

Jean Goubault-Larrecq

Noetherian spaces, wqos, and their statures

TACL 2022
Coimbra, Portugal

With Bastien Laboureix, Aliaume Lopez, Simon Halfon
école normale supérieure paris-saclay

Outline

* Noetherian spaces and wqos
* A computer scientist's view
* Sobrifications of Noetherian spaces, and their representations
- Statures of Noetherian spaces and maximal order types of wqos

Noetherian spaces and wqos

Well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering \leq : (1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence (3) \leq is well-founded and has no infinite antichain.
$*$ Defn. Such a quasi-ordering \leq is called a well-quasi-order (wqo).

[^0]
Examples

* \mathbb{N}, with its usual ordering - More generally, any total well-founded order
* Every finite set, with any quasi-ordering
*Finite disjoint sums, finite products of wqos are wqo
*Images of wqos by monotonic maps are wqo (in particular quotients)
* Inverse images of wqos by order-reflecting maps are wqo (in particular subsets)
Higman's Lemma. Let $X^{}=\{$ finite words over alphabet X \} ordered by word embedding \leq_{*}. Then X wqo $\Leftrightarrow X^{*}$ wqo
*Kruskal's Theorem. Let $\mathscr{T}(X)=$ \{finite trees with X-labeled vertices $\}$ ordered by homeomorphic tree embedding \leq_{T}. Then X wqo $\Leftrightarrow \mathscr{T}(X)$ wqo.
* And so on.

A computer scientist's view

Transition systems

* A transition system is just a directed graph (not necessarily finite) Vertices are configurations (of a computer system, say) Computation proceeds in steps $C \rightarrow C^{\prime}$ (along edges)
*Reachability: Given a starting configuration C_{0}, and a set B of configurations, can one reach B from C_{0} ?
(i.e., is there a $C \in B$ such that $C_{0} \rightarrow^{*} C$?)
* Decidable for finite transition systems (in polynomial time)
*In general undecidable: consider the graph of configurations of a universal Turing machine, $B=$ \{accepting configurations\}

Verification

* In practice, a transition system is a model of some computer system (e.g., a program)
* and B is the set of bad configurations, typically where some property of interest is violated. Illustration:

Well-structured transition systems

* A very interesting class of (infinite) transition systems where coverability (a special form of reachability) is decidable
*Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity:

Lossy channel systems

and many other examples

Well-structured transition systems

*A very interesting class of (infinite) transition systems where coverability (a special form of reachability) is decidable
*Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity:

Well-structured transition systems

*A very interesting class of (infinite) transition systems where coverability (a special form of reachability) is decidable
*Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity:

* In order to understand them, we need...
. and mar letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

More on well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering $\leq:$
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence $(3) \leq$ is well-founded and has no infinite antichain.

More on well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering $\leq:$
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence
$(3) \leq$ is well-founded and has no infinite antichain.

* also equivalent to:
(4) Every upwards-closed subset is the upwards-closure $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$ of a finite set

More on well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering $\leq:$
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence
$(3) \leq$ is well-founded and has no infinite antichain.

* also equivalent to:
(4) Every upwards-closed subset is the upwards-closure $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$ of a finite set

More on well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering $\leq:$
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence
(3) \leq is well-founded and has no infinite antichain
(4) Every upwards-closed subset is the upwards-closure $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$ of a finite set

More on well-quasi-orders

*Fact. The following are equivalent for a quasi-ordering $\leq:$
(1) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is good: $x_{m} \leq x_{n}$ for some $m<n$
(2) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is perfect: has a monotone subsequence
(3) \leq is well-founded and has no infinite antichain
(4) Every upwards-closed subset
is the upwards-closure $\uparrow\left\{x_{1}, \cdots, x_{n}\right\}$ of a finite set

* also equivalent to:
(5) Every monotonic chain $U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots$ of upwards-closed subsets is stationary
(i.e., all the sets U_{n} are equal from some rank on)

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed

- Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity:

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed
*For each upwards-closed set U, let $\operatorname{Pre}(U)=\{x \in X \mid \exists y, x \rightarrow y \in U\}$ (one step predecessors)
Monotonicity entails that $\operatorname{Pre}(U)$ is also upwards-closed

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed
*For each upwards-closed set U, let $\operatorname{Pre}(U)=\{x \in X \mid \exists y, x \rightarrow y \in U\}$ (one step predecessors)
Monotonicity entails that $\operatorname{Pre}(U)$ is also upwards-closed
*Let $\operatorname{Pre}^{\leq n}(U)=\left\{x \in X \mid \exists y, x \rightarrow^{\leq n} y \in U\right\}$
Then $\operatorname{Pr}^{\leq 0}(U) \subseteq \operatorname{Pre}^{\leq 1}(U) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(U) \subseteq \cdots$
is a monotonic chain of upwards-closed subsets - therefore, stationary

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed

* $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq$

Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity: is a monotonic chain of upwards-closed subsets - therefore, stationary

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed

- $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq$.

Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity: is a monotonic chain of upwards-closed subsets - therefore, stationary

* $\operatorname{Pre}^{*}(B)=\{x \in X \mid \exists y, x \rightarrow * y \in B\}$ is therefore equal to $\operatorname{Pre}^{\leq n}(B)$ for some n

Coverability

*Coverability is the special case of reachability where the set B is upwards-closed

* $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq$.

Definition. A well-structured transition system (WSTS) is a transition system (X, \rightarrow) with a wqo \leq on X satisfying (strong) monotonicity: is a monotonic chain of upwards-closed subsets - therefore, stationary

* $\operatorname{Pre}^{*}(B)=\{x \in X \mid \exists y, x \rightarrow * y \in B\}$ is therefore equal to $\operatorname{Pre}^{\leq n}(B)$ for some n
Now note that B is reachable from C_{0} iff $C_{0} \in \operatorname{Pre}{ }^{}(B)$

Coverability is decidable

* In order to make this argument precise, we really need to reason with effective WSTSs, where
- points are representable
$-\leq$ is decidable
$-y \mapsto\left\{x_{1}, \cdots, x_{n}\right\}=\operatorname{Pre}(\uparrow y)$ is computable (so one can compute $\operatorname{Pre}(U)$)
*Theorem. (Abdulla et al. 2000, Finkel\&Schnoebelen 2001.) Coverability is decidable on effective WSTSs.

```
fun pre* U =
    let V = pre U
    in
        if V\subseteqU
        then U
        else pre* (U U V)
    end;
fun coverability (s, B) =
    s in pre* (B);
```


Coverability is decidable

*In order to make this argument precise, we really need to reason with effective WSTSs, where

