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Birkho�/von Neumann Approach to �antum Logic

quantum events/properties ⇐⇒ projection operators onH, a
complex separable Hilbert space

Let X a closed subspace ofH and X� the subspace orthogonal to X .
For all v ∈H , v = vX + vX� for unique vX ∈X and vX� ∈X�.

▸ Π(H) ∶= {PX ∶ v ↦ vX} is the set of projection operators
▸ ¬PX ∶= PX�

▸ PX ∧ PY ∶= PX∩Y
▸ PX ∨ PY ∶= P(X∪Y )��
▸ 0 ∶= P{0}
▸ 1 ∶= PH

(Π(H),∧,∨,¬,0,1) is an example of an orthomodular la�ice

See [Birkho� and von Neumann, 1936].
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OL and OML

Definition
An involutive la�ice is an algebra A = (A,∧,∨,¬) where:

▸ (A,∧,∨) is a la�ice
▸ ¬ is an antitone involution on A

A is called bounded if it has a bo�om 0 and top 1.

Definition
An orthola�ice is a bounded involutive la�ice A = (A,∧,∨,¬,0,1)
where ¬ is an ortho-complementation, i.e., x ∧ ¬x ≈ 0.

Definition
An orthomodular la�ice (OML) is an orthola�ice satisfying:

(orthomodular law) x ≤ y Ô⇒ y ≈ x ∨ (¬x ∧ y)
Orthola�ices form a variety OL and OMLs form a variety OML.
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The problems

▸ It is unknown whether OML admit any form of completions

○ Not closed under MacNeille completions [Harding, 1991]

○ Not closed under canonical completions [Harding, 1998]
▸ The decidability of OML remains unknown
▸ No pair of operations form a (two-sided) residuated pair (see

[Dalla Chiara et al., 2004])

New approaches: Zooming out

▸ Sasaki operations form a one-sided residuated pair
▸ Orthomodular groupoids (OG) [Chajda and Länger, 2017]
▸ Pointed le�-residuated `-groupoids (PLRG) [Fazio et al., 2021]
▸ Sequent calculus for OG and PLRG [S. et al., 2022]
▸ Residuated orthola�ices [Fussner and S., 2021]

[Fazio et al., 2022] [Fussner and St. John, 2021]
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Sasaki operations [Sasaki, 1954] are definable in involutive la�ices:

x ⋅ y ∶= x ∧ (¬x ∨ y) (Sasaki product)
x→ y ∶= ¬x ∨ (x ∧ y) (Sasaki hook)

We say the triple (a, b, c) associates inA, denoted A(a, b, c), if

ab ⋅ c = a ⋅ bc.
Lemma
LetA be an involutive la�ice. Then:

(1) Sasaki product ⋅ is alternative, i.e., A(x,x, y) and A(x, y, y)
(2) (xy)x ≈ xy.
(3) If A satisfies the identity x(y ∨ z) ≈ xy ∨ xz, then ⋅ is flexible,

i.e., A(x, y, x).
(4) If A is flexible then it satisfies (xy)(yx) = xy.
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Sasaki operations [Sasaki, 1954] are definable in involutive la�ices:

x ⋅ y ∶= x ∧ (¬x ∨ y) (Sasaki product)
x→ y ∶= ¬x ∨ (x ∧ y) (Sasaki hook)

Proposition

Let A be a an orthola�ice. Then the following are equivalent:

1. A is an OML.

2. A ⊧ x ≤ y Ô⇒ y ≈ ¬x→ y

3. A ⊧ x ≤ y Ô⇒ x ≈ y ⋅ x.

4. (⋅,→) form a (right-) residuated pair: A ⊧ x ⋅ y ≤ z⇔ y ≤ x→ z.

Proposition

Let A be a bounded involutive la�ice. Then the operation ⋅ is
residuated i� the operation → is co-residuated.
Moreover, if A is a bounded involutive la�ice for which the above
equivalent conditions hold, then A is an orthola�ice.
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Properties

▸ Residuated orthola�ices form a variety ROL.
▸ OML is a subvariety of ROL (taking / to be the Sasaki hook→).
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Fine spectrum for ROL and OML

n 2 3 4 5 6 7 8 9 10 11 12
OMLs 1 0 1 0 1 0 2 0 2 0 3
ROLs 1 0 1 0 2 0 4 0 7 0 15
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Theorem (Fussner & S. 2021)

Residuated orthola�ices are the equivalent algebraic semantics of their
1-assertional logic.
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Theorem (Fussner & S. 2022+)

ROL is closed under horizontal sums.

[X− ∶=X ∖ {0X ,1X}]
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Theorem (Fussner & S. 2021)

OML enjoys a Kolmogorov-style translation into ROL.

Corollary (Fussner & S. 2021)

OML has a decidable equational theory if any variety of residuated
orthola�ices that contains it has a decidable equational theory.
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Properties

▸ Both ⋅ and / or order-preserving in their right-coordinates.
▸ ⋅ distributes over arbitrary joins, when they exist, from the le�.
▸ ⋅ is idempotent, alternative, and flexible.
▸ / distributes over arbitrary meets, when they exist, from the le�.
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Residuated Orthola�ices

Definition
A (Sasaki) residuated orthola�ice (or ROL) is an expansion of an
orthola�ice (A,∧,∨,¬,0,1) by a binary operation / satisfying

x ⋅ y ≤ z ⇐⇒ y ≤ x/z (R)

where ⋅ is the Sasaki product: x ⋅ y = x ∧ (¬x ∨ y).

Properties

▸ Generally, ⋅ is not order-preserving in its le�-coordinate.
▸ Generally, / is not order-reversing in its le�-coordinate.
▸ Generally, ⋅ is neither commutative nor associative.
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Why focus on associativity relations for Sasaki product?

▸ The lack of associativity is a huge obstacle in the proof theory
of some quantum logics. E.g., the calculus for orthmodular
groupoids [Fazio, Ledda, Paoli, S. 2021].

▸ In our existing work, some associativity relations were crucial
for proving the Kolmogorov translation.

▸ As we will see, assuming full associativity yields far more
familiar structures, and are more tractable to deal with.

▸ Associative ROLs are the simplest starting case and are a
promising source for generating the theory.

Gavin St. John Associativity in �antum Logic 14 / 32



Theorem
LetA be an ROL and a, b, c ∈ A. Then any of the following conditions
ensure that (a, b, c) associates:

▸ a ≤ b
▸ a ≤ c
▸ b ≤ c

Corollary (Fussner & S. 2022+)

In ROL (and hence OML), finite products consisting only of variables x
and y, where x is the le�-most variable, are equal to x ⋅ y.
E.g.,

ROL ⊧ x ⋅ y ≈ (x ⋅ ((y ⋅ x) ⋅ y)) ⋅ (y ⋅ x)

Gavin St. John Associativity in �antum Logic 15 / 32



Theorem
LetA be an ROL and a, b, c ∈ A. Then any of the following conditions
ensure that (a, b, c) associates:

▸ a ≤ b
▸ a ≤ c
▸ b ≤ c

Corollary (Fussner & S. 2022+)

In ROL (and hence OML), finite products consisting only of variables x
and y, where x is the le�-most variable, are equal to x ⋅ y.
E.g.,

ROL ⊧ x ⋅ y ≈ (x ⋅ ((y ⋅ x) ⋅ y)) ⋅ (y ⋅ x)

Gavin St. John Associativity in �antum Logic 15 / 32



A new negation and a skeleton

Given a residuated orthola�ice A = (A,∧,∨,¬, /,0,1), we define:
∼x ∶= x/0 x ∶= ∼∼x

A ∶= {a ∶ a ∈ A}
Theorem (Fussner & S. 2021)

LetA = (A,∧,∨,¬, /,0,1) be a residuated orthola�ice.
(1) (A,∧,∨,∼,0,1) is an OML, denoted OML(A).
(2) x/y = ∼(x ⋅ ¬y) for all x, y ∈ A.
(3) The map x↦ x is an orthola�ice homomorphism ofA onto

OML(A).

Warning: While x/y ≤ x/y, generally, x/y ≠ x/y

Corollary

LetA be a residuated orthola�ice. Then the following are equivalent:
(1) A is an OML. (2) A ⊧ ∼x ≈ ¬x. (3) A ⊧ x ≈ ∼∼x.
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Examples
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The closure bubbles

Proposition

Let A be an ROL. Then for all a, b, c ∈ A the following hold:

1. a ≤ c ≤ a Ô⇒ a ⋅ b ≤ c ⋅ b and c/b ≤ a/b.
2. a ≤ b ⇐⇒ a ≤ b, where x ∶= ¬∼x.
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Proposition

Residuated orthola�ices satisfy the following quasi-identities:

1. a ≈ b Ô⇒ a ⋅ x ≈ a ∧ (¬b ∨ x)
2. a ≈ b Ô⇒ a ⋅ x ≈ (¬b ∨ x) ⋅ a

In an ROL A, for a ∈ A define Sa = {x ∈ A ∶ x = a}.

Proposition

Let A be an ROL. Then the following hold.

1. (Sa, ⋅) is a le�-zero band, i.e. x ⋅ y = x for all x ∈ Sa.

2. (Sa,∧,∨) is a sub-la�ice of A, with least element a and
greatest element a.

3. For all x ∈ Sa and x′ ∈ S¬a, x′/x = a
4. For b ∈ A, let ρb be the map x↦ x ⋅ b. Then its restriction to Sa

is an `-semigroup homomorphism from Sa to Sab.
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Theorem (Fussner & S. 2022+)

If any two elements of the set {a, b, c} share the same image under the
map x↦ x, then the triple (a, b, c) associates.

Gavin St. John Associativity in �antum Logic 20 / 32



Commuting elements in OML and associativity

Let L be an OML and a, b, c ∈ L.

Definition
We say a commutes with b if a ⋅ b = a ∧ b.

Fact: An orthola�ice is orthomodular if and only if the commuting
relation is symmetric.

Theorem (Foulis-Holland)

If any one of a, b, or c commutes with the other two, then they all
commute and the subla�ice generated by {a, b, c} is a distributive
subla�ice of L.

Theorem (Kröger Lemma)

If a commutes with b then ab ⋅ c = a ⋅ bc.
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Notions of commuting elements in ROL

Definition
Let A be an involutive la�ice and a, b ∈ A. We say:

▸ a le�-commutes with b and (equiv. b right-commutes with a) if
a ⋅ b = a ∧ b (≡ ab ≤ b)

▸ a commutes with b if a ⋅ b = a ∧ b = b ⋅ a [equiv. ab = ba].

Definition
Let A be an involutive la�ice. An element a ∈ A is said to be:

▸ right-central in A if it right-commutes with x for all x ∈ A
▸ le�-central in A if it le�-commutes with x for all x ∈ A
▸ central in A if it is both right- and le�-central in A.

Fact
In OML, these notions collapse in each definition above.
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Let A be an ROL with a, b ∈ A.

Proposition

The set of all elements for which a right-commutes with is closed
under the operations {∧,∨,¬,∼,0,1}.

Proposition

▸ If a is right-central in A then a = a.
▸ If a is le�-central in A then a = a.
▸ a is right-central ⇐⇒ ¬a is le�-central in A

▸ a is right-central ⇐⇒ a is le�-central in A.
▸ a is central in A i� a = a (i.e., Sa = {a}) and a is right-central.

Theorem (Fussner & S. 2022+)

If an ROLA has a central element c, thenA ≅ [c,1] × [¬c,1].
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Boolean skeleton’s and commuting elements

Definition
Let A be an ROL. We say A has a Boolean skeleton if OML(A) is
(term-equivalent to) a Boolean algebra.

Lemma
An ROL A has a Boolean skeleton i� a is right-central for all a ∈ A.

Proof.

OML(A) is Boolean ⇐⇒ OML(A) ⊧ x ⋅ y ≈ x ∧ y
⇐⇒ OML(A) ⊧ x ⋅ y ≤ y
⇐⇒ A ⊧ x ⋅ y ≤ y
⇐⇒ A ⊧ x ⋅ y ≤ y
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Theorem (Fussner & S. 2022+)

LetA ∈ ROL with right-central elements a, b. If a ≥ ∼b then the la�ice
[a ∨ ∼b, a] × [∼a ∨ b, b] embeds into Sa∧b.
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The (almost) Kröger Lemma

Lemma
Residuated orthola�ices satisfy the following quasi-identity:

y ⋅ x ≈ y ∧ x Ô⇒ xy ⋅ z ≈ x ⋅ yz ∨ x ⋅ (¬y ∨ z)¬x
x right-commutes with y Ô⇒ xy ⋅ z ≤ x ⋅ yz

Theorem (Fussner & S. 2022+)

In an ROL, if a right-commutes with both b and c then ab ⋅ c = a ⋅ bc.
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Theorem (Fussner & S. 2022+)

LetA be an ROL. Then the following are equivalent.
▸ A has a Boolean skeleton.
▸ a is right-central in A for all a ∈ A.
▸ Sasaki product is associative inA.
▸ A satisfies x(y + z) ≈ xy + xz, where x + y ∶= ¬(¬x ⋅ ¬y).

Theorem (Fussner & S. 2022+)

Let A be the subvariety of associative ROLs, and let ε be an equation
containing only variables and the operation ⋅ (Sasaki product). Then

ε holds in A ⇐⇒ ε holds in all le�-regular bands

[i.e., idempotent semigroups satisfying xyx ≈ xy].
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Future work

▸ Further develop the role of (maximal) associative subalgebas of
ROLs [e.g., the role of “Boolean blocks”, as in OML]

▸ Generalize the Foulis-Holland theorem to a more general
se�ing.

▸ Exploit the role this near-associativity can be useful for a logical
calculus [E.g., the data-type of structures in a sequent calculus].

▸ Solidify the ties between Substructural Logic and �antum
Logic.
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Thank you!

Gavin St. John Associativity in �antum Logic 32 / 32


