Associativity in Quantum Logic

Gavin St. John

Università degli Studi di Cagliari¹ gavinstjohn@gmail.com

Joint work with Wesley Fussner (U. Bern)

TACL 2022 Department of Mathematics of the University of Coimbra (Portugal)

 $23 \ {\rm June} \ 2022$

¹Support from MIUR within the project PRIN 2017: "Logic and cognition. Theory, experiments, and applications", CUP: 2013YP4N3, sub-project "Quantum structures and substructural logics: a unifying approach".

Gavin St. John

Associativity in Quantum Logic 1 / 32

projection operators on \mathcal{H} , a complex separable Hilbert space

quantum events/properties \iff

quantum events/properties \iff

projection operators on \mathcal{H} , a complex separable Hilbert space

Let X a closed subspace of \mathcal{H} and X^{\perp} the subspace orthogonal to X. For all $v \in H$, $v = v_X + v_{X^{\perp}}$ for unique $v_X \in X$ and $v_{X^{\perp}} \in X^{\perp}$.

quantum events/properties \iff

projection operators on \mathcal{H} , a complex separable Hilbert space

Let X a closed subspace of \mathcal{H} and X^{\perp} the subspace orthogonal to X. For all $v \in H$, $v = v_X + v_{X^{\perp}}$ for unique $v_X \in X$ and $v_{X^{\perp}} \in X^{\perp}$.

- $\Pi(\mathcal{H}) \coloneqq \{P_X : v \mapsto v_X\}$ is the set of projection operators
- $\bullet \ \neg P_X \coloneqq P_{X^\perp}$
- $P_X \wedge P_Y \coloneqq P_{X \cap Y}$
- $P_X \vee P_Y \coloneqq P_{(X \cup Y)^{\perp \perp}}$
- $0 \coloneqq P_{\{\mathbf{0}\}}$
- $1 \coloneqq P_H$

quantum events/properties \iff

projection operators on \mathcal{H} , a complex separable Hilbert space

Let X a closed subspace of \mathcal{H} and X^{\perp} the subspace orthogonal to X. For all $v \in H$, $v = v_X + v_{X^{\perp}}$ for unique $v_X \in X$ and $v_{X^{\perp}} \in X^{\perp}$.

- $\Pi(\mathcal{H}) \coloneqq \{P_X : v \mapsto v_X\}$ is the set of projection operators
- $\bullet \ \neg P_X \coloneqq P_{X^\perp}$
- $P_X \wedge P_Y \coloneqq P_{X \cap Y}$

$$\bullet P_X \lor P_Y \coloneqq P_{(X \cup Y)^{\perp \perp}}$$

- ► 0 := P_{0}
- $1 \coloneqq P_H$

 $(\Pi(\mathcal{H}), \wedge, \vee, \neg, 0, 1)$ is an example of an *orthomodular lattice*

See [Birkhoff and von Neumann, 1936].

Gavin St. John

OL and OML

Definition

An *involutive lattice* is an algebra $\mathbf{A} = (A, \land, \lor, \neg)$ where:

- (A, \land, \lor) is a lattice
- \neg is an antitone involution on ${f A}$

A is called *bounded* if it has a *bottom* 0 and *top* 1.

OL and OML

Definition

An *involutive lattice* is an algebra $\mathbf{A} = (A, \land, \lor, \neg)$ where:

- (A, \land, \lor) is a lattice
- \neg is an antitone involution on ${f A}$

A is called *bounded* if it has a *bottom* 0 and *top* 1.

Definition

An *ortholattice* is a bounded involutive lattice $\mathbf{A} = (A, \land, \lor, \neg, 0, 1)$ where \neg is an ortho-complementation, i.e., $x \land \neg x \approx 0$.

OL and OML

Definition

An *involutive lattice* is an algebra $\mathbf{A} = (A, \land, \lor, \neg)$ where:

- (A, \land, \lor) is a lattice
- \neg is an antitone involution on ${f A}$

A is called *bounded* if it has a *bottom* 0 and *top* 1.

Definition

An *ortholattice* is a bounded involutive lattice $\mathbf{A} = (A, \land, \lor, \neg, 0, 1)$ where \neg is an ortho-complementation, i.e., $x \land \neg x \approx 0$.

Definition

An *orthomodular lattice* (OML) is an ortholattice satisfying: (orthomodular law) $x \le y \implies y \approx x \lor (\neg x \land y)$

Ortholattices form a variety OL and OMLs form a variety OML.

Gavin St. John

Associativity in Quantum Logic

The problems

- It is unknown whether OML admit any form of completions
 Not closed under MacNeille completions [Harding, 1991]
 Not closed under canonical completions [Harding, 1998]
- The decidability of OML remains unknown
- No pair of operations form a (two-sided) residuated pair (see [Dalla Chiara et al., 2004])

The problems

- It is unknown whether OML admit any form of completions
 Not closed under MacNeille completions [Harding, 1991]
 Not closed under canonical completions [Harding, 1998]
- The decidability of OML remains unknown
- No pair of operations form a (two-sided) residuated pair (see [Dalla Chiara et al., 2004])

New approaches: Zooming out

- Sasaki operations form a one-sided residuated pair
- Orthomodular groupoids (OG) [Chajda and Länger, 2017]
- ▶ Pointed left-residuated ℓ-groupoids (PLRG) [Fazio et al., 2021]
- Sequent calculus for OG and PLRG [S. et al., 2022]
- Residuated ortholattices [Fussner and S., 2021]

 $x \cdot y := x \wedge (\neg x \lor y)$ (Sasaki product) $x \to y := \neg x \lor (x \land y)$ (Sasaki hook)

 $x \cdot y := x \wedge (\neg x \lor y)$ (Sasaki product) $x \rightarrow y := \neg x \lor (x \land y)$ (Sasaki hook)

We say the triple (a, b, c) associates in **A**, denoted A(a, b, c), if

 $ab \cdot c = a \cdot bc.$

Lemma

Let \mathbf{A} be an involutive lattice. Then:

- (1) Sasaki product \cdot is alternative, i.e., A(x, x, y) and A(x, y, y)
- (2) $(xy)x \approx xy$.
- (3) If A satisfies the identity x(y ∨ z) ≈ xy ∨ xz, then · is flexible, i.e., A(x, y, x).
- (4) If **A** is flexible then it satisfies (xy)(yx) = xy.

 $x \cdot y := x \wedge (\neg x \lor y)$ (Sasaki product) $x \rightarrow y := \neg x \lor (x \land y)$ (Sasaki hook)

Proposition

Let \mathbf{A} be a an ortholattice. Then the following are equivalent:

- 1. \mathbf{A} is an OML.
- 2. $\mathbf{A} \models x \le y \implies y \approx \neg x \to y$
- 3. $\mathbf{A} \models x \le y \implies x \approx y \cdot x$.

 $x \cdot y := x \wedge (\neg x \lor y)$ (Sasaki product) $x \rightarrow y := \neg x \lor (x \land y)$ (Sasaki hook)

Proposition

Let ${\bf A}$ be a an ortholattice. Then the following are equivalent:

1. \mathbf{A} is an OML.

2.
$$\mathbf{A} \models x \le y \implies y \approx \neg x \to y$$

3. $\mathbf{A} \models x \le y \implies x \approx y \cdot x$.

4. (\cdot, \rightarrow) form a (*right-*) *residuated pair*: $\mathbf{A} \models x \cdot y \leq z \Leftrightarrow y \leq x \rightarrow z$.

 $x \cdot y := x \wedge (\neg x \lor y)$ (Sasaki product) $x \rightarrow y := \neg x \lor (x \land y)$ (Sasaki hook)

Proposition

Let ${\bf A}$ be a an ortholattice. Then the following are equivalent:

1. \mathbf{A} is an OML.

2.
$$\mathbf{A} \models x \le y \implies y \approx \neg x \to y$$

3.
$$\mathbf{A} \models x \le y \implies x \approx y \cdot x$$
.

4. (\cdot, \rightarrow) form a (*right-*) *residuated pair*: $\mathbf{A} \models x \cdot y \leq z \Leftrightarrow y \leq x \rightarrow z$.

Proposition

Let A be a bounded involutive lattice. Then the operation \cdot is residuated iff the operation \rightarrow is co-residuated. Moreover, if A is a bounded involutive lattice for which the above equivalent conditions hold, then A is an ortholattice.

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \setminus z$$
 (R)

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \setminus z$$
 (R)

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Properties

- Residuated ortholattices form a variety ROL.
- OML is a subvariety of ROL (taking \setminus to be the Sasaki hook \rightarrow).

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \backslash z \tag{R}$$

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Fine spectrum for ROL and OML

n	2	3	4	5	6	7	8	9	10	11	12
OMLs	1	0	1	0	1	0	2	0	2	0	3
ROLs	1	0	1	0	2	0	4	0	7	0	15

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \backslash z \tag{R}$$

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Theorem (Fussner & S. 2021)

Residuated ortholattices are the equivalent algebraic semantics of their 1-assertional logic.

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \setminus z$$
 (R)

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Theorem (Fussner & S. 2022+)

Associativity in Quantum Logic

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \backslash z \tag{R}$$

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Theorem (Fussner & S. 2021)

OML enjoys a Kolmogorov-style translation into ROL.

Corollary (Fussner & S. 2021)

OML has a decidable equational theory if any variety of residuated ortholattices that contains it has a decidable equational theory.

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \setminus z$$
 (R)

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Properties

- Both \cdot and \setminus or order-preserving in their right-coordinates.
- distributes over arbitrary joins, when they exist, from the left.
- · is idempotent, alternative, and flexible.
- > \ distributes over arbitrary meets, when they exist, from the left.

Definition

A *(Sasaki)* residuated ortholattice (or *ROL*) is an expansion of an ortholattice $(A, \land, \lor, \neg, 0, 1)$ by a binary operation \setminus satisfying

$$x \cdot y \le z \iff y \le x \setminus z$$
 (R)

where \cdot is the Sasaki product: $x \cdot y = x \land (\neg x \lor y)$.

Properties

- ► Generally, · is not order-preserving in its left-coordinate.
- Generally, \setminus is not order-reversing in its left-coordinate.
- Generally, · is neither commutative nor associative.

Why focus on associativity relations for Sasaki product?

- The lack of associativity is a huge obstacle in the proof theory of some quantum logics. E.g., the calculus for orthmodular groupoids [Fazio, Ledda, Paoli, S. 2021].
- In our existing work, some associativity relations were crucial for proving the Kolmogorov translation.
- As we will see, assuming full associativity yields far more familiar structures, and are more tractable to deal with.
- Associative ROLs are the simplest starting case and are a promising source for generating the theory.

Theorem

Let **A** be an ROL and $a, b, c \in A$. Then any of the following conditions ensure that (a, b, c) associates:

- $\blacktriangleright \ a \leq b$
- $a \leq c$
- $b \le c$

Theorem

Let **A** be an ROL and $a, b, c \in A$. Then any of the following conditions ensure that (a, b, c) associates:

- ► $a \le b$
- $a \leq c$
- $b \le c$

Corollary (Fussner & S. 2022+)

In ROL (and hence OML), finite products consisting only of variables x and y, where x is the left-most variable, are equal to $x \cdot y$.

E.g.,

$$\mathsf{ROL} \vDash x \cdot y \approx (x \cdot ((y \cdot x) \cdot y)) \cdot (y \cdot x)$$

A new negation and a skeleton

Given a residuated ortholattice $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$, we define: $\sim x \coloneqq x \setminus 0$ $\overline{A} \coloneqq \{\overline{a} \colon a \in A\}$

Theorem (Fussner & S. 2021)

Let $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$ be a residuated ortholattice.

(1) $(\overline{A}, \wedge, \vee, \sim, 0, 1)$ is an OML, denoted OML(A).

(2)
$$\overline{x}\setminus\overline{y} = \sim (x \cdot \neg y)$$
 for all $x, y \in A$.

(3) The map $x \mapsto \overline{x}$ is an ortholattice homomorphism of \mathbf{A} onto $\mathsf{OML}(\mathbf{A})$.

A new negation and a skeleton

Given a residuated ortholattice $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$, we define: $\sim x \coloneqq x \setminus 0$ $\overline{A} \coloneqq \{\overline{a} \colon a \in A\}$

Theorem (Fussner & S. 2021)

Let $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$ be a residuated ortholattice.

(1) $(\overline{A}, \wedge, \vee, \sim, 0, 1)$ is an OML, denoted OML(A).

(2)
$$\overline{x}\setminus\overline{y} = \sim (x \cdot \neg y)$$
 for all $x, y \in A$.

(3) The map x → x̄ is an ortholattice homomorphism of A onto OML(A).

Warning: While $\overline{x \setminus y} \leq \overline{x} \setminus \overline{y}$, generally, $\overline{x \setminus y} \neq \overline{x} \setminus \overline{y}$

A new negation and a skeleton

Given a residuated ortholattice $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$, we define: $\sim x \coloneqq x \setminus 0$ $\overline{A} \coloneqq \{\overline{a} \colon a \in A\}$

Theorem (Fussner & S. 2021)

Let $\mathbf{A} = (A, \land, \lor, \neg, \backslash, 0, 1)$ be a residuated ortholattice.

(1) $(\overline{A}, \wedge, \vee, \sim, 0, 1)$ is an OML, denoted OML(A).

(2)
$$\overline{x}\setminus\overline{y} = \sim (x \cdot \neg y)$$
 for all $x, y \in A$.

(3) The map x → x̄ is an ortholattice homomorphism of A onto OML(A).

Warning: While $\overline{x \setminus y} \leq \overline{x} \setminus \overline{y}$, generally, $\overline{x \setminus y} \neq \overline{x} \setminus \overline{y}$

Corollary

Let **A** be a residuated ortholattice. Then the following are equivalent: (1) **A** is an OML. (2) $\mathbf{A} \models \neg x \approx \neg x$. (3) $\mathbf{A} \models x \approx \neg \neg x$.

Gavin St. John

Associativity in Quantum Logic

16 / 32

The closure bubbles

Proposition

Let **A** be an ROL. Then for all $a, b, c \in A$ the following hold:

1.
$$a \le c \le \overline{a} \implies a \cdot b \le c \cdot b \text{ and } c \setminus b \le a \setminus b$$
.

2. $\overline{a} \leq \overline{b} \iff \underline{a} \leq \underline{b}$, where $\underline{x} \coloneqq \neg \sim x$.

Residuated ortholattices satisfy the following quasi-identities:

1.
$$\overline{a} \approx \overline{b} \implies a \cdot x \approx a \wedge (\neg b \lor x)$$

2. $\overline{a} \approx \overline{b} \implies a \cdot x \approx (\neg b \lor x) \cdot a$

Residuated ortholattices satisfy the following quasi-identities:

1.
$$\overline{a} \approx \overline{b} \implies a \cdot x \approx a \wedge (\neg b \lor x)$$

2. $\overline{a} \approx \overline{b} \implies a \cdot x \approx (\neg b \lor x) \cdot a$

In an ROL **A**, for $a \in A$ define $S_a = \{x \in A : \overline{x} = \overline{a}\}$.

Residuated ortholattices satisfy the following quasi-identities:

1.
$$\overline{a} \approx \overline{b} \implies a \cdot x \approx a \wedge (\neg b \lor x)$$

2.
$$\overline{a} \approx \overline{b} \implies a \cdot x \approx (\neg b \lor x) \cdot a$$

In an ROL **A**, for $a \in A$ define $S_a = \{x \in A : \overline{x} = \overline{a}\}$.

Proposition

Let ${\bf A}$ be an ROL. Then the following hold.

- 1. (S_a, \cdot) is a left-zero band, i.e. $x \cdot y = x$ for all $x \in S_a$.
- 2. (S_a, \land, \lor) is a sub-lattice of **A**, with least element <u>a</u> and greatest element <u>a</u>.
- 3. For all $x \in S_a$ and $x' \in S_{\neg a}, x' \setminus x = \overline{a}$
- For b ∈ A, let ρ_b be the map x ↦ x ⋅ b. Then its restriction to S_a is an ℓ-semigroup homomorphism from S_a to S_{ab}.

Theorem (Fussner & S. 2022+)

If any two elements of the set $\{a, b, c\}$ share the same image under the map $x \mapsto \overline{x}$, then the triple (a, b, c) associates.

Let **L** be an OML and $a, b, c \in L$.

Definition

We say *a* commutes with *b* if $a \cdot b = a \wedge b$.

Let **L** be an OML and $a, b, c \in L$.

Definition

We say *a* commutes with *b* if $a \cdot b = a \wedge b$.

Fact: An ortholattice is orthomodular if and only if the commuting relation is symmetric.

Let **L** be an OML and $a, b, c \in L$.

Definition

We say *a* commutes with *b* if $a \cdot b = a \wedge b$.

Fact: An ortholattice is orthomodular if and only if the commuting relation is symmetric.

Theorem (Foulis-Holland)

If any one of a, b, or c commutes with the other two, then they all commute and the sublattice generated by $\{a, b, c\}$ is a distributive sublattice of \mathbf{L} .

Let **L** be an OML and $a, b, c \in L$.

Definition

We say *a* commutes with *b* if $a \cdot b = a \wedge b$.

Fact: An ortholattice is orthomodular if and only if the commuting relation is symmetric.

Theorem (Foulis-Holland)

If any one of a, b, or c commutes with the other two, then they all commute and the sublattice generated by $\{a, b, c\}$ is a distributive sublattice of \mathbf{L} .

Theorem (Kröger Lemma)

If a commutes with b then $ab \cdot c = a \cdot bc$.

Notions of commuting elements in ROL

Definition

Let **A** be an involutive lattice and $a, b \in A$. We say:

- a left-commutes with b and (equiv. b right-commutes with a) if $a \cdot b = a \wedge b$ ($\equiv ab \leq b$)
- a commutes with b if $a \cdot b = a \wedge b = b \cdot a$ [equiv. ab = ba].

Notions of commuting elements in ROL

Definition

Let **A** be an involutive lattice and $a, b \in A$. We say:

- a left-commutes with b and (equiv. b right-commutes with a) if $a \cdot b = a \wedge b$ ($\equiv ab \leq b$)
- *a* commutes with *b* if $a \cdot b = a \wedge b = b \cdot a$ [equiv. ab = ba].

Definition

Let **A** be an involutive lattice. An element $a \in A$ is said to be:

- right-central in A if it right-commutes with x for all $x \in A$
- left-central in \mathbf{A} if it left-commutes with x for all $x \in A$
- central in A if it is both right- and left-central in A.

Notions of commuting elements in ROL

Definition

Let **A** be an involutive lattice and $a, b \in A$. We say:

- a left-commutes with b and (equiv. b right-commutes with a) if $a \cdot b = a \wedge b$ ($\equiv ab \leq b$)
- *a* commutes with *b* if $a \cdot b = a \wedge b = b \cdot a$ [equiv. ab = ba].

Definition

Let **A** be an involutive lattice. An element $a \in A$ is said to be:

- right-central in A if it right-commutes with x for all $x \in A$
- left-central in \mathbf{A} if it left-commutes with x for all $x \in A$
- central in A if it is both right- and left-central in A.

Fact

In OML, these notions collapse in each definition above.

Gavin St. John

Associativity in Quantum Logic 22 / 32

Let **A** be an ROL with $a, b \in A$.

The set of all elements for which \overline{a} right-commutes with is closed under the operations $\{\land, \lor, \neg, \sim, 0, 1\}$.

The set of all elements for which \overline{a} right-commutes with is closed under the operations $\{\land,\lor,\neg,\sim,0,1\}$.

Proposition

- If a is right-central in A then $a = \overline{a}$.
- If a is left-central in **A** then $a = \underline{a}$.
- a is right-central $\iff \neg a$ is left-central in A
- \overline{a} is right-central $\iff \underline{a}$ is left-central in **A**.
- *a* is central in **A** iff $\underline{a} = \overline{a}$ (i.e., $S_a = \{a\}$) and *a* is right-central.

The set of all elements for which \overline{a} right-commutes with is closed under the operations $\{\land,\lor,\neg,\sim,0,1\}$.

Proposition

- If a is right-central in A then $a = \overline{a}$.
- If a is left-central in **A** then $a = \underline{a}$.
- a is right-central $\iff \neg a$ is left-central in A
- \overline{a} is right-central $\iff \underline{a}$ is left-central in **A**.
- *a* is central in **A** iff $\underline{a} = \overline{a}$ (i.e., $S_a = \{a\}$) and *a* is right-central.

Theorem (Fussner & S. 2022+)

If an ROL A has a central element c, then $A \cong [c, 1] \times [\neg c, 1]$.

23 / 32

Boolean skeleton's and commuting elements

Definition

Let A be an ROL. We say A has a *Boolean skeleton* if OML(A) is (term-equivalent to) a Boolean algebra.

Boolean skeleton's and commuting elements

Definition

Let A be an ROL. We say A has a *Boolean skeleton* if OML(A) is (term-equivalent to) a Boolean algebra.

Lemma

An ROL **A** has a Boolean skeleton iff \overline{a} is right-central for all $a \in A$.

Proof.

$OML(\mathbf{A})$ is Boolean	\iff	$OML(\mathbf{A}) \vDash$	$x\cdot y\approx x\wedge y$
	\iff	$OML(\mathbf{A}) \vDash$	$x\cdot y \leq y$
	\iff	$\mathbf{A}\vDash$	$\overline{x} \cdot \overline{y} \leq \overline{y}$
	\iff	$\mathbf{A}\vDash$	$x\cdot\overline{y}\leq\overline{y}$

25 / 32

Lemma

Residuated ortholattices satisfy the following quasi-identity:

$$\begin{array}{cccc} y \cdot \overline{x} \approx y \wedge \overline{x} & \Longrightarrow & xy \cdot z \approx x \cdot yz \lor x \cdot (\neg y \lor z) \neg x \\ \overline{x} \text{ right-commutes with } y & \Longrightarrow & xy \cdot z \le x \cdot yz \end{array}$$

Lemma

Residuated ortholattices satisfy the following quasi-identity:

$$\begin{array}{cccc} y \cdot \overline{x} \approx y \wedge \overline{x} & \Longrightarrow & xy \cdot z \approx x \cdot yz \lor x \cdot (\neg y \lor z) \neg x \\ \overline{x} \text{ right-commutes with } y & \Longrightarrow & xy \cdot z \le x \cdot yz \end{array}$$

Theorem (Fussner & S. 2022+)

In an ROL, if \overline{a} right-commutes with both b and c then $ab \cdot c = a \cdot bc$.

Theorem (Fussner & S. 2022+)

Let A be an ROL. Then the following are equivalent.

- A has a Boolean skeleton.
- \overline{a} is right-central in **A** for all $a \in A$.
- Sasaki product is associative in A.
- A satisfies $x(y+z) \approx xy + xz$, where $x + y := \neg(\neg x \cdot \neg y)$.

Theorem (Fussner & S. 2022+)

Let \mathbf{A} be an ROL. Then the following are equivalent.

- A has a Boolean skeleton.
- \overline{a} is right-central in **A** for all $a \in A$.
- Sasaki product is associative in A.
- A satisfies $x(y+z) \approx xy + xz$, where $x + y := \neg(\neg x \cdot \neg y)$.

Theorem (Fussner & S. 2022+)

Let A be the subvariety of associative ROLs, and let ε be an equation containing only variables and the operation \cdot (Sasaki product). Then

 ε holds in $\mathcal{A} \iff \varepsilon$ holds in all left-regular bands

[i.e., idempotent semigroups satisfying $xyx \approx xy$].

- Further develop the role of (maximal) associative subalgebas of ROLs [e.g., the role of "Boolean blocks", as in OML]
- Generalize the Foulis-Holland theorem to a more general setting.
- Exploit the role this *near-associativity* can be useful for a logical calculus [E.g., the data-type of structures in a sequent calculus].
- Solidify the ties between Substructural Logic and Quantum Logic.

References I

- Birkhoff, G. and von Neumann, J. (1936).
 The logic of quantum mechanics.
 Ann. of Math. (2), 37:823-843.
- Chajda, I. and Länger, H. (2017).
 Orthomodular lattices can be converted into left-residuated *l*-groupoids.
 Miskolc Mathematical Notes, 18:685–689.
- Dalla Chiara, M., Giuntini, R., and Greechie, R. (2004). *Reasoning in Quantum Theory*. Kluwer, Dordrecht.

References II

Fazio, D., Ledda, A., and Paoli, F. (2021).
Residuated structures and orthomodular lattices.
Studia Logica.
DOI 10.1007/s11225-021-09946-1.

Fazio, D., Ledda, A., Paoli, F., and St. John, G. (2022).
A substructural Gentzen calculus for orthomodular quantum logic. *The Review of Symbolic Logic.*DOI 10.1017/S1755020322000016.

 Fussner, W. and St. John, G. (2021).
 Negative translations of orthomodular lattices and their logic.
 In Heunen, C. and Backens, M., editors, *Proceedings of the 18th International Conference on Quantum Physics and Logic*, volume 343 of *EPTCS*, pages 37–49. Open Publishing Association.

References III

Harding, J. (1991).

Orthomodular lattices whose macneille completions are not orthomodular.

Order, 8:93–103.

 Harding, J. (1998).
 Canonical completions of lattices and ortholattices. *Tatra Mt. Math. Publ.*, 15:85–96.

Sasaki, U. (1954).

Orthocomplemented lattices satisfying the exchange axiom.

J. Sci. Hiroshima Univ. Ser. A, 17:293–302.

Thank you!