- points are representable
$-\leq$ is decidable
$-y \mapsto\left\{x_{1}, \cdots, x_{n}\right\}=\operatorname{Pre}(\uparrow y)$ is computable (so one can compute $\operatorname{Pre}(U)$)
*Theorem. (Abdulla et al. 2000, Finkel\&Schnoebelen 2001.) Coverability is decidable on effective WSTSs.
*Complexity: appalling (EXPSPACE-complete for Petri nets, grows faster than Ackermann for lossy channel systems)

```
fun pre* U =
    let V = pre U
    in
        if V\subseteqU
            then U
        else pre* (U U V)
    end;

\section*{Beyond wqos: Noetherian spaces}

\section*{Going topological}
* Every quasi-ordered set \((X, \leq)\) gives rise to a topological space, whose open sets are the upwards-closed sets (the Alexandroff topology)

\section*{Going topological}
* Every quasi-ordered set \((X, \leq)\) gives rise to a topological space, whose open sets are the upwards-closed sets (the Alexandroff topology)
* Definition. A topological space is Noetherian
\(X\) is wqo iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of upwards-closed subsets is stationary
iff every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots\) of open subsets is stationary.

\section*{Going topological}
* Every quasi-ordered set \((X, \leq)\) gives rise to a topological space, whose open sets are the upwards-closed sets (the Alexandroff topology)
* Definition. A topological space is Noetherian iff every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots\) of open subsets is stationary.
* Proposition. ( \(X, \leq\) ) is wqo
iff \(X\) is Noetherian
in its Alexandroff topology.
* Hence Noetherian spaces generalize wqos

\section*{Is the generalization proper?}
- Yes. Consider \(\mathbb{N}_{\text {cof }}\), the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \(\mathbb{N}\) )
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of open subsets is stationary

\section*{Is the generalization proper?}
* Yes. Consider \(\mathbb{N}_{\text {cof }}\), the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \(\mathbb{N}\) )
- It may be easier to see that \(\mathbb{N}_{\text {cof }}\) is Noetherian by realizing that:
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of open subsets is stationary
* Proposition. A space \(X\) is Noetherian iff
every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets
is stationary.
(Take complements.)

\section*{Is the generalization proper?}
- Yes. Consider \(\mathbb{N}_{\text {cof }}\), the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \(\mathbb{N}\) )
* It may be easier to see that \(\mathbb{N}_{\text {cof }}\) is Noetherian by realizing that:
* Proposition. A space \(X\) is Noetherian iff
every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets
is stationary.
(Take complements.)
- Oh, wait, why does \(\mathbb{N}_{\text {cof }}\) not arise from a wqo?

\section*{The specialization quasi-ordering}
* Every topological space \(X\) has a specialization quasi-ordering: \(x \leq y\) iff every open neighborhood of \(x\) contains \(y\)
iff \(x\) is in the closure of \(\{y\}\)
* The specialization quasi-ordering of ( \(X\) in the Alexandroff topology of \(\leq\) ) is \(\leq\)
- The specialization quasi-ordering of \(\mathbb{N}_{\text {cof }}\) is equality and equality is never a wqo on an infinite set

So \(\mathbb{N}_{\text {cof }}\) is a Noetherian space that does not arise from a wqo

\section*{Properties T and W}
* Let \((X, \leq)\) be a quasi-ordered set. Its finitary subsets are \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\)
* The finitary subsets generate the upper topology
 It, too, has \(\leq\) as specialization quasi-ordering

\section*{Properties T and W}
* Let \((X, \leq)\) be a quasi-ordered set. Its finitary subsets are \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\)
* The finitary subsets generate the upper topology
 It, too, has \(\leq\) as specialization quasi-ordering

The upper topology is the coarsest topology with \(\leq\) as specialization The Alexandroff topology is the finest.

\section*{Properties T and W}
* Let \((X, \leq)\) be a quasi-ordered set. Its finitary subsets are \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\)
* The finitary subsets generate the upper topology
 It, too, has \(\leq\) as specialization quasi-ordering
* Proposition. If:
\(-X\) is well-founded

The upper topology is the coarsest topology with \(\leq\) as specialization The Alexandroff topology is the finest.
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary
then \(X\) is Noetherian in the upper topology and the closed sets are the finitary subsets.

\section*{Properties T and W}
* Let \((X, \leq)\) be a quasi-ordered set. Its finitary subsets are \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\)
* The finitary subsets generate the upper topology
 It, too, has \(\leq\) as specialization quasi-ordering
* Proposition. If:
\(-X\) is well-founded

The upper topology is the coarsest topology
with \(\leq\) as specialization The Alexandroff topology is the finest.
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology and the closed sets are the finitary subsets.

This turns out to be the general form of all sober Noetherian spaces.

\section*{The Hoare hyperspace of a Noetherian space}
* Every well-founded inf-semilattice with top is Noetherian in the upper topology

Proposition. If:
\(-X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology

\section*{The Hoare hyperspace of a Noetherian space}
* Every well-founded inf-semilattice with top is Noetherian in the upper topology
* Let \(\mathscr{H} X=\{\) closed subsets of \(X\}\) with the upper topology of \(\subseteq\) (Hoare hyperspace of \(X\) )

Proposition. If:
\(-X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology

\section*{The Hoare hyperspace of a Noetherian space}
* Every well-founded inf-semilattice with top is Noetherian in the upper topology
* Let \(\mathscr{H} X=\{\) closed subsets of \(X\}\) with the upper topology of \(\subseteq\) (Hoare hyperspace of \(X\) )

Proposition. If:
\(-X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots\) of open subsets is stationary
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary

\section*{The Hoare hyperspace of a Noetherian space}
* Every well-founded inf-semilattice with top is Noetherian in the upper topology
* Let \(\mathscr{H} X=\{\) closed subsets of \(X\}\) with the upper topology of \(\subseteq\) (Hoare hyperspace of \(X\) )

Proposition. If:
\(-X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq \cdots\) of open subsets is stationary
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary
(7) \(\mathscr{H} X\) is well-founded.

\section*{The Hoare hyperspace of a Noetherian space}
* Every well-founded inf-semilattice with top is Noetherian in the upper topology
* Let \(\mathscr{H} X=\{\) closed subsets of \(X\}\) with the upper topology of \(\subseteq\) (Hoare hyperspace of \(X\) )
- \(\mathscr{H}(X)\) is an inf-semilattice, hence:
(That is actually an equivalence.)

\section*{The powerset of a Noetherian space}
- Equip \(\mathbb{P}(X)\) with the lower Vietoris topology, Subbase of closed sets \(\square C=\{A \in \mathbb{P}(X) \mid A \subseteq C\}\), \(C\) closed in \(X\)
