

Jean Goubault-Larrecq

Noetherian spaces, wqos, and their statures

TACL 2022 Coimbra, Portugal

With Bastien Laboureix, Aliaume Lopez, Simon Halfon

Outline

- * Noetherian spaces and wqos
- * A computer scientist's view
- * Sobrifications of Noetherian spaces, and their representations
- * Statures of Noetherian spaces and maximal order types of wqos

Noetherian spaces and wqos

Well-quasi-orders

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain.
- * Defn. Such a quasi-ordering ≤ is called a well-quasi-order (wqo).
- * Applications: classification of graphs (Kuratowski, Robertson-Seymour) verification (computer science) model theory (logic: Fraïssé, Jullien, Pouzet)

Examples

- * N, with its usual ordering More generally, any total well-founded order
- * Every finite set, with any quasi-ordering
- * Finite disjoint sums, finite products of wqos are wqo
- * Images of wqos by monotonic maps are wqo (in particular quotients)
- * Inverse images of wqos by order-reflecting maps are wqo (in particular subsets)
- * Higman's Lemma. Let $X^* = \{\text{finite words over alphabet } X\}$ ordered by word embedding \leq_* . Then X wqo $\Leftrightarrow X^*$ wqo
- * Kruskal's Theorem. Let $\mathcal{T}(X) = \{\text{finite trees with } X\text{-labeled vertices}\}$ ordered by homeomorphic tree embedding \leq_T . Then X wqo $\Leftrightarrow \mathcal{T}(X)$ wqo.
- * And so on.

A computer scientist's view

Transition systems

* A transition system is just a directed graph (not necessarily finite)

Vertices are **configurations** (of a computer system, say) Computation proceeds in steps $C \rightarrow C'$ (along edges)

* Reachability: Given a starting configuration C_0 , and a set B of configurations, can one reach B from C_0 ?

(i.e., is there a $C \in B$ such that $C_0 \to^* C$?)

- * Decidable for finite transition systems (in polynomial time)
- * In general **undecidable**: consider the graph of configurations of a universal Turing machine, $B = \{accepting configurations\}$

Verification

* In practice, a transition system is a model of some computer system (e.g., a program)

* and *B* is the set of **bad configurations**, typically where some property of interest is violated.

Illustration:

Well-structured transition systems

(Abdulla, Čerāns, Jonsson & Tsay 2000, Finkel & Schnoebelen 2001)

- * A very interesting class of (infinite) transition systems where **coverability** (a special form of reachability) is **decidable**
- * Definition. A well-structured transition system (WSTS) is

a transition system (X, \rightarrow)

with a **wqo** \leq on X

satisfying (strong) monotonicity:

... and many other examples

Well-structured transition systems

(Abdulla, Čerāns, Jonsson & Tsay 2000, Finkel & Schnoebelen 2001)

- * A very interesting class of (infinite) transition systems where **coverability** (a special form of reachability) is **decidable**
- * Definition. A well-structured transition system (WSTS) is

a transition system (X, \rightarrow)

with a **wqo** \leq on X

satisfying (strong) monotonicity:

... and mar

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

Well-structured transition systems

(Abdulla, Čerāns, Jonsson & Tsay 2000, Finkel & Schnoebelen 2001)

- * A very interesting class of (infinite) transition systems where **coverability** (a special form of reachability) is **decidable**
- * Definition. A well-structured transition system (WSTS) is

a transition system (X, \rightarrow)

with a wqo \leq on X

satisfying (strong) monotonicity:

* In order to understand them, we need...

... and mar

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain.

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain.
- * also equivalent to:
 - (4) Every **upwards-closed** subset is the upwards-closure $\uparrow \{x_1, \dots, x_n\}$ of a **finite** set

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain.
- * also equivalent to:
 - (4) Every **upwards-closed** subset is the upwards-closure $\uparrow \{x_1, \dots, x_n\}$ of a **finite** set

If $x \le y$ and x is in the set, then so is y

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain
 - (4) Every **upwards-closed** subset is the upwards-closure $\uparrow \{x_1, \dots, x_n\}$ of a **finite** set

- * Fact. The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - (3) \leq is well-founded and has no infinite antichain
 - (4) Every **upwards-closed** subset is the upwards-closure $\uparrow \{x_1, \dots, x_n\}$ of a **finite** set
- * also equivalent to:
 - (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of upwards-closed subsets is **stationary**

(i.e., all the sets U_n are equal from some rank on)

* Coverability is the special case of reachability where the set B is upwards-closed

```
* Definition. A well-structured transition system (WSTS) is a transition system (X, \to) with a wqo \leq on X satisfying (strong) monotonicity:
```

- * Coverability is the special case of reachability where the set *B* is upwards-closed
- * For each upwards-closed set U, let $Pre(U) = \{x \in X \mid \exists y, x \rightarrow y \in U\}$ (one step predecessors)

Monotonicity entails that Pre(U) is also upwards-closed

```
Definition. A well-structured transition system (WSTS) is a transition system (X, \to) with a wqo ≤ on X satisfying (strong) monotonicity:
```

a transition system (X, \rightarrow)

satisfying (strong) monotonicity:

with a **wqo** \leq on X

- * Coverability is the special case of reachability where the set *B* is upwards-closed *Definition. A well-structured transition system (WSTS) is
- * For each upwards-closed set U, let $Pre(U) = \{x \in X \mid \exists y, x \rightarrow y \in U\}$ (one step predecessors)

Monotonicity entails that Pre(U) is also upwards-closed

* Let $\operatorname{Pre}^{\leq n}(U) = \{x \in X \mid \exists y, x \to^{\leq n} y \in U\}$ Then $\operatorname{Pre}^{\leq 0}(U) \subseteq \operatorname{Pre}^{\leq 1}(U) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(U) \subseteq \cdots$ is a monotonic chain of upwards-closed subsets — therefore, **stationary**

- * Coverability is the special case of reachability where the set B is upwards-closed
- * $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq \cdots$ is a monotonic chain of upwards-closed subsets therefore, **stationary**

Definition. A well-structured transition system (WSTS) is a transition system (X, \to) with a wqo ≤ on X satisfying (strong) monotonicity:

- * Coverability is the special case of reachability where the set *B* is upwards-closed
- * $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq \cdots$ is a monotonic chain of upwards-closed subsets therefore, **stationary**
- * $\operatorname{Pre}^*(B) = \{x \in X \mid \exists y, x \to^* y \in B\}$ is therefore equal to $\operatorname{Pre}^{\leq n}(B)$ for some n

Definition. A well-structured transition system (WSTS) is a transition system
$$(X, \to)$$
 with a wqo ≤ on X satisfying (strong) monotonicity:

a transition system (X, \rightarrow)

satisfying (strong) monotonicity:

with a **wqo** \leq on X

- * Coverability is the special case of reachability where the set *B* is upwards-closed Definition. A well-structured transition system (WSTS) is
- * $\operatorname{Pre}^{\leq 0}(B) \subseteq \operatorname{Pre}^{\leq 1}(B) \subseteq \cdots \subseteq \operatorname{Pre}^{\leq n}(B) \subseteq \cdots$ is a monotonic chain of upwards-closed subsets therefore, **stationary**
- * $\operatorname{Pre}^*(B) = \{x \in X \mid \exists y, x \to^* y \in B\}$ is therefore equal to $\operatorname{Pre}^{\leq n}(B)$ for some n
- * Now note that B is reachable from C_0 iff $C_0 \in \operatorname{Pre}^*(B)$

Coverability is decidable

- * In order to make this argument precise, we really need to reason with effective WSTSs, where
 - points are representable
 - ≤ is decidable
 - $-y \mapsto \{x_1, \dots, x_n\} = \text{Pre}(\uparrow y) \text{ is computable (so one can compute } \text{Pre}(U))$
- * Theorem. (Abdulla et al. 2000, Finkel&Schnoebelen 2001.)
 Coverability is decidable on effective WSTSs.

```
* Definition. A well-structured transition system (WSTS) is a transition system (X, \to) with a wqo \leq on X satisfying (strong) monotonicity:
```

```
fun pre* U =
  let V = pre U
  in
  if V⊆U
    then U
    else pre* (U ∪ V)
  end;

fun coverability (s, B) =
  s in pre* (B);
```

Coverability is decidable

- *In order to make this argument precise, we really need to reason with effective WSTSs, where
 - points are representable
 - ≤ is decidable
 - $-y \mapsto \{x_1, \dots, x_n\} = \text{Pre}(\uparrow y) \text{ is computable (so one can compute } \text{Pre}(U))$
- * Theorem. (Abdulla et al. 2000, Finkel&Schnoebelen 2001.)
 Coverability is decidable on effective WSTSs.
- * Complexity: appalling (EXPSPACE-complete for Petri nets, grows faster than Ackermann for lossy channel systems)

```
Definition. A well-structured transition system (WSTS) is a transition system (X, \to) with a wqo ≤ on X satisfying (strong) monotonicity:
```

```
fun pre* U =
  let V = pre U
  in
  if V⊆U
    then U
    else pre* (U ∪ V)
  end;

fun coverability (s, B) =
  s in pre* (B);
```

Beyond wqos: Noetherian spaces

Going topological

* Every quasi-ordered set (X, \leq) gives rise to a **topological space**, whose open sets are the **upwards-closed** sets (the **Alexandroff topology**)

Going topological

* Every quasi-ordered set (X, \leq) gives rise to a **topological space**, whose open sets are the **upwards-closed** sets

(the Alexandroff topology)

X is wqo iff:

(5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of upwards-closed subsets is **stationary**

* **Definition.** A topological space is **Noetherian** iff every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$

of open subsets is stationary.

Going topological

* Every quasi-ordered set (X, \leq) gives rise to a **topological space**, whose open sets are the **upwards-closed** sets

(the Alexandroff topology)

X is wqo iff:

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of upwards-closed subsets is **stationary**
- * **Definition.** A topological space is **Noetherian** iff every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**.
- * Proposition. (X, \leq) is wqo iff X is Noetherian in its Alexandroff topology.
- * Hence Noetherian spaces generalize wqos

Is the generalization proper?

* Yes. Consider \mathbb{N}_{cof} , the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \mathbb{N})

X is Noetherian iff:

(5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**

Is the generalization proper?

- * Yes. Consider \mathbb{N}_{cof} , the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \mathbb{N})
- * It may be easier to see that \mathbb{N}_{cof} is Noetherian by realizing that:

X is Noetherian iff:

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- * **Proposition.** A space X is Noetherian iff every **antitonic** chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of **closed** subsets is **stationary**.

(Take complements.)

Is the generalization proper?

- * Yes. Consider \mathbb{N}_{cof} , the set of natural numbers with the cofinite topology, whose closed sets are the finite subsets (plus \mathbb{N})
- * It may be easier to see that \mathbb{N}_{cof} is Noetherian by realizing that:

X is Noetherian iff:

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- * **Proposition.** A space X is Noetherian iff every **antitonic** chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of **closed** subsets is **stationary**.

(Take complements.)

* Oh, wait, why does \mathbb{N}_{cof} not arise from a wqo?

The specialization quasi-ordering

- * Every topological space X has a **specialization quasi-ordering**: $x \le y$ iff every open neighborhood of x contains y iff x is in the closure of $\{y\}$
- * The specialization quasi-ordering of (X in the Alexandroff topology of \leq) is \leq
- * The specialization quasi-ordering of \mathbb{N}_{cof} is **equality** $(\mathbb{N}_{cof}$ is $T_1)$ and equality is **never** a wqo on an infinite set

So \mathbb{N}_{cof} is a Noetherian space that does **not** arise from a wqo

- * Let (X, \leq) be a quasi-ordered set. Its **finitary** subsets are $\downarrow \{x_1, \dots, x_n\}$
- * The finitary subsets generate the **upper topology**It, too, has ≤ as specialization quasi-ordering

- * Let (X, \leq) be a quasi-ordered set. Its **finitary** subsets are $\downarrow \{x_1, \dots, x_n\}$
- * The finitary subsets generate the **upper topology** It, too, has ≤ as specialization quasi-ordering

The upper topology is the **coarsest** topology with ≤ as specialization The Alexandroff topology is the **finest**.

- * Let (X, \leq) be a quasi-ordered set. Its **finitary** subsets are $\downarrow \{x_1, \dots, x_n\}$
- * The finitary subsets generate the **upper topology** It, too, has ≤ as specialization quasi-ordering

- * Proposition. If:
 - X is well-founded
 - (Property T) X is finitary
 - (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology and the **closed** sets are the **finitary subsets**.

The upper topology is the **coarsest** topology with ≤ as specialization The Alexandroff topology is the **finest**.

- * Let (X, \leq) be a quasi-ordered set. Its **finitary** subsets are $\downarrow \{x_1, \dots, x_n\}$
- * The finitary subsets generate the **upper topology** It, too, has ≤ as specialization quasi-ordering

- * Proposition. If:
 - X is well-founded
 - (Property T) X is finitary
 - (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology and the **closed** sets are the **finitary subsets**.

The upper topology is the **coarsest** topology with ≤ as specialization

The Alexandroff topology is the **finest**.

This turns out to be the general form of all **sober** Noetherian spaces.

* Every well-founded inf-semilattice with top is Noetherian in the upper topology

- Proposition. If:
 - X is well-founded
 - (Property T) *X* is **finitary**
 - (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology

- * Every well-founded inf-semilattice with top is Noetherian in the upper topology
- * Let $\mathcal{H}X = \{\text{closed subsets of } X\}$ with the upper topology of \subseteq (Hoare hyperspace of X)

- Proposition. If:
 - X is well-founded
 - (Property T) X is **finitary**
 - (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology

- * Every well-founded inf-semilattice with top is Noetherian in the upper topology
- * Let $\mathcal{H}X = \{\text{closed subsets of } X\}$ with the upper topology of \subseteq (Hoare hyperspace of X)

* Proposition. If:

- X is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**

- * Every well-founded inf-semilattice with top is Noetherian in the upper topology
- * Let $\mathcal{H}X = \{\text{closed subsets of } X\}$ with the upper topology of \subseteq (Hoare hyperspace of X)

* Proposition. If:

- X is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- (7) $\mathcal{H}X$ is well-founded.

- * Every well-founded inf-semilattice with top is Noetherian in the upper topology
- * Let $\mathcal{H}X = \{\text{closed subsets of } X\}$ with the upper topology of \subseteq (Hoare hyperspace of X)

* $\mathcal{H}(X)$ is an inf-semilattice, hence:

Proposition. If X is Noetherian, then $\mathcal{H}X$ is Noetherian.

(That is actually an equivalence.)

* Proposition. If:

- *X* is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- (7) $\mathcal{H}X$ is well-founded.

- * Equip $\mathbb{P}(X)$ with the **lower Vietoris topology**, Subbase of closed sets $\square C = \{A \in \mathbb{P}(X) \mid A \subseteq C\}$, C closed in X
- * The lattices of closed sets of $\mathcal{H}X$ and of $\mathbb{P}(X)$ are **isomorphic**, through $\operatorname{cl}^{-1}: \downarrow \{C\} \mapsto \Box C$

- * Equip $\mathbb{P}(X)$ with the **lower Vietoris topology**, Subbase of closed sets $\square C = \{A \in \mathbb{P}(X) \mid A \subseteq C\}$, C closed in X
- * The lattices of closed sets of $\mathcal{H}X$ and of $\mathbb{P}(X)$ are **isomorphic**, through $\operatorname{cl}^{-1}: \downarrow \{C\} \mapsto \Box C$

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- * Noetherianness is a property of the lattice of closed sets, not of the points. Hence:

- * Equip $\mathbb{P}(X)$ with the **lower Vietoris topology**, Subbase of closed sets $\square C = \{A \in \mathbb{P}(X) \mid A \subseteq C\}$, C closed in X
- * The lattices of closed sets of $\mathcal{H}X$ and of $\mathbb{P}(X)$ are **isomorphic**, through $\operatorname{cl}^{-1}: \downarrow \{C\} \mapsto \Box C$

- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- * Noetherianness is a property of the lattice of closed sets, not of the points. Hence:
- * The **powerset** $\mathbb{P}(X)$ of a Noetherian space X is Noetherian.

- * Equip $\mathbb{P}(X)$ with the **lower Vietoris topology**, Subbase of closed sets $\square C = \{A \in \mathbb{P}(X) \mid A \subseteq C\}$, C closed in X
- * The lattices of closed sets of $\mathcal{H}X$ and of $\mathbb{P}(X)$ are **isomorphic**, through $\operatorname{cl}^{-1}: \downarrow \{C\} \mapsto \Box C$
- X is Noetherian iff:
- (5) Every monotonic chain $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n \subseteq \cdots$ of open subsets is **stationary**
- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- * Noetherianness is a property of the lattice of closed sets, not of the points. Hence:
- * The **powerset** $\mathbb{P}(X)$ of a Noetherian space X is Noetherian.

Yes, Noetherianness is a **localic** property. Category of **sober Noetherian** spaces ≅ Locales with **no infinite monotonic chain**

* The **powerset** $\mathbb{P}(X)$ of a Noetherian space X is Noetherian.

(with the lower Vietoris topology)

* This came out as a surprise in 2007. When X is a wqo (with the Alexandroff topology), specialization of $\mathbb{P}(X)$ is $A \leq^{\flat} B$ iff every $a \in A$ is \leq some $b \in B$

* The **powerset** $\mathbb{P}(X)$ of a Noetherian space X is Noetherian.

(with the lower Vietoris topology)

- * This came out as a surprise in 2007. When X is a wqo (with the Alexandroff topology), specialization of $\mathbb{P}(X)$ is $A \leq^{\flat} B$ iff every $a \in A$ is \leq some $b \in B$
- * But ($\mathbb{P}(X)$, \leq^{\flat}) is **not wqo** for general wqos (X, \leq) (Rado, 1957)

Finite words

* Let $X^* = \{\text{finite words on } X\}$ with **word topology**: basic open sets $\langle U_1, \dots, U_n \rangle = X^*U_1X^*\cdots X^*U_nX^*$ (each U_i

(each U_i is open in X)

Finite words

- * Let $X^* = \{\text{finite words on } X\}$ with **word topology**: basic open sets $\langle U_1, \dots, U_n \rangle = X^*U_1X^* \dots X^*U_nX^*$ (each U_i is open in X)
- ♦ Specialization quasi-ordering is word embedding ≤*

Finite words

- * Let $X^* = \{\text{finite words on } X\}$ with **word topology**: basic open sets $\langle U_1, \dots, U_n \rangle = X^*U_1X^* \dots X^*U_nX^*$ (each U_i is open in X)
- ♦ Specialization quasi-ordering is word embedding ≤*

* **Theorem** (JGL 2013). *X* Noetherian iff *X** Noetherian
Generalizes Higman's Lemma (Higman 1952): *X* wqo iff *X** wqo

Infinite words

* Let $X^{\leq \omega} = \{ \text{finite or infinite words on } X \}$ with **asymptotic word topology**: subbasic open sets $\langle U_1, \cdots, U_n \rangle = X^*U_1X^*\cdots X^*U_nX^{\leq \omega}$, and $\langle U_1, \cdots, U_n; (\infty)V \rangle = X^*U_1X^*\cdots X^*U_n(X^*V)^{\omega}$ (U_i , V open in X)

increase letters /

- * Specialization quasi-ordering is (infinite) word embedding
- * Theorem (JGL 2021). X Noetherian iff $X^{\leq \omega}$ Noetherian No equivalent in wqo theory except if you adopt bqo theory.

* Let $X^{<\alpha} = \{ \text{ordinal-indexed words on } X \text{ of length } < \alpha \}$

- * Let $X^{<\alpha} = \{ \text{ordinal-indexed words on } X \text{ of length } < \alpha \}$
- * **Regular subword topology** better described through subbasic closed sets $F_1^{<\alpha_1} \cdots F_n^{<\alpha_n}$

where each F_i is closed in X and each α_i is an ordinal

- * Let $X^{<\alpha} = \{ \text{ordinal-indexed words on } X \text{ of length } < \alpha \}$
- * **Regular subword topology** better described through subbasic closed sets $F_1^{<\alpha_1}\cdots F_n^{<\alpha_n}$
 - where each F_i is closed in X and each α_i is an ordinal
- * Contains $X^* = X^{<\omega}$ and $X^{\leq \omega} = X^{<\omega+1}$ as special cases

- * Let $X^{<\alpha} = \{ \text{ordinal-indexed words on } X \text{ of length } < \alpha \}$
- * **Regular subword topology** better described through subbasic closed sets $F_1^{<\alpha_1} \cdots F_n^{<\alpha_n}$
 - where each F_i is closed in X and each α_i is an ordinal
- * Contains $X^* = X^{<\omega}$ and $X^{\leq \omega} = X^{<\omega+1}$ as special cases
- * **Theorem** (JGL, Halfon, Lopez 2022, submitted). X Noetherian iff $X^{<\alpha}$ Noetherian
 - No equivalent in wqo theory except if you adopt bqo theory... (Warning: specialization ≠ word embedding in general.)

Topological WSTS

- * So Noetherian spaces go beyond wqos, but do they have any use?
- * Of course they do: a reminder of where they come from
- * An application in verification

The origin of Noetherian spaces

- * The spectrum Spec(R) of a ring R is the set of its prime ideals p
- * with the **Zariski topology**, whose closed subsets are $\{p \in \operatorname{Spec}(R) \mid I \subseteq p\}$, where I ranges over the ideals of R
- * Fact. The spectrum of a Noetherian ring (every monotone chain of ideals is stationary) is Noetherian.
- * In particular if $R = K[X_1, \dots, X_n]$ for some Noetherian ring, e.g., \mathbb{Z}
- * One can **compute** with ideals, represented by **Gröbner bases** (Buchberger 1976)

An application of Gröbner bases in verification

- * Verification of polynomial programs (Müller-Olm&Seidl 2002)
- * Propagates ideals of $\mathbb{Z}[X_1, \dots, X_n]$ **backwards**, as in the Pre algorithm $(X_1, \dots, X_n = \text{variables of the program})$

```
while (*) {
  if (*) { x=2; y=3; }
    else { x=3; y=2; }
  x = x*y-6; y=0;
  if (x²-3*x*y==0)
    while (*) { x=x+1; y=y-1; };
  x = x²+x*y;
}
```

- * Terminates because every monotonic chain $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$ of ideals is **stationary**
- very similar to Pre* on WSTS, but
 the (infinite) transition system underlying a polynomial program is not a WSTS (inclusion between ideals not a wqo)

Topological WSTS

(JGL 2011)

Definition. A **topological WSTS** is a transition system (X, \rightarrow) with a **Noetherian topology** ≤ on X satisfying **lower semicontinuity**: for every open subset U, Pre(U) is open

- * Namely, replace wqo by Noetherian monotonicity by lower semicontinuity
- * If the topology is Alexandroff, then Noetherian=wqo, lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS

Topological WSTS

(JGL 2011)

- **Definition.** A **topological WSTS** is a transition system (X, \rightarrow) with a **Noetherian topology** ≤ on X satisfying **lower semicontinuity**: for every open subset U, Pre(U) is open
- * Namely, replace wqo by Noetherian monotonicity by lower semicontinuity
- * If the topology is Alexandroff, then Noetherian=wqo, lower semicontinuity=monotonicity In particular, every WSTS is a topological WSTS

* **Polynomial programs** are topological WSTS — in the Zariski topology of Spec($\mathbb{Z}[X_1, \dots, X_n]$)

Topological coverability is decidable

* Topological coverability: INPUT: an initial configuration x_0 , an open set U of bad configurations

QUESTION: is there a $x \in U$ such that $x_0 \to^* x$?

Definition. A **topological WSTS** is a transition system (X, \rightarrow) with a **Noetherian topology** ≤ on X satisfying **lower semicontinuity**: for every open subset U, Pre(U) is open

Topological coverability is decidable

* **Definition.** A **topological WSTS** is a transition system (X, \rightarrow)

with a **Noetherian topology** \leq on X

- * Topological coverability: **INPUT:** an initial configuration x_0 , an open set U of bad configurations **QUESTION:** is there a $x \in U$ such that $x_0 \to^* x$?
 - satisfying lower semicontinuity: for every open subset U, Pre(U) is open
- * An effective topological WSTS is one where:
 - open sets are representable
 - ⊆ is decidable on open sets
 - $-U \mapsto Pre(U)$ is computable

Topological coverability is decidable

*Topological coverability: INPUT: an initial configuration x_0 , an **open set** U of bad configurations **QUESTION:** is there a $x \in U$ such that $x_0 \to^* x$?

```
Definition. A topological WSTS is a transition system (X, \rightarrow) with a Noetherian topology ≤ on X satisfying lower semicontinuity: for every open subset U, Pre(U) is open
```

- * An effective topological WSTS is one where:
 - open sets are representable
 - ⊆ is decidable on open sets
 - $-U \mapsto Pre(U)$ is computable
- * Theorem (JGL 2011.) Topological coverability is decidable on effective topological WSTSs.
- * The algorithm is the same as with WSTSs.

```
fun pre* U =
  let V = pre U
  in
  if V⊆U
     then U
  else pre* (U ∪ V)
  end;

fun coverability (s, B) =
  s in pre* (B);
```

(JGL 2011)

* Finite networks of polynomial programs $P_1, ..., P_m$ communicating through lossy communication queues on a finite alphabet Σ

```
while (*) {
                                                                                                               a = *; b = 0;
                                                                                                                while (*) {
          {f recv} \ ({\tt SIG\_CALC}) \Rightarrow {\tt if} \ (*) \ \{ \ {\tt x=2}; \ {\tt y=3}; \ \}
                                                                                                                          recv (SIG_FUZZ) \Rightarrow send (SIG_CALC);
                                    else { x = 3; y = 2; }
                                                                            channel c_1
                                                                                                                                 b = b + 1;
                 x = x * y - 6; y = 0;
                                                                           a b d a c
                                                                                                                                 if (a \neq b) \{ a = a + 1; \}
                 if (x^2 - 3 * x * y == 0)
                           while (*) { x = x + 1; y = y - 1; };
                                                                                                                                 c = a * b;
                                                                            channel c_2
                                                                                                                         \mid \mathbf{recv} \; (\mathtt{SIG\_QUIT}) \Rightarrow \mathtt{return};
                     else send (SIG_FUZZ);
                 x = x^2 + x * y;
         \mid \mathbf{recv} \; (\mathtt{SIG\_QUIT}) \Rightarrow \mathtt{return};
```

(JGL 2011)

* Finite networks of polynomial programs $P_1, ..., P_m$ communicating through lossy communication queues on a finite alphabet Σ

```
while (*) {
                                                                                                                           a = *; b = 0;
                                                                                                                           while (*) {
           \mathbf{recv}\;(\mathtt{SIG\_CALC})\Rightarrow\mathtt{if}\;(^*)\;\{\;\mathtt{x}=\mathtt{2};\,\mathtt{y}=\mathtt{3};\;\}
                                                                                                                                      recv (SIG_FUZZ) \Rightarrow send (SIG_CALC);
                                        else { x = 3; y = 2; }
                                                                                    channel c_1
                                                                                                                                              b = b + 1;
                   x = x * y - 6; y = 0;
                                                                                        a b d a c
                                                                                                                                              if (a \neq b) \{ a = a + 1; \}
                   if (x^2 - 3 * x * y == 0)
                              while (*) { x = x + 1; y = y - 1; };
                                                                                                                                              c = a * b:
                                                                                                  channel c_2
                                                                                                                                      |\operatorname{recv}(\mathtt{SIG\_QUIT})\Rightarrow \mathtt{return};
                       else send (SIG_FUZZ);
                  x = x^2 + x * y;
          \mid \mathbf{recv} \; (\mathtt{SIG\_QUIT}) \Rightarrow \mathtt{return};
```

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

(JGL 2011)

* Finite networks of polynomial programs $P_1, ..., P_m$ communicating through lossy communication queues on a finite alphabet Σ

```
while (*) {
                                                                                                    a = *; b = 0;
                                                                                                     while (*) {
         \mathbf{recv} (\mathtt{SIG\_CALC}) \Rightarrow \mathtt{if} (*) \{ x = 2; y = 3; \}
                                                                                                             recv (SIG_FUZZ) \Rightarrow send (SIG_CALC);
                                else { x = 3; y = 2; }
                                                                    channel c_1
                                                                                                                    b = b + 1;
               x = x * y - 6; y = 0;
                                                                        a b d a c
                                                                                                                    if (a \neq b) \{ a = a + 1; \}
               if (x^2 - 3 * x * y == 0)
                        while (*) { x = x + 1; y = y - 1; };
                                                                                                                    c = a * b:
                                                                                                             recv (SIG_QUIT) \Rightarrow return;
                   else send (SIG_FUZZ);
               x = x^2 + x * y;
         recv (SIG_QUIT) \Rightarrow return;
```

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

- * State space = finite product of
 - spectra of polynomial rings $\mathbb{Z}[X_1, \dots, X_n]$, one for each P_i
 - Σ^* , with word topology, one for each communication queue

This is Noetherian, because:

* Proposition. Any finite product of Noetherian spaces is Noetherian.

(JGL 2011)

* Those are
topological WSTSs
(lossiness necessary)
Hence:

```
a = *; b = 0;
while (*) {
                                                                                                            while (*) {
         {f recv} \ ({\tt SIG\_CALC}) \Rightarrow {\tt if} \ (*) \ \{ \ {\tt x=2}; \ {\tt y=3}; \ \}
                                                                                                                      recv (SIG_FUZZ) \Rightarrow send (SIG_CALC);
                                   else { x = 3; y = 2; }
                                                                          channel c_1
                                                                                                                             b = b + 1;
                x = x * y - 6; y = 0;
                                                                             a b d a c
                                                                                                                             if (a \neq b) \{ a = a + 1; \}
                if (x^2 - 3 * x * y == 0)
                          while (*) { x = x + 1; y = y - 1; };
                                                                                                                             c = a * b:
                                                                                      channel c_2
                                                                                                                      |\mathbf{recv}| (\mathtt{SIG\_QUIT}) \Rightarrow \mathtt{return};
                    else send (SIG_FUZZ);
                x = x^2 + x * y;
         recv (SIG_QUIT) \Rightarrow return;
```

*Theorem (JGL 2011).

Topological coverability is decidable for concurrent polynomial programs.

letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)

(JGL 2011)

* Those are
topological WSTSs
(lossiness necessary)
Hence:

```
while (*) {
                                                                                                                  a = *; b = 0;
                                                                                                                  while (*) {
          \mathbf{recv}\;(\mathtt{SIG\_CALC})\Rightarrow\mathtt{if}\;(^*)\;\{\;\mathtt{x}=\mathtt{2};\,\mathtt{y}=\mathtt{3};\;\}
                                                                                                                            recv (SIG_FUZZ) \Rightarrow send (SIG_CALC);
                                     else { x = 3; y = 2; }
                                                                              channel c_1
                                                                                                                                    b = b + 1;
                 x = x * y - 6; y = 0;
                                                                                  a b d a c
                                                                                                                                    if (a \neq b) \{ a = a + 1; \}
                 if (x^2 - 3 * x * y == 0)
                            while (*) { x = x + 1; y = y - 1; };
                                                                                                                                    c = a * b:
                                                                                           channel c_2
                                                                                                                            recv (SIG_QUIT) \Rightarrow return;
                      else send (SIG_FUZZ);
                 x = x^2 + x * y;
          \mathbf{recv}\ (\mathtt{SIG\_QUIT}) \Rightarrow \mathtt{return};
```

* Theorem (JGL 2011).

Topological coverability is decidable for concurrent polynomial programs.

- letters can spontaneously vanish from communication queues (needed for decidability... and rather realistic)
- * You still have to prove effectivity. For that, you need to find a representation for open sets. But open sets are **no longer** of the form $\uparrow \{x_1, \dots, x_n\}$

Representations, sobrifications

Representing open sets: the trick

* Embed state space X into its sobrification X^s

Representing open sets: the trick

* Embed state space *X* into its **sobrification** *X*^s

Oops, I have not said what that was, have I?

* A closed set $F \in \mathcal{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X$, $F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$

- * A closed set $F \in \mathcal{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X$, $F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$
- * Every set $\downarrow x$ is irreducible closed X is **sober** iff T_0 and those are the only irreducible closed sets

E.g., $\mathcal{H}X$, Spec(R), but not \mathbb{N}_{COf} , X^* for example

- * A closed set $F \in \mathcal{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X$, $F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$
- * Every set $\downarrow x$ is irreducible closed X is **sober** iff T_0 and those are the only irreducible closed sets
- * The **sobrification** $X^s = \{F \in \mathcal{H}X \mid F \text{ irreducible}\}$, seen as subspace of $\mathcal{H}X$ is always **sober**, and X embeds into X^s through $x \mapsto \downarrow x$

E.g., $\mathcal{H}X$, Spec(R), but not $\mathbb{N}_{\operatorname{cof}}$, X^* for example

- * A closed set $F \in \mathcal{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X$, $F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$
- * Every set $\downarrow x$ is irreducible closed X is **sober** iff T_0 and those are the only irreducible closed sets
- *The **sobrification** $X^s = \{F \in \mathcal{H}X \mid F \text{ irreducible}\}$, seen as subspace of $\mathcal{H}X$ is always **sober**, and X embeds into X^s through $x \mapsto \downarrow x$
- * X and X^s have isomorphic lattices of open subsets

E.g., $\mathcal{H}X$, Spec(R), but not \mathbb{N}_{cof} , X^* for example

- * A closed set $F \in \mathcal{H}X$ is **irreducible** iff for all $F_1, \dots, F_n \in \mathcal{H}X$, $F \subseteq \bigcup_i F_i \Rightarrow \exists i, F \subseteq F_i$
- * Every set $\downarrow x$ is irreducible closed X is **sober** iff T_0 and those are the only irreducible closed sets
- * The **sobrification** $X^s = \{F \in \mathcal{H}X \mid F \text{ irreducible}\}$, seen as subspace of $\mathcal{H}X$ is always **sober**, and X embeds into X^s through $x \mapsto \downarrow x$
- * X and X^s have isomorphic lattices of open subsets

E.g., $\mathcal{H}X$, Spec(R), but not \mathbb{N}_{cof} , X^* for example

In particular, X Noetherian iff X^s Noetherian

* Embed state space X into its sobrification X^s

* Embed state space X into its sobrification X^s

- * Embed state space X into its sobrification X^s
- * Both have isomorphic lattices of open sets

- * Embed state space X into its sobrification X^s
- * Both have isomorphic lattices of open sets
- * Represent open sets *U* by their complements: closed sets *C*

- * Embed state space X into its sobrification X^s
- * Both have isomorphic lattices of open sets
- * Represent open sets *U* by their complements: closed sets *C*

- * Embed state space X into its sobrification X^s
- * Both have isomorphic lattices of open sets
- * Represent open sets *U* by their complements: closed sets *C*
- * Now:

In a sober Noetherian space, every closed set C is a **finitary** subset $\downarrow \{x_1, \dots, x_n\}$.

Reminder

Proposition. If:

- *X* is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology and the **closed** sets are exactly the **finitary subset**

This turns out to be the general form of all **sober** Noetherian spaces.

- * Embed state space X into its sobrification X^s
- * Both have isomorphic lattices of open sets
- * Represent open sets *U* by their complements: closed sets *C*
- * Now:

In a sober Noetherian space, every closed set C is a **finitary** subset $\downarrow \{x_1, \dots, x_n\}$.

* Hence we can represent U by (the complement of the downward closure in X^s) of **finitely many** points... in X^s

Reminder

Proposition. If:

- *X* is well-founded
- (Property T) *X* is **finitary**
- (Property W) For all $x, y \in X$, $\downarrow x \cap \downarrow y$ is **finitary** then X is **Noetherian** in the upper topology and the **closed** sets are exactly the **finitary subse**

This turns out to be the general form of all **sober** Noetherian spaces.

- * For a finite set Σ , with the discrete topology, $\Sigma^s = \Sigma$
- * Products: $(X \times Y)^S = X^S \times Y^S$
- *Spec($\mathbb{Z}[X_1, \dots, X_n]$): already sober, points = prime ideals, represented as Gröbner bases
- * $(X^*)^s$ consists of word products

$$P ::= \epsilon \mid C^{?}P \mid F^{*}P$$
with $C \in X^{s}$, $F = C_{1} \cup \cdots \cup C_{n}$ $(C_{i} \in X^{s})$

- * For a finite set Σ , with the discrete topology, $\Sigma^{s} = \Sigma$
- * Products: $(X \times Y)^s = X^s \times Y^s$
- * Spec($\mathbb{Z}[X_1, \dots, X_n]$): already sober, points = prime ideals, represented as Gröbner bases
- $*(X^*)^s$ consists of word products $P ::= \epsilon \mid C^?P \mid F*P$ with $C \in X^s$, $F = C_1 \cup \cdots \cup C_n$ $(C_i \in X^s)$

Embedding
$$X^* \to (X^*)^s$$
:
 $abc \mapsto (\downarrow a)^? (\downarrow b)^? (\downarrow c)^?$

- * For a finite set Σ , with the discrete topology, $\Sigma^{s} = \Sigma$
- * Products: $(X \times Y)^s = X^s \times Y^s$
- * Spec($\mathbb{Z}[X_1, \dots, X_n]$): already sober, points = prime ideals, represented as Gröbner bases
- * $(X^*)^s$ consists of word products

e.g.,
$$C_1^? C_2^? F_1^* C_3^? F_2^* F_3^*$$

Other word products,
$$P := \epsilon \mid C^?P \mid F*P$$

with
$$C \in X^s$$
, $F = C_1 \cup \cdots \cup C_n (C_i \in X^s)$

Embedding $X^* \rightarrow (X^*)^s$:

 $abc \mapsto (\downarrow a)^? (\downarrow b)^? (\downarrow c)^?$

- * For a finite set Σ , with the discrete topology, $\Sigma^s = \Sigma$
- * Products: $(X \times Y)^S = X^S \times Y^S$
- *Spec($\mathbb{Z}[X_1, \dots, X_n]$): already sober, points = prime ideals, represented as Gröbner bases
- $*(X^*)^s$ consists of word products

Other word products, e.g.,
$$C_1^? C_2^? F_1^* C_3^? F_2^* F_3^*$$

Other word products,
$$P := \epsilon \mid C^?P \mid F*P$$

with
$$C \in X^s$$
, $F = C_1 \cup \cdots \cup C_n (C_i \in X^s)$

Embedding $X^* \rightarrow (X^*)^s$:

 $abc \mapsto (\downarrow a)^? (\downarrow b)^? (\downarrow c)^?$

* All those are representable on a computer (Finkel, JGL 2009, 2021)

Statures of Noetherian spaces

- * Maximal order types of well-partial-orderings
- * Statures of Noetherian spaces as generalization of maximal order types
- * ... we are not really changing the subject, and we will use the **representations** of points in X^s again

Maximal order types

- * A well-partial-ordering is a well-quasi-ordering that is antisymmetric
- * **Theorem** (Wolk 1967). A wpo is a partial ordering whose linear extensions are all **well-founded**

Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its **order type**

Maximal order types

- * A well-partial-ordering is a well-quasi-ordering that is antisymmetric
- * **Theorem** (Wolk 1967). A wpo is a partial ordering whose linear extensions are all **well-founded**
 - **Note**: every linear well-founded ordering is isomorphic to a unique ordinal, ... its **order type**
- * Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.

Maximal order types

- * A well-partial-ordering is a well-quasi-ordering that is antisymmetric
- * **Theorem** (Wolk 1967). A wpo is a partial ordering whose linear extensions are all **well-founded**

Note: every linear well-founded ordering is isomorphic to a unique ordinal, ... its **order type**

- * Theorem (de Jongh, Parikh 1977). Among those, one has maximal order type.
- * Any meaningful equivalent of that notion for Noetherian spaces? But first, why should we bother about maximal order types anyway?

Why bother about maximal order types?

- * First studied by de Jongh and Parikh (1977) then Schmidt (1979)
- * Many applications in proof theory (reverse mathematics):
 Simpson (1985), after Friedman
 van den Meeren, Rathjen, Weiermann (2014, 2015)
 etc.
- * Ordinal complexity of the size-change principle for proving the termination of programs and rewrite systems

 Blass and Gurevich (2008)
- * and...

Why bother about maximal order types?

* Figueira, Figueira, Schmitz and Schnoebelen (2011), Schmitz and Schnoebelen (2011)

(and others)

obtain complexity upper bounds for algorithms whose termination is based upon wqo arguments (e.g., coverability)

length function (complexity upper bound)

```
Theorem 5.3 (Main Theorem).

Let g be a smooth control function eventually bounded by a function in \mathcal{F}_{\gamma}, and let A be an exponential nwqo with maximal order type <\omega^{\beta+1}.

Then L_{A,g} is bounded by a function in:

* \mathcal{F}_{\beta} if \gamma < \omega (e.g., if g is primitive recursive) and \beta \geq \omega
```

class of functions elementary recursive in F_{β} (fast-growing hierarchy)

From S. Schmitz, Ph. Schnoebelen, Multiply-recursive upper bounds with Higman's Lemma. ICALP 2011.

Why bother about maximal order types?

* Figueira, Figueira, Schmitz and Schnoebelen (2011), Schmitz and Schnoebelen (2011)

(and others)

obtain complexity upper bounds for algorithms whose termination is based upon wqo arguments (e.g., coverability)

length function (complexity upper bound)

* E.g., coverability in lossy channel systems is $F_{\omega^{\omega}}$ -complete. (way larger than Ackermann)

Theorem 5.3 (Main Theorem).

Let g be a smooth control function eventually bounded by a function in $\mathcal{F}_{\gamma'}$ and let A be an exponential nwgo with maximal order type $<\omega^{\beta+1}$.

Then $L_{A,g}$ is bounded by a function in:

* \mathcal{F}_{β} if $\gamma < \omega$ (e.g., if g is primitive recursive) and $\beta \geq \omega$

* \mathcal{F}_{β} if $\gamma < \omega$ (e.g., if g is primitive recursive) and $\rho \geq \omega$ * $\mathcal{F}_{\gamma+\beta}$ if $\gamma \geq 2$ and $\beta < \omega$.

class of functions elementary recursive in F_{β} (fast-growing hierarchy)

From S. Schmitz, Ph. Schnoebelen, Multiply-recursive upper bounds with Higman's Lemma. ICALP 2011.

Going topological

* Let us return to the question of finding a **Noetherian analogue** of maximal order types

A wrong idea: minimal To topologies

- * Partial ordering ~ T_0 topology Extension ~ coarser T_0 topology Linear extension = maximal extension ~ minimal T_0 topology
- * Studied by Larson (1969). A minimal T₀ topology is necessarily the **upper** topology of a **linear** ordering.
- * Unfortunately, minimal T_0 topologies do not exist in general: **Fact.** \mathbb{R}_{cof} is Noetherian, but has no coarser minimal T_0 topology.

(Its uncountably many proper closed subsets would all have to be finite, and linearly ordered.)

* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo (X, \leq)

The **stature** of *X*

= **ordinal rank** |X| of the top element X in the poset $(\mathcal{D}X, \subseteq)$ of downwards-closed subsets of X

* Ordinal rank inductively defined by:

$$||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{D}X, F' \subsetneq F\}$$

* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo (X, \leq)

The stature of X

= ordinal rank |X| of the top element X

in the poset $(\mathfrak{D}X, \subseteq)$ of downwards-closed subsets of X

* Ordinal rank inductively defined by:

$$||F|| = \sup\{||F'|| + 1 \mid F' \in \mathcal{D}X, F' \subsetneq F\}$$

* Example: $X = \{0,1,2\}$, ordered by equality

* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo (X, \leq)

= ordinal rank |X| of the top element X

in the poset $(\mathcal{D}X, \subseteq)$ of downwards-closed subsets of X

* Ordinal rank inductively defined by:

$$||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{D}X, F' \subseteq F\}$$

* Example: $X = \{0,1,2\}$, ordered by equality

$$0 \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow 1 \longrightarrow 2$$

maximal order type=3

The stature of X

* Theorem (Kříž 1997, Blass and Gurevich 2008).

Maximal order type of a wpo (X, \leq)

= ordinal rank |X| of the top element X

in the poset $(\mathcal{D}X, \subseteq)$ of downwards-closed subsets of X

* Ordinal rank inductively defined by:

$$||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{D}X, F' \subseteq F\}$$

* Example: $X = \{0,1,2\}$, ordered by equality

maximal order type=3

The stature of X

Statures of Noetherian spaces

Definition. The **stature** of a Noetherian space *X* is the **ordinal rank** ||X|| of the top element *X* in the poset ($\mathcal{H}X$, ⊆) of **closed** subsets of *X*

$$||F|| = \sup\{||F'|| + 1 | F' \in \mathcal{H}X, F' \subsetneq F\}$$

* Matches previous definition: for a wqo in its Alexandroff topology, closed = downwards-closed $\mathcal{H}X = \mathcal{D}X$ X is Noetherian iff:

- (6) Every antitonic chain $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ of closed subsets is **stationary**
- (7) $\mathcal{H}X$ is well-founded.

Some statures of Noetherian spaces

- We have already obtained statures
 of quite a few Noetherian
 constructions
 (JGL, Laboureix 2022)
- * Let me focus on X^*

X	$\operatorname{sob} X$		X	
Finite T_0	$\leq \operatorname{card} X$		$\operatorname{card} X$	Lem. 6.1
Ordinal α (Ale	ex.) $\alpha / \alpha + 1$	Lem. 6.2	α	Lem. 6.2
Ordinal α (Sco	ott) $\alpha / \alpha + 1$	Lem. 6.2	$\alpha / \alpha - 1$	Lem. 6.2
Cofinite topology 1 / 2		Thm. 7.1	$\min(\operatorname{card} X,\omega)$	Thm. 7.2
X+Y	$\max(\operatorname{sob} X, \operatorname{sob} Y)$	Prop. 8.4	$ X \oplus Y $	Prop. 8.2
$X +_{\text{lex}} Y$	sob X + sob Y	Prop. 9.4	X + Y	Prop. 9.2
X_{\perp}	$1 + \operatorname{sob} X$	Prop. 9.6	1 + X	Prop. 9.6
$X \times Y$	$(\operatorname{sob} X \oplus \operatorname{sob} Y) - 1$	Prop. 10.1	$ X \otimes Y $	Thm. 10.9
$\mathcal{H}_{0V}X,\mathcal{H}_{\mathrm{fin}}X,$	X + 1	Thm. 11.1	$\geq 1 + X ,$	Prop. 11.2
$\mathbb{P}X,\mathbb{P}_{\mathrm{fin}}X$			$\leq \omega^{ X }$	
X^*	$\omega^{ X ^{\circ}} + 1$	Thm. 12.13	$\omega^{\omega^{ X '}}$	Thm. 12.22
	$(\alpha^{\circ} \stackrel{\text{def}}{=} \alpha + 1 \text{ if } \alpha = \epsilon + n, \epsilon \text{ critical}, n \in \mathbb{N},$		$(\alpha' \stackrel{\text{def}}{=} \alpha - 1 \text{ if } \alpha \text{ finite,}$	
	α otherwise)		α° otherwise)	
$\bigcap_{n=1}^{+\infty} X_n$	$\bigoplus_{n=1}^{+\infty} \operatorname{rsob} X_n + 1 /$	Thm. 13.4	$\bigotimes_{n=1}^{+\infty} X_n / \bigotimes_{m=1}^{k} X_m \times \omega$	Thm. 13.8
	$\bigoplus_{n=1}^{+\infty} \operatorname{rsob} X_n + 1 /$ $\bigoplus_{n=1}^{k} \operatorname{rsob} X_n + \omega + 1$		$\bigotimes_{m=1}^{k} X_m \times \omega$	
X^{\triangleright}	$\omega^{\alpha_1+1}+1$	Cor. 13.7	$\omega^{\omega^{\beta_1+1}}$ / ω	Cor. 13.9
	where sob $X - 1 =_{\text{CNF}} \omega^{\alpha_1} + \cdots$		where $ X =_{\text{CNF}} \omega^{\alpha_1} + \cdots$,	
RG			$\alpha_1 =_{\mathrm{CNF}} \omega^{\beta_1} + \cdots$	
X^{\circledast}	$\geq (\omega \times X) + 1,$	Prop. 14.8,	$\omega^{\widehat{lpha}}$	Thm. 14.20
	$\leq (X \otimes \omega) + 1$	Prop. 14.9	$(\widehat{\alpha} \stackrel{\text{def}}{=} \omega^{\alpha_1}{}^{\circ} + \dots + \omega^{\alpha_m}{}^{\circ}$	
	- M 11 - 7		if $\alpha =_{\text{CNF}} \omega^{\alpha_1} + \cdots + \omega^{\alpha_m}$)	
0.9			380000 000000 000	

The stature of X*

* Theorem (JGL, Laboureix 2022). If $X \neq \emptyset$ is Noetherian and $\alpha = ||X||$, then $||X^*|| = \omega^{\omega^{\alpha \pm 1}}$ (+1 if $\alpha = \epsilon_{\beta} + n$, -1 if α finite)

* Not very surprising: already known when X wqo (Schmidