective if every unifiable formula possesses a projective unifier.

The logics **K45**, **S4.3** and **S5** are projective. There are not many examples...

1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results

Duality

We denote by \mathbf{A}_P the Lindenbaum algebra of \mathbf{L} over the variables in P. A substitution $\sigma : \mathcal{L}_P \to \mathcal{L}_Q$ can be identified to a homomorphism $\sigma : \mathbf{A}_P \to \mathbf{A}_Q$.

Duality

We denote by \mathbf{A}_P the Lindenbaum algebra of \mathbf{L} over the variables in P. A substitution $\sigma : \mathcal{L}_P \to \mathcal{L}_Q$ can be identified to a homomorphism $\sigma : \mathbf{A}_P \to \mathbf{A}_Q$.

Here \mathfrak{F}_P is the canonical Kripke frame over P.

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_P$ within \mathfrak{F}_P . We then define the tight extension of φ as

$$\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^n \varphi}.$$

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_P$ within \mathfrak{F}_P . We then define the tight extension of φ as

$$\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^n \varphi}.$$

A dual unifier of $\varphi \in \mathcal{L}_P$ is a map $f : \mathfrak{F}_Q \to \mathfrak{F}_P$ such that:

- 1) *f* is a bounded morphism;
- 2 for all $\psi \in \mathcal{L}_P$ there exists $\theta \in \mathcal{L}_Q$ such that $f^{-1}[\widehat{\psi}] = \widehat{\theta}$ (continuity);

 $3 \, \operatorname{Im}(f) \subseteq \widehat{\varphi}^{\infty}.$

Dual unifiers

Let $\widehat{\varphi}$ denote the extension of a formula $\varphi \in \mathcal{L}_P$ within \mathfrak{F}_P . We then define the tight extension of φ as

$$\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^n \varphi}.$$

A dual unifier of $\varphi \in \mathcal{L}_P$ is a map $f : \mathfrak{F}_Q \to \mathfrak{F}_P$ such that:

- 1 f is a bounded morphism;
- 2 for all ψ ∈ L_P there exists θ ∈ L_Q such that f⁻¹[ŷ] = θ̂ (continuity);
- $3 \, \operatorname{Im}(f) \subseteq \widehat{\varphi}^{\infty}.$

Theorem

 σ is a unifier of φ iff σ^* is a dual unifier of $\varphi.$

Projective dual unifiers

A projective dual unifier of φ is a dual unifier $f: \mathfrak{F}_P \to \mathfrak{F}_P$ of φ such that

$$f(x) = x$$
 for all $x \in \widehat{\varphi}^{\infty}$.

Theorem

 σ is a projective unifier of φ iff σ^* is a projective dual unifier of $\varphi.$

1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results

All extensions of $\mathbf{K4}_n\mathbf{B}_k := \mathbf{K} + (\Box^{\leq n}p \to \Box^{n+1}p) + (p \to \Box^{\leq k} \Diamond^{\leq k}p)$ are known to be projective (Kostrzycka, 2022). We propose a proof based on duality.

All extensions of $\mathbf{K4}_{n}\mathbf{B}_{k} := \mathbf{K} + (\Box^{\leq n}p \rightarrow \Box^{n+1}p) + (p \rightarrow \Box^{\leq k} \Diamond^{\leq k}p)$ are known to be projective (Kostrzycka, 2022). We propose a proof based on duality.

Proof sketch.

We fix $\varphi \in \mathcal{L}_P$. Since $\vdash_{\mathbf{L}} p \to \Box^{\leq k} \Diamond^{\leq k} p$ the frame $\mathfrak{F}_P = (X, R)$ is *k*-symmetric:

$$xR^{\leq k}y \implies yR^{\leq k}x$$

All extensions of $\mathbf{K4}_{n}\mathbf{B}_{k} := \mathbf{K} + (\Box^{\leq n}p \rightarrow \Box^{n+1}p) + (p \rightarrow \Box^{\leq k} \Diamond^{\leq k}p)$ are known to be projective (Kostrzycka, 2022). We propose a proof based on duality.

Proof sketch.

We fix $\varphi \in \mathcal{L}_P$. Since $\vdash_{\mathbf{L}} p \to \Box^{\leq k} \Diamond^{\leq k} p$ the frame $\mathfrak{F}_P = (X, R)$ is *k*-symmetric:

$$xR^{\leq k}y \implies yR^{\leq k}x$$

Hence $\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^n \varphi}$ is both upward closed and downward closed (with respect to *R*).

Suppose that φ has a dual unifier $f : \mathfrak{F}_P \to \mathfrak{F}_P$ in **L**.

Suppose that φ has a dual unifier $f : \mathfrak{F}_P \to \mathfrak{F}_P$ in **L**. \triangle Define $g(x) := \begin{cases} x & \text{if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text{otherwise} \end{cases}$.

Suppose that φ has a dual unifier $f : \mathfrak{F}_P \to \mathfrak{F}_P$ in **L**. Define $g(x) := \begin{cases} x & \text{if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text{otherwise} \end{cases}$.

 $\begin{array}{l} \operatorname{Im}(g) \subseteq \widehat{\varphi}^{\infty} \checkmark & (\operatorname{since} \operatorname{Im}(f) \subseteq \widehat{\varphi}^{\infty}) \\ g \text{ bounded morphism } \checkmark & (\operatorname{since} f \text{ bounded morphism}) \\ g(x) = x \text{ for all } x \in \widehat{\varphi}^{\infty} \checkmark \end{array}$

$$g(x) := \begin{cases} x & \text{if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text{otherwise} \end{cases}$$

Continuity: $\vdash_{\mathbf{L}} \Box^{\leq n} \rho \to \Box^{n+1} \rho$ yields $\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^{n} \varphi} = \widehat{\Box^{\leq n} \varphi},$

$$g(x) := \begin{cases} x & \text{if } x \in \widehat{\varphi}^{\infty} \\ f(x) & \text{otherwise} \end{cases}$$

Continuity: $\vdash_{\mathbf{L}} \Box^{\leq n} p \to \Box^{n+1} p$ yields $\widehat{\varphi}^{\infty} := \bigcap_{n \in \mathbb{N}} \widehat{\Box^n \varphi} = \widehat{\Box^{\leq n} \varphi},$
whence

$$\begin{split} g^{-1}[\widehat{\psi}] &= (\widehat{\psi} \cap \widehat{\varphi}^{\infty}) \cup (f^{-1}[\widehat{\psi}] \cap X \setminus \widehat{\varphi}^{\infty}) \\ &= (\widehat{\psi} \cap \widehat{\Box^{\leq n}\varphi}) \cup (f^{-1}[\widehat{\psi}] \cap \widehat{\neg \Box^{\leq n}\varphi}). \end{split}$$

<ロト < 回 ト < 目 ト < 目 ト ミ シ へ で 16 / 24

Kost (2018) showed that the projective extensions of ${\rm K4}$ are exactly the extensions of

$$\mathsf{K4D1} := \mathsf{K4} + \Box (\Box p \to q) \lor \Box (\Box q \to p).$$

We partially recover this result.

Definition A logic **L** is locally tabular if \mathbf{A}_P is finite for all finite *P*.

Theorem

If $K4D1 \subseteq L$ and L is locally tabular then L is projective.

Proof sketch. Since **K4D1** \subseteq **L**, the frame $\mathfrak{F}_P = (X, R)$ is transitive and *linear*:

$$xRy$$
 and $xRz \implies yRz$ or zRy

 \bigcirc = cluster

Proof sketch. Since **K4D1** \subseteq **L**, the frame $\mathfrak{F}_P = (X, R)$ is transitive and *linear*:

xRy and $xRz \implies yRz$ or zRy

 \bigcirc = cluster

Suppose that φ has a dual unifier $f: \mathfrak{F}_P \to \mathfrak{F}_P$ in **L**. We define

$$g(x) := \begin{cases} x & \text{if } x \in \widehat{\varphi}^{\infty} \\ \text{some } R\text{-mininal } y \in \widehat{\varphi}^{\infty} \text{ s.t. } xRy & \text{otherwise, if such } y \text{ exists} \\ f(x) & \text{otherwise} \end{cases}$$

э

イロン イ団 とく ヨン イヨン

1 Unification and projectivity

2 A characterization via duality

3 Application: projectivity results

4 Application: non-projectivity results

The projective extensions of K5

The projective character of K5 used to be unknown.

The projective extensions of K5

The projective character of K5 used to be unknown.

Theorem

If $K5 \subseteq L$ but $K45 \not\subseteq L$ then $\Diamond \Diamond p \rightarrow \Diamond p$ is unifiable but not projective in L.

The projective extensions of $K4_nD1_n$

We write

$$\begin{split} \mathsf{K4}_n &:= \mathsf{K} + \Box^{\leq n} p \to \Box^{n+1} p, \\ \mathsf{K4}_n \mathsf{D1}_n &:= \mathsf{K4}_n + \Box (\Box^{\leq n} p \to q) \lor \Box (\Box^{\leq n} q \to p). \end{split}$$

The projective extensions of $K4_nD1_n$

We write

$$\mathsf{K4}_n := \mathsf{K} + \Box^{\leq n} p \to \Box^{n+1} p,$$

 $\mathsf{K4}_n \mathsf{D1}_n := \mathsf{K4}_n + \Box (\Box^{\leq n} p \to q) \lor \Box (\Box^{\leq n} q \to p).$

Theorem

If $K4_n \subseteq L$ and $K4_nD1_n \not\subseteq L$ then $\Box(\Box^{\leq n}p \to q) \lor \Box(\Box^{\leq n}q \to p)$ is unifiable but not projective in L.

$$\underbrace{\mathsf{K4}_n}_{\mathsf{not projective}} \mathsf{K4}_n \mathsf{D1}_n \qquad \cdots$$

Future work

A unifier σ of φ satisfies

$$\sigma^*[\mathfrak{F}_Q]\subseteq\widehat{\varphi}^\infty.$$

Future work

A unifier σ of φ satisfies

$$\sigma^*[\mathfrak{F}_Q]\subseteq\widehat{\varphi}^\infty.$$

What if we have

$$\sigma^*[\widehat{\theta}^{\infty}] \subseteq \widehat{\varphi}^{\infty}?$$

Future work

A unifier σ of φ satisfies

$$\sigma^*[\mathfrak{F}_Q]\subseteq\widehat{\varphi}^\infty.$$

What if we have

$$\sigma^*[\widehat{\theta}^{\infty}] \subseteq \widehat{\varphi}^{\infty}?$$

Then σ is an unifier of φ relatively to θ :

 $\theta \vdash_{\mathsf{L}} \sigma(\varphi).$

Thanks for listening!