* The lattices of closed sets of \(\mathscr{H} X\) and of \(\mathbb{P}(X)\) are isomorphic, through \(\mathrm{cl}^{-1}: \downarrow\{C\} \mapsto \square C\)

\section*{The powerset of a Noetherian space}
* Equip \(\mathbb{P}(X)\) with the lower Vietoris topology,

Subbase of closed sets \(\square C=\{A \in \mathbb{P}(X) \mid A \subseteq C\}\), \(C\) closed in \(X\)
* The lattices of closed sets of \(\mathscr{H} X\) and of \(\mathbb{P}(X)\) are isomorphic, through \(\mathrm{cl}^{-1}: \downarrow\{C\} \mapsto \square C\)
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of open subsets is stationary
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary
* Noetherianness is a property of the lattice of closed sets, not of the points. Hence:

\section*{The powerset of a Noetherian space}
* Equip \(\mathbb{P}(X)\) with the lower Vietoris topology,

Subbase of closed sets \(\square C=\{A \in \mathbb{P}(X) \mid A \subseteq C\}\), \(C\) closed in \(X\)
* The lattices of closed sets of \(\mathscr{H} X\) and of \(\mathbb{P}(X)\) are isomorphic, through \(\mathrm{cl}^{-1}: \downarrow\{C\} \mapsto \square C\)
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of open subsets is stationary
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary
- Noetherianness is a property of the lattice of closed sets, not of the points. Hence:
- The powerset \(\mathbb{P}(X)\) of a Noetherian space \(X\) is Noetherian.

\section*{The powerset of a Noetherian space}
* Equip \(\mathbb{P}(X)\) with the lower Vietoris topology,

Subbase of closed sets \(\square C=\{A \in \mathbb{P}(X) \mid A \subseteq C\}\), \(C\) closed in \(X\)
* The lattices of closed sets of \(\mathscr{H} X\) and of \(\mathbb{P}(X)\) are isomorphic, through \(\mathrm{cl}^{-1}: \downarrow\{C\} \mapsto \square C\)
\(X\) is Noetherian iff:
(5) Every monotonic chain \(U_{1} \subseteq U_{2} \subseteq \cdots \subseteq U_{n} \subseteq\) of open subsets is stationary
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary
* Noetherianness is a property of the lattice of closed sets, not of the points. Hence:
- The powerset \(\mathbb{P}(X)\) of a Noetherian space \(X\) is Noetherian.

Yes, Noetherianness is a localic property.
Category of sober Noetherian spaces \(\cong\) Locales with no infinite monotonic chain

\section*{The powerset of a Noetherian space}
* The powerset \(\mathbb{P}(X)\) of a Noetherian space \(X\) is Noetherian.
* This came out as a surprise in 2007. When \(X\) is a wqo (with the Alexandroff topology), specialization of \(\mathbb{P}(X)\) is \(A \leq^{b} B\) iff every \(a \in A\) is \(\leq\) some \(b \in B\)


\section*{The powerset of a Noetherian space}
* The powerset \(\mathbb{P}(X)\) of a Noetherian space \(X\) is Noetherian.
- This came out as a surprise in 2007. When \(X\) is a wqo (with the Alexandroff topology), specialization of \(\mathbb{P}(X)\) is \(A \leq^{b} B\) iff every \(a \in A\) is \(\leq\) some \(b \in B\)
- But \(\left(\mathbb{P}(X), \leq^{b}\right)\) is not wqo for general wqos \((X, \leq)\) (Rado, 1957)

\section*{Finite words}
* Let \(X^{*}=\{\) finite words on \(X\}\) with word topology: basic open sets \(\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{*} \quad\) (each \(U_{i}\) is open in \(X\) )

\section*{Finite words}
- Let \(X^{*}=\{\) finite words on \(X\}\) with word topology: basic open sets \(\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{*} \quad\) (each \(U_{i}\) is open in \(X\) )
* Specialization quasi-ordering is word embedding \(\leq_{*}\)


\section*{Finite words}
* Let \(X^{*}=\{\) finite words on \(X\}\) with word topology: basic open sets \(\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{*} \quad\) (each \(U_{i}\) is open in \(X\) )
* Specialization quasi-ordering is word embedding \(\leq_{\text {* }}\)
* Theorem (JGL 2013). \(X\) Noetherian iff \(X^{*}\) Noetherian Generalizes Higman's Lemma (Higman 1952): \(X\) wqo iff \(X^{*}\) wqo

\section*{Infinite words}
- Let \(X^{\leq \omega}=\{\) finite or infinite words on \(X\}\) with asymptotic word topology: subbasic open sets \(\left\langle U_{1}, \cdots, U_{n}\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n} X^{\leq \omega}\),
\[
\text { and }\left\langle U_{1}, \cdots, U_{n} ;(\infty) V\right\rangle=X^{*} U_{1} X^{*} \cdots X^{*} U_{n}\left(X^{*} V\right)^{\omega}\left(U_{i}, V \text { open in } X\right)
\]
* Specialization quasi-ordering is (infinite) word embedding

* Theorem (JGL 2021). \(X\) Noetherian iff \(X^{\leq \omega}\) Noetherian No equivalent in wqo theory - except if you adopt bqo theory.

\section*{Transfinite words}
- Let \(X^{<\alpha}=\{\) ordinal-indexed words on \(X\) of length \(<\alpha\}\)

\section*{Transfinite words}
* Let \(X^{<\alpha}=\{\) ordinal-indexed words on \(X\) of length \(<\alpha\}\)
* Regular subword topology better described through subbasic closed sets
\[
F_{1}^{<\alpha_{1} \ldots F_{n}^{<\alpha_{n}}, ~}
\]
where each \(F_{i}\) is closed in \(X\) and each \(\alpha_{i}\) is an ordinal

\section*{Transfinite words}
* Let \(X^{<\alpha}=\{\) ordinal-indexed words on \(X\) of length \(<\alpha\}\)
* Regular subword topology better described through subbasic closed sets
\[
F_{1}^{<\alpha_{1} \ldots F_{n}^{<\alpha_{n}}, ~}
\]
where each \(F_{i}\) is closed in \(X\) and each \(\alpha_{i}\) is an ordinal
* Contains \(X^{*}=X^{<\omega}\) and \(X^{\leq \omega}=X^{<\omega+1}\) as special cases

\section*{Transfinite words}
* Let \(X^{<\alpha}=\{\) ordinal-indexed words on \(X\) of length \(<\alpha\}\)
* Regular subword topology better described through subbasic closed sets
\[
F_{1}^{<\alpha_{1} \ldots F_{n}^{<\alpha_{n}}, ~}
\]
where each \(F_{i}\) is closed in \(X\) and each \(\alpha_{i}\) is an ordinal
- Contains \(X^{*}=X^{<\omega}\) and \(X^{\leq \omega}=X^{<\omega+1}\) as special cases
- Theorem (JGL, Halfon, Lopez 2022, submitted).
\(X\) Noetherian iff \(X^{<\alpha}\) Noetherian
No equivalent in wqo theory - except if you adopt bqo theory... (Warning: specialization \(\neq\) word embedding in general.)

\section*{Topological WSTS}
* So Noetherian spaces go beyond wqos, but do they have any use?
* Of course they do: a reminder of where they come from
* An application in verification

\section*{The origin of Noetherian spaces}
* The spectrum \(\operatorname{Spec}(R)\) of a ring \(R\) is the set of its prime ideals \(p\)
- with the Zariski topology, whose closed subsets are
\(\{p \in \operatorname{Spec}(R) \mid I \subseteq p\}\), where \(I\) ranges over the ideals of \(R\)
* Fact. The spectrum of a Noetherian ring (every monotone chain of ideals is stationary) is Noetherian.
- In particular if \(R=K\left[X_{1}, \cdots, X_{n}\right]\) for some Noetherian ring, e.g., \(\mathbb{Z}\)
* One can compute with ideals, represented by Gröbner bases
(Buchberger 1976)

\section*{An application of Gröbner bases in verification}
* Verification of polynomial programs
(Müller-Olm\&Seidl 2002)
* Propagates ideals of \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\)
backwards, as in the Pre* algorithm
( \(X_{1}, \ldots, X_{n}=\) variables of the program)
```

while (*) {
if (*) { x=2; y=3; }
else { x=3; y=2; }
x = x*y-6; y=0;
if (x}\mp@subsup{x}{}{2}-3*x*y==0
while (*) { x=x+1; y=y-1; };
x = x'+x*y;
}

```
- Terminates because every monotonic chain \(I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{n} \subseteq \cdots\)
of ideals is stationary
* ... very similar to Pre * on WSTS, but
the (infinite) transition system underlying a polynomial program is not a WSTS (inclusion between ideals not a wqo)

\section*{Topological WSTS}
*Definition. A topological WSTS is a transition \(\operatorname{system}(X, \rightarrow)\) with a Noetherian topology \(\leq\) on \(X\) satisfying lower semicontinuity:
for every open subset \(U, \operatorname{Pre}(U)\) is open
*Namely, replace wqo by Noetherian monotonicity by lower semicontinuity
*If the topology is Alexandroff, then Noetherian=wqo,
 lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS

\section*{Topological WSTS}

Definition. A topological WSTS is a transition system \((X, \rightarrow)\) with a Noetherian topology \(\leq\) on \(X\) satisfying lower semicontinuity:
for every open subset \(U, \operatorname{Pre}(U)\) is open
*Namely, replace wqo by Noetherian monotonicity by lower semicontinuity
*If the topology is Alexandroff, then Noetherian=wqo,
 lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS
* Polynomial programs are topological WSTS
— in the Zariski topology of \(\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\)

\section*{Topological coverability is decidable}
* Topological coverability:

INPUT: an initial configuration \(x_{0}\), an open set \(U\) of bad configurations
QUESTION: is there a \(x \in U\) such that \(x_{0} \rightarrow^{*} x\) ?

\section*{Topological coverability is decidable}
*Topological coverability:
INPUT: an initial configuration \(x_{0}\), an open set \(U\) of bad configurations
QUESTION: is there a \(x \in U\) such that \(x_{0} \rightarrow^{*} x\) ?
* An effective topological WSTS is one where:
- open sets are representable
\(-\subseteq\) is decidable on open sets
\(-U \mapsto \operatorname{Pre}(U)\) is computable

\section*{Topological coverability is decidable}
*Topological coverability:
INPUT: an initial configuration \(x_{0}\), an open set \(U\) of bad configurations
QUESTION: is there a \(x \in U\) such that \(x_{0} \rightarrow^{*} x\) ?
* An effective topological WSTS is one where:
- open sets are representable
\(-\subseteq\) is decidable on open sets
\(-U \mapsto \operatorname{Pre}(U)\) is computable
Theorem (JGL 2011.) Topological coverability is decidable on effective topological WSTSs.
*The algorithm is the same as with WSTSs.

Definition. A topological WSTS is a transition system \((X, \rightarrow)\) with a Noetherian topology \(\leq\) on \(X\) satisfying lower semicontinuity:
for every open subset \(U, \operatorname{Pre}(U)\) is open
```

fun pre* U =
let V = pre U
in
if V\subseteqU
then U
else pre* (U U V)
end;
fun coverability (s, B) =
s in pre* (B);

```

\section*{Concurrent polynomial programs}
*Finite networks of polynomial programs
\[
P_{1}, \ldots, P_{m}
\]
communicating through lossy communication queues on a finite alphabet \(\Sigma\)
while (*) \{
\(\operatorname{recv}(\) SIG_CALC \() \Rightarrow\) if \(\left(^{*}\right)\{\mathrm{x}=2 ; \mathrm{y}=3 ;\}\)

        \(x=x * y-6 ; y=0 ;\)
        if \(\left(x^{2}-3 * x * y==0\right)\)
while \(\left(^{*}\right)\{x=x+1 ; y=y-1 ;\)
1se send (SIG_FUZZ)
\(\mathrm{x}=\mathrm{x}^{2}+\mathrm{x} * \mathrm{y}\);
recv (SIG_QUIT) \(\Rightarrow\) return

\section*{Concurrent polynomial programs}
*Finite networks of polynomial programs
\[
P_{1}, \ldots, P_{m}
\]
communicating through lossy communication queues on a finite alphabet \(\Sigma\)
while (*) \{
\(\operatorname{recv}(\) SIG_CALC \() \Rightarrow \operatorname{if}(*)\{x=2 ; y=3 ;\}\)

\(\mathrm{x}=\mathrm{x} * \mathrm{y}-6 ; \mathrm{y}=0\);
if \(\left(x^{2}-3 * x * y==0\right)\)
while \(\left(^{*}\right)\{x=x+1\); \(y=y\)
(send ( \(\mathrm{x}=\mathrm{x}+1, \mathrm{y}=\mathrm{y}-1 ;\}\); \(\mathrm{x}=\mathrm{x}^{2}+\mathrm{x} * \mathrm{y}\); recv \((\) SIG_QUIT \() \Rightarrow\) return
letters can spontaneously vanish
from communication queues
(needed for decidability... and rather realistic)

\section*{Concurrent polynomial programs}
*Finite networks of polynomial programs
\[
P_{1}, \ldots, P_{m}
\] communicating through lossy communication queues on a finite alphabet \(\Sigma\)
*State space \(=\) finite product of - spectra of polynomial rings \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\), one for each \(P_{i}\) \(-\Sigma^{*}\), with word topology, one for each communication queue This is Noetherian, because:

Proposition. Any finite product of Noetherian spaces is Noetherian.

\section*{Concurrent polynomial programs}
*Those are topological WSTSs (lossiness necessary) Hence: Topological coverability is decidable for concurrent polynomial programs.

\section*{* Theorem (JGL 2011).}
\(\mathrm{a}=* ; \mathrm{b}=0 ;\)
while \(\left(^{*}\right)\{\)
recv \((\) SIG_FUZZ \() \Rightarrow\) send (SIG_CALC); \(\mathrm{b}=\mathrm{b}+1\);
if \((\mathrm{a} \neq \mathrm{b})\{\mathrm{a}=\mathrm{a}+1 ;\}\)
\(c=a * b ;\)
\(\mid \operatorname{recv}\left(S I G \_Q U I T\right) \Rightarrow\) return;
letters can spontaneously vanish
from communication queues
(needed for decidability... and rather realistic)

\section*{Concurrent polynomial programs}
*Those are topological WSTSs (lossiness necessary) Hence:
* Theorem (JGL 2011).

Topological coverability is decidable for concurrent polynomial programs.
*You still have to prove effectivity. For that, you need to find a representation for open sets. But open sets are no longer of the form \(\uparrow\left\{x_{1}, \cdots, x_{n}\right\}\)

\section*{Representations, sobrifications}

\section*{Representing open sets: the trick}
* Embed state space \(X\) into its sobrification \(X^{s}\)


\section*{Representing open sets: the trick}
* Embed state space \(X\) into its sobrification \(X^{s}\)


\section*{Sober spaces and sobrifications}
* A closed set \(F \in \mathscr{H} X\) is irreducible iff for all \(F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}\)


\section*{Sober spaces and sobrifications}
* A closed set \(F \in \mathscr{H} X\) is irreducible iff for all \(F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}\)
*Every set \(\downarrow x\) is irreducible closed \(X\) is sober iff \(\mathrm{T}_{0}\)
and those are the only irreducible closed sets

E.g., \(\mathscr{H} X, \operatorname{Spec}(R)\),
but not \(\mathbb{N}_{\text {cof }} X^{*}\) for example

\section*{Sober spaces and sobrifications}
* A closed set \(F \in \mathscr{H} X\) is irreducible iff for all \(F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}\)
*Every set \(\downarrow x\) is irreducible closed \(X\) is sober iff \(\mathrm{T}_{0}\) and those are the only irreducible closed sets
*The sobrification \(X^{s}=\{F \in \mathscr{H} X \mid F\) irreducible \(\}\), seen as subspace of \(\mathscr{H} X\) is always sober, and \(X\) embeds into \(X^{s}\) through \(x \mapsto \downarrow x\)
E.g., \(\mathscr{H} X, \operatorname{Spec}(R)\),
but not \(\mathbb{N}_{\text {cof }}, X^{*}\) for example

\section*{Sober spaces and sobrifications}
* A closed set \(F \in \mathscr{H} X\) is irreducible iff for all \(F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}\)
* Every set \(\downarrow x\) is irreducible closed \(X\) is sober iff \(\mathrm{T}_{0}\) and those are the only irreducible closed sets
*The sobrification \(X^{s}=\{F \in \mathscr{H} X \mid F\) irreducible \(\}\), seen as subspace of \(\mathscr{H} X\) is always sober, and \(X\) embeds into \(X^{s}\) through \(x \mapsto \downarrow x\)
E.g., \(\mathscr{H} X, \operatorname{Spec}(R)\),
but not \(\mathbb{N}_{\text {cof }} X^{*}\) for example
* \(X\) and \(X^{s}\) have isomorphic lattices of open subsets

\section*{Sober spaces and sobrifications}
* A closed set \(F \in \mathscr{H} X\) is irreducible iff for all \(F_{1}, \cdots, F_{n} \in \mathscr{H} X, F \subseteq \bigcup_{i} F_{i} \Rightarrow \exists i, F \subseteq F_{i}\)
*Every set \(\downarrow x\) is irreducible closed \(X\) is sober iff \(\mathrm{T}_{0}\) and those are the only irreducible closed sets

*The sobrification \(X^{s}=\{F \in \mathscr{H} X \mid F\) irreducible \(\}\), seen as subspace of \(\mathscr{H} X\) is always sober, and \(X\) embeds into \(X^{s}\) through \(x \mapsto \downarrow x\)
E.g., \(\mathscr{H} X, \operatorname{Spec}(R)\),
but not \(\mathbb{N}_{\text {cof }}, X^{*}\) for example

In particular,
\(X\) Noetherian iff \(X^{s}\) Noetherian

\section*{Representing open sets: the trick}
*Embed state space \(X\) into its sobrification \(X^{s}\)


\section*{Representing open sets: the trick}
*Embed state space \(X\) into its sobrification \(X^{s}\)


\section*{Representing open sets: the trick}
*Embed state space \(X\) into its sobrification \(X^{s}\)
* Both have isomorphic lattices of open sets


\section*{Representing open sets: the trick}
* Embed state space \(X\) into its sobrification \(X^{s}\)
* Both have isomorphic lattices of open sets
*Represent open sets \(U\) by their complements: closed sets \(C\)


\section*{Representing open sets: the trick}
* Embed state space \(X\) into its sobrification \(X^{s}\)
* Both have isomorphic lattices of open sets
- Represent open sets \(U\) by their complements: closed sets \(C\)


\section*{Representing open sets: the trick}
*Embed state space \(X\) into its sobrification \(X^{s}\)
* Both have isomorphic lattices of open sets
*Represent open sets \(U\) by their complements: closed sets \(C\)
*Now:
In a sober Noetherian space, every closed set \(C\) is a finitary subset \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\).


Reminder
Proposition. If:
\(-X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology
and the closed sets are exactly the finitary subse

\section*{Representing open sets: the trick}
* Embed state space \(X\) into its sobrification \(X^{s}\)
* Both have isomorphic lattices of open sets
*Represent open sets \(U\) by their complements: closed sets \(C\)
*Now:
In a sober Noetherian space, every closed set \(C\) is a finitary subset \(\downarrow\left\{x_{1}, \cdots, x_{n}\right\}\).
*Hence we can represent \(U\) by
(the complement of the downward closure in \(X^{s}\) )
of finitely many points... in \(X^{s}\)


Reminder
Proposition. If:
- \(X\) is well-founded
- (Property T) \(X\) is finitary
- (Property W) For all \(x, y \in X, \downarrow x \cap \downarrow y\) is finitary then \(X\) is Noetherian in the upper topology
and the closed sets are exactly the finitary subse

\section*{Representing points in sobrifications}
*For a finite set \(\Sigma\), with the discrete topology, \(\Sigma^{s}=\Sigma\)
*Products: \((X \times Y)^{s}=X^{s} \times Y^{s}\)
*Spec( \(\left.\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\) : already sober, points \(=\) prime ideals, represented as Gröbner bases
* \(\left(X^{*}\right)^{s}\) consists of word products
\[
\begin{aligned}
P::= & \epsilon\left|C^{?} P\right| F^{*} P \\
& \text { with } C \in X^{s}, F=C_{1} \cup \cdots \cup C_{n}\left(C_{i} \in X^{s}\right)
\end{aligned}
\]

\section*{Representing points in sobrifications}
*For a finite set \(\Sigma\), with the discrete topology, \(\Sigma^{s}=\Sigma\)
* Products: \((X \times Y)^{s}=X^{s} \times Y^{s}\)
* \(\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\) : already sober, points \(=\) prime ideals, represented as Gröbner bases
* \(\left(X^{*}\right)^{s}\) consists of word products \(\qquad\) with \(C \in X^{s}, F=C_{1} \cup \cdots \cup C_{n}\left(C_{i} \in X^{s}\right)\)

\section*{Representing points in sobrifications}
*For a finite set \(\Sigma\), with the discrete topology, \(\Sigma^{s}=\Sigma\)
* Products: \((X \times Y)^{s}=X^{s} \times Y^{s}\)
* \(\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\) : already sober, points \(=\) prime ideals, represented as Gröbner bases
* \(\left(X^{*}\right)^{s}\) consists of word products

\(\qquad\)


\section*{Representing points in sobrifications}
*For a finite set \(\Sigma\), with the discrete topology, \(\Sigma^{s}=\Sigma\)
* Products: \((X \times Y)^{s}=X^{s} \times Y^{s}\)
* \(\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\) : already sober, points \(=\) prime ideals, represented as Gröbner bases

* \(\left(X^{*}\right)^{s}\) consists of word products \(\qquad\)
Other word products, \(\quad P::=\epsilon\left|C^{?} P\right| F^{*} P\)
\(C_{1}^{s} C_{2}^{\prime} F_{1}^{\text {e.g.". }}\)
*All those are representable on a computer (Finkel, JGL 2009, 2021)

\section*{Statures of Noetherian spaces}
* Maximal order types of well-partial-orderings
* Statures of Noetherian spaces as generalization of maximal order types
* ... we are not really changing the subject, and we will use the representations of points in \(X^{S}\) again

\section*{Maximal order types}
* A well-partial-ordering is a well-quasi-ordering that is antisymmetric
* Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions are all well-founded
Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its order type

\section*{Maximal order types}
* A well-partial-ordering is a well-quasi-ordering that is antisymmetric
* Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions are all well-founded
Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its order type

Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.

\section*{Maximal order types}
* A well-partial-ordering is a well-quasi-ordering that is antisymmetric
* Theorem (Wolk 1967). A wpo is a partial ordering whose linear extensions are all well-founded
Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its order type
* Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.
* Any meaningful equivalent of that notion for Noetherian spaces? But first, why should we bother about maximal order types anyway?

\section*{Why bother about maximal order types?}
* First studied by de Jongh and Parikh (1977) then Schmidt (1979)
* Many applications in proof theory (reverse mathematics):

Simpson (1985), after Friedman
van den Meeren, Rathjen, Weiermann \((2014,2015)\) etc.
* Ordinal complexity of the size-change principle for proving the termination of programs and rewrite systems

Blass and Gurevich (2008)
* and...

\section*{Why bother about maximal order types?}
* Figueira, Figueira, Schmitz and Schnoebelen (2011), Schmitz and Schnoebelen (2011)

\section*{(and others)}
obtain complexity upper bounds for algorithms whose termination
is based upon wqo arguments (e.g., coverability)

Theorem 5.3 (Main Theorem).
Let \(g\) be a smooth control function eventually bounded by a function in \(\mathscr{F}_{\gamma^{\prime}}\)
length function (complexity upper bound)
and let \(A\) be an exponential nwqo
with maximal order type \(<\omega^{\beta+1}\).
Then \(L_{A, g}\) is bounded by a function in:
* \(\mathscr{F}_{\beta}\) if \(\gamma<\omega\) (e.g., if \(g\) is primitive recursive) and \(\beta \geq \omega\)
\(\mathscr{F}_{\gamma+\beta}\) if \(\gamma \geq 2\) and \(\beta<\omega\).
class of functions elementary recursive in \(F_{\beta}\)

From S. Schmitz, Ph. Schnoebelen, Multiply-recursive upper bounds with Higman's Lemma. ICALP 2011.

\section*{Why bother about maximal order types?}
* Figueira, Figueira, Schmitz and Schnoebelen (2011), Schmitz and Schnoebelen (2011)
obtain complexity upper bounds for algorithms whose termination
is based upon wqo arguments (e.g., coverability)
* E.g., coverability
length function
(complexity upper bound)

Theorem 5.3 (Main Theorem).
Let \(g\) be a smooth control function eventually bounded by a function in \(\mathscr{F}_{\gamma^{\prime}}\) and let \(A\) be an exponential nwqo with maximal order type \(<\omega^{\beta+1}\). Then \(L_{A, g}\) is bounded by a function in:
* \(\mathscr{F}_{\beta}\) if \(\gamma<\omega\) (e.g., if \(g\) is primitive recursive) and \(\beta \geq \omega\) \(\mathscr{F}_{\gamma+\beta}\) if \(\gamma \geq 2\) and \(\beta<\omega\). in lossy channel systems is \(F_{\sigma^{\omega}}\)-complete.
(way larger than Ackermann)
class of functions elementary recursive in \(F_{\beta}\)

\section*{Going topological}
* Let us return to the question of finding a Noetherian analogue of maximal order types

\section*{A wrong idea: minimal \(\mathrm{T}_{0}\) topologies}
- Partial ordering ~ \(\mathrm{T}_{0}\) topology Extension ~ coarser \(\mathrm{T}_{0}\) topology
Linear extension \(=\) maximal extension \(\sim\) minimal \(T_{0}\) topology
* Studied by Larson (1969).

A minimal \(T_{0}\) topology is necessarily the upper topology of a linear ordering.
* Unfortunately, minimal \(\mathrm{T}_{0}\) topologies do not exist in general: Fact. \(\mathbb{R}_{\text {cof }}\) is Noetherian, but has no coarser minimal \(T_{0}\) topology.
(Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)

\section*{Statures of wpos}
* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo \((X, \leq)\)
The stature of \(X\)
\(=\) ordinal rank \(\|X\|\) of the top element \(X\)
in the poset ( \(\mathscr{D} X, \subseteq)\) of downwards-closed subsets of \(X\)
* Ordinal rank inductively defined by:
\[
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{D} X, F^{\prime} \subsetneq F\right\}
\]

\section*{Statures of wpos}
* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo ( \(X, \leq\) )
The stature of \(X\)

\section*{\(=\) ordinal rank \(||X||\) of the top element \(X\) in the poset \((\mathscr{D} X, \subseteq)\) of downwards-closed subsets of \(X\)}
* Ordinal rank inductively defined by:
\[
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{D} X, F^{\prime} \subsetneq F\right\}
\]


\section*{Statures of wpos}
* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo \((X, \leq)\)
The stature of \(X\)

\section*{\(=\) ordinal rank \(||X||\) of the top element \(X\) in the poset \((\mathscr{D} X, \subseteq)\) of downwards-closed subsets of \(X\)}
* Ordinal rank inductively defined by:
\[
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{D} X, F^{\prime} \subsetneq F\right\}
\]
* Example: \(X=\{0,1,2\}\), ordered by equality
maximal order type \(=3\)


\section*{Statures of wpos}
* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo \((X, \leq)\)
The stature of \(X\)

\section*{\(=\) ordinal rank \(||X||\) of the top element \(X\) in the poset ( \(\mathscr{D}, \subseteq\) ) of downwards-closed subsets of \(X\)}
* Ordinal rank inductively defined by:
\[
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{D} X, F^{\prime} \subsetneq F\right\}
\]
* Example: \(X=\{0,1,2\}\), ordered by equality

maximal order type \(=3\)


\section*{Statures of Noetherian spaces}
* Definition. The stature of a Noetherian space \(X\) is the ordinal rank \(||X||\) of the top element \(X\)
in the poset ( \(\mathscr{H} X, \subseteq\) ) of closed subsets of \(X\)
\[
\|F\|=\sup \left\{\left\|F^{\prime}\right\|+1 \mid F^{\prime} \in \mathscr{H} X, F^{\prime} \subsetneq F\right\}
\]
* Matches previous definition:
for a wqo in its Alexandroff topology, closed \(=\) downwards-closed
\(X\) is Noetherian iff:
(6) Every antitonic chain \(F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots\) of closed subsets is stationary
(7) \(\mathscr{H} X\) is well-founded.

\section*{Some statures of Noetherian spaces}
* We have already obtained statures of quite a few Noetherian constructions
(JGL, Laboureix 2022)
* Let me focus on \(X^{*}\)


\section*{The stature of \(\mathrm{X}^{*}\)}
* Theorem (JGL, Laboureix 2022). If \(X \neq \varnothing\) is Noetherian and \(\alpha=\|X\|\), then \(\left\|X^{*}\right\|=\omega^{\omega^{\alpha \pm 1}}\)
( +1 if \(\alpha=\epsilon_{\beta}+n,-1\) if \(\alpha\) finite)
* Not very surprising: already known when \(X\) wqo (Schmidt 1979)

\section*{The stature of \(\mathrm{X}^{*}\)}
* Theorem (JGL, Laboureix 2022). If \(X \neq \varnothing\) is Noetherian and \(\alpha=\|X\|\),
\[
\text { then }\left\|X^{*}\right\|=\underset{\left(+1 \text { if } \alpha=\epsilon_{\beta}+n,-1 \text { if } \alpha \text { finite }\right)}{\omega^{\alpha \pm 1}}
\]
* Not very surprising: already known when \(X\) wqo (Schmidt 1979)
- The proof is very different, and is localic.

Explicitly, we do not reason on points (words),
but on closed sets \(=\) finite unions of word products
\[
\begin{aligned}
& \left(X^{*}\right)^{s} \text { consists of word products } \\
& P::=\epsilon\left|C^{?} P\right| F^{*} P \\
& \text { with } C \in X^{s}, F=C_{1} \cup \cdots \cup C_{n}\left(C_{i} \in X^{s}\right)
\end{aligned}
\]

\section*{An excerpt from the proof of \(\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}\)}
- Let \(F \subsetneq F \cup C, \mathbf{C}_{0}=\varnothing, \mathbf{C}_{n+1}=\left(F^{*} C^{?}\right)^{n} F^{*}, \mathscr{A}_{n}=\left\{\mathbf{A} \in \mathscr{H} X \mid \mathbf{C}_{n} \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1}\right\}\)
* \(\operatorname{Map}\left(\mathbf{B} \subsetneq \mathbf{B}^{+}\right) \in \operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right), \mathbf{A} \in \mathscr{A}_{n}\) to \(\left(F^{*} C^{?}\right)^{n+1} \mathbf{B} \cup \mathbf{A} C^{?} \mathbf{B}^{+} \cup \mathbf{C}_{n+1}\)

\section*{An excerpt from the proof of \(\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}\)}
* Let \(F \subsetneq F \cup C, \mathbf{C}_{0}=\varnothing, \mathbf{C}_{n+1}=\left(F^{*} C^{?}\right)^{n} F^{*}, \mathscr{A}_{n}=\left\{\mathbf{A} \in \mathscr{H} X \mid \mathbf{C}_{n} \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1}\right\}\)
- Map \(\left(\mathbf{B} \subsetneq \mathbf{B}^{+}\right) \in \operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right), \mathbf{A} \in \mathscr{A}_{n}\) to \(\left(F^{*} C^{?}\right)^{n+1} \mathbf{B} \cup \mathbf{A} C^{?} \mathbf{B}^{+} \cup \mathbf{C}_{n+1}\)

\author{
A finite union of word products
}

\section*{An excerpt from the proof of \(\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}\)}
* Let \(F \subsetneq F \cup C, \mathbf{C}_{0}=\varnothing, \mathbf{C}_{n+1}=\left(F^{*} C^{?}\right)^{n} F^{*}, \mathscr{A}_{n}=\left\{\mathbf{A} \in \mathscr{H} X \mid \mathbf{C}_{n} \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1}\right\}\)
* Map \(\left(\mathbf{B} \subsetneq \mathbf{B}^{+}\right) \in \operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right), \mathbf{A} \in \mathscr{A}_{n}\) to \(\left(F^{*} C^{?}\right)^{n+1} \mathbf{B} \cup \mathbf{A} C^{?} \mathbf{B}^{+} \cup \mathbf{C}_{n+1}\)
* This is strictly monotonic : \(\operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right) \times_{\text {lex }} \mathscr{A}_{n} \rightarrow \mathscr{A}_{n+1}\)

A finite union of word products

\section*{An excerpt from the proof of \(\left\|X^{*}\right\| \geq \omega^{\omega^{\alpha \pm 1}}\)}
* Let \(F \subsetneq F \cup C, \mathbf{C}_{0}=\varnothing, \mathbf{C}_{n+1}=\left(F^{*} C^{?}\right)^{n} F^{*}, \mathscr{A}_{n}=\left\{\mathbf{A} \in \mathscr{H} X \mid \mathbf{C}_{n} \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1}\right\}\)
* Map \(\left(\mathbf{B} \subsetneq \mathbf{B}^{+}\right) \in \operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right), \mathbf{A} \in \mathscr{A}_{n}\) to \(\left(F^{*} C^{?}\right)^{n+1} \mathbf{B} \cup \mathbf{A} C^{?} \mathbf{B}^{+} \cup \mathbf{C}_{n+1}\)
* This is strictly monotonic : \(\operatorname{Step}\left(\mathscr{H}\left(F^{*}\right)\right) \times_{\text {lex }} \mathscr{A}_{n} \rightarrow \mathscr{A}_{n+1}\)
- If \(\left\|F^{*}\right\| \geq \omega^{\omega^{\beta}}\) then \(\left\|\mathbf{C}_{n+1}\right\| \geq \omega^{\omega^{\beta} \times(n+1)}\),

A finite union of word products
so \(\left\|(F \cup C)^{*}\right\| \geq \omega^{\omega^{\rho+1}}\), by taking suprema over \(n \in \mathbb{N}\)
- This is the key step in a well-founded induction on \(F \in \mathscr{H} X\) showing \(\left\|F^{*}\right\| \geq \omega^{\omega^{|F|| | t 1}}\)
* Finally, let \(F=X\); by definition, \(\|X\|=\alpha\).

\section*{The stature of \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\)}
* The ordinal height of the lattice of ideals of \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\) is \(\omega^{n}+1\) (Aschenbrenner, Pong 2004)
* Hence \(\left\|\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\right\|=\omega^{n} \quad\) (argument not quite written out yet, probably well-known)

\section*{The stature of \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\)}
* The ordinal height of the lattice of ideals of \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\) is \(\omega^{n}+1\) (Aschenbrenner, Pong 2004)
* Hence \(\left\|\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\right)\right\|=\omega^{n} \quad\) (argument not quite written out yet, probably well-known)
- Together with \(\|X \times Y| |=\| X|\mid \otimes\|Y\| \quad\) (JGL, Laboureix 2022)
extending the same formula on wqos (de Jongh, Parikh 1977),
we obtain the stature of the state space of concurrent polynomial programs...

\section*{The stature of the state space of concurrent polynomial programs}
* m programs, each on \(n\) variables \(p\) queues, on \(k \geq 1\) letters
* Stature of state space \(=\)
\[
\begin{aligned}
& \left(\omega^{n}\right)^{m} \bigotimes\left(\omega^{\omega^{k-1}}\right)^{p} \\
= & \omega^{n m \oplus \omega^{k-1} \cdot p}
\end{aligned}
\]

\section*{Concurrent polynomial programs}

> *Finite networks of polynomial programs
> \(P_{1}, \ldots, P_{m}\) communicating through lossy communication queues on a finite alphabet \(\Sigma\)

 \(\frac{\text { channel } a_{1}}{\underline{a|b| d|a| c \mid}} \rightarrow\) \(=\)
 \(\mathrm{b}=\mathrm{b}+1 \mathrm{i}\),
\(\mathrm{if} f(\mathrm{a} \neq \mathrm{b})\)
\(\{\mathrm{a}=\mathrm{a}=\mathrm{a}+1 ;\}\)
 \(\mid\) recv (SII_QuTIT) \(\Rightarrow\) return;


letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic
*State space = finite product of
- spectra of polynomial rings \(\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]\), one for each \(P_{i}\) \(-\Sigma^{*}\), with word topology, one for each communication queue
* Note that the contribution of the polynomial programs ( \(n m\) ) is much lower than the contribution of the queues ( \(\omega^{k-1} \cdot p\) )

\section*{Our findings on statures so far}
* We have already obtained statures of quite a few Noetherian constructions

\section*{Our findings on statures so far}
* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
 https://arxiv.org/abs/2112.06828

\section*{Our findings on statures so far}
* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
* and new formulae for non-wqo

Noetherian spaces
\begin{tabular}{|c|c|}
\hline X & | | X | | \\
\hline finite \(\mathrm{T}_{0}\) & \(\operatorname{card} X\) \\
\hline ordinal \(\alpha\) (Alex.) & \(\alpha\) \\
\hline \(Y+Z\) & \(\||Y||\oplus||Z| \mid ~\) \\
\hline \(Y+{ }_{\text {lex }} \mathrm{Z}\) & \(||Y| I+||Z||\) \\
\hline \(Y_{\perp}\) & \(1+||Y||\) \\
\hline \(Y \times Z\) & \(\| Y| | \otimes| | Z| | ~\) \\
\hline fin. words \(Y^{*}\) & \(\omega^{\wedge}\left\{\omega^{\||Y| I t 1\}}\right.\) \\
\hline multisets \(Y^{\ominus}\) & \(\omega^{\bar{\alpha}}[| | \gamma| |=\alpha]\) \\
\hline ordinal \(\alpha\) (Scott) & \(\alpha / \alpha-1\) \\
\hline cofinite topology & \(\min (\operatorname{card} Y, \omega)\) \\
\hline F \(\times\), PY & \(1+||Y|| \ldots \omega^{\| Y| |}\) \\
\hline words, prefix top. & \[
\begin{gathered}
\omega^{\wedge}\left\{\omega^{\beta+1}\right\} \\
{\left[||Y||=\omega^{\wedge}\left\{\omega^{\beta}+\ldots\right\}+\ldots\right]}
\end{gathered}
\] \\
\hline Y<a & \(\leq \omega^{\wedge}\left\{\omega^{(\| Y Y \mid+\alpha) \pm 1\}}\right.\) \\
\hline
\end{tabular}

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022.
https://arxiv.org/abs/2112.06828
Bottom row from JGL, S. Halfon, and A. Lopez, Infinitary Noetherian Constructions II. Transfinite Words and the Regular Subword Topology. Submitted, 2022.

\section*{Our findings on statures so far}
sobrification ranks
* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
* and new formulae for non-wqo

Noetherian spaces
* A related notion: sobrification ranks \(\left|X^{s}\right|\)
\begin{tabular}{|c|c|c|}
\hline X & | | X | | & sob X \\
\hline finite \(\mathrm{T}_{0}\) & card \(X\) & \(\leq \operatorname{card} X\) \\
\hline ordinal \(\alpha\) (Alex.) & \(\alpha\) & \(\alpha / \alpha+1\) \\
\hline \(Y+Z\) & \(\| Y| | \oplus| | Z| |\) & \(\max (\) sob \(Y\), sob Z \()\) \\
\hline \(Y+{ }_{\text {lex }} \mathbf{Z}\) & \(\| Y| |+||Z||\) & sob \(Y+\) sob \(Z\) \\
\hline \(Y_{\perp}\) & \(1+||Y||\) & \(1+\) sob Y \\
\hline \(Y \times Z\) & \(\| Y| | \otimes| | Z| | ~\) & \((\) sob \(Y \oplus\) sob Z)-1 \\
\hline fin. Words \(Y^{*}\) & \(\omega^{\wedge}\left\{\omega^{||Y| I t 1}\right\}\) & \(\omega^{\| Y Y \mid+1}\) \\
\hline multisets \(Y^{\ominus}\) & \(\omega^{\bar{\alpha}}[| | \gamma| |=\alpha]\) & \(\omega .||Y||+1 \ldots| | Y| | \otimes \omega+1\) \\
\hline ordinal \(\alpha\) (Scott) & \(\alpha / \alpha-1\) & \(\alpha / \alpha+1\) \\
\hline cofinite topology & \(\min (\operatorname{card} Y, \omega)\) & \(1 / 2\) \\
\hline F \(X, ~ P Y\) & \(1+||Y|| \ldots \omega^{\|Y\|}\) & \(||Y||+1\) \\
\hline words, prefix top. & \[
\begin{gathered}
\omega^{\wedge}\left\{\omega^{\beta+1}\right\} \\
{\left[||Y||=\omega^{\wedge}\left\{\omega^{\beta}+\ldots\right\}+\ldots\right]}
\end{gathered}
\] & \[
\begin{gathered}
\omega^{\alpha+1}+1 \\
{\left[||Y||-1=\omega^{\alpha+}+\ldots\right]}
\end{gathered}
\] \\
\hline Y<a & \(\leq \omega^{\wedge}\left\{\omega^{(\|Y\|+\alpha) \pm 1}\right\}\) & \(\leq \omega^{(\||Y| \mid+\alpha) \pm 1}\) \\
\hline
\end{tabular}

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022.
https://arxiv.org/abs/2112.06828
Bottom row from JGL, S. Halfon, and A. Lopez, Infinitary Noetherian Constructions II. Transfinite Words and the Regular Subword Topology. Submitted, 2022.

\section*{Our findings on statures so far}
* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
* and new formulae for non-wqo

Noetherian spaces
* A related notion: sobrification ranks \(\left|X^{s}\right|\)
* Missing: finite trees, notably (see Schmidt 1979 for the wqo case)
\begin{tabular}{|c|c|c|}
\hline X & | | X | | & sob X \\
\hline finite \(\mathrm{T}_{0}\) & card \(X\) & \(\leq \operatorname{card} X\) \\
\hline ordinal \(\alpha\) (Alex.) & \(\alpha\) & \(\alpha / \alpha+1\) \\
\hline \(Y+Z\) &  & \(\max (\) sob \(Y\), sob Z) \\
\hline \(Y+{ }_{\text {lex }} Z\) & \(\| Y|I+||Z||\) & sob Y+sob Z \\
\hline \(Y_{\perp}\) & \(1+||Y||\) & \(1+\) sob \(Y\) \\
\hline \(Y \times Z\) & \(\| Y| | \otimes| | Z| | ~\) & \((\) sob \(Y \oplus\) sob Z)-1 \\
\hline fin. words \(Y^{*}\) & \(\omega^{\wedge}\left\{\omega^{\||Y| I+1}\right\}\) & \(\omega^{\| Y Y \mid+1}\) \\
\hline multisets \(Y^{\ominus}\) & \(\omega^{\bar{\alpha}}[| | \gamma| |=\alpha]\) & \(\omega .||Y||+1 \ldots| | Y| | \otimes \omega+1\) \\
\hline ordinal \(\alpha\) (Scott) & \(\alpha / \alpha-1\) & \(\alpha / \alpha+1\) \\
\hline cofinite topology & \(\min (\operatorname{card} Y, \omega)\) & \(1 / 2\) \\
\hline FY, PY & \(1+||Y|| \ldots \omega \omega^{\| Y| |}\) & \(||Y||+1\) \\
\hline words, prefix top. & \[
\begin{gathered}
\omega^{\wedge}\left\{\omega^{\beta+1}\right\} \\
{\left[||Y||=\omega^{\wedge}\{\omega \beta+\ldots\}+\ldots\right]}
\end{gathered}
\] & \[
\begin{gathered}
\omega^{\alpha+1+1} \\
{\left[||Y||-1=\omega^{\alpha+} \ldots\right]}
\end{gathered}
\] \\
\hline Y<a & \(\leq \omega^{\wedge}\left\{\omega^{(\| Y Y \mid I+\alpha)+1}\right.\) & \(\leq \omega^{(\| Y \mid I+\alpha) \pm 1}\) \\
\hline
\end{tabular}

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022. https://arxiv.org/abs/2112.06828

\section*{Our findings on statures so far}
* We have already obtained statures of quite a few Noetherian constructions
* We retrieve the known formulae from wqo theory, which extend properly
* and new formulae for non-wqo

Noetherian spaces
* A related notion: sobrification ranks \(\left|X^{s}\right|\)
* Missing: finite trees, notably (see Schmidt 1979 for the wqo case)
\begin{tabular}{|c|c|c|}
\hline X & | | X | | & sob X \\
\hline finite \(\mathrm{T}_{0}\) & \(\operatorname{card} X\) & \(\leq \operatorname{card} X\) \\
\hline ordinal \(\alpha\) (Alex.) & \(\alpha\) & \(\alpha / \alpha+1\) \\
\hline \(Y+Z\) & \(\| \mid\) | \({ }^{\text {l }}\) & max(sob Y, sob Z) \\
\hline \(Y+\frac{1 e x}{} \mathbf{Z}\) & \(||Y| I+||Z||\) & sob \(Y+\) sob \(Z\) \\
\hline \(Y_{\perp}\) & \(1+||Y||\) & \(1+\) sob \(Y\) \\
\hline \(Y \times Z\) & \(\| Y| | \otimes| | z| | ~\) & ( sob Y \(\oplus\) sob Z)-1 \\
\hline fin. words \(Y^{*}\) & \(\omega^{\wedge}\left\{\omega^{||Y|| \pm 1\}}\right.\) & \(\omega^{\| \| Y \| \pm 1}\) \\
\hline multisets \(Y^{\ominus}\) & \(\omega^{\hat{\alpha}}[| | Y| |=\alpha]\) & \(\omega .||Y| I+1 \ldots||Y| \mid \otimes \omega+1\) \\
\hline ordinal \(\alpha\) (Scott) & \(\alpha / \alpha-1\) & \(\alpha / \alpha+1\) \\
\hline cofinite topology & \(\min (\operatorname{card} Y, \omega)\) & 1 / 2 \\
\hline FY, PY & \(1+\| Y| | \ldots \omega^{\|Y\|}\) & \(||Y||+1\) \\
\hline words, prefix top. & \[
\begin{gathered}
\omega^{\wedge}\left\{\omega^{\beta+1}\right\} \\
{\left[||Y||=\omega^{\wedge}\left\{\omega^{\beta}+\ldots\right\}+\ldots\right]}
\end{gathered}
\] & \[
\begin{gathered}
\omega^{\alpha+1}+1 \\
{\left[||Y||-1=\omega^{\alpha+}+\ldots\right]}
\end{gathered}
\] \\
\hline Y<a & \(\left.\leq \omega^{\wedge}\left\{\omega^{(\|Y\|} \|+\alpha\right) \pm\right\}\) & \(\leq \omega^{(\|Y\|+\alpha) \pm 1}\) \\
\hline
\end{tabular}

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022.
https://arxiv.org/abs/2112.06828
* Application to actual complexity upper bounds?

\section*{Conclusion}

\section*{Conclusion, research directions}
* A rich theory extending wqos into the topological: Noetherian spaces
* Old results extend, new results pop up (powersets, spectra, infinite words)
* Ordinal analysis: the stature \(||X||=\) ordinal rank of top element of \(\mathscr{H} X\) as an analogue of maximal order types
* Still in its infancy```


[^0]:    * Applications:
    classification of graphs (Kuratowski, Robertson-Seymour) verification (computer science)
    model theory (logic: Fraïssé, Jullien, Pouzet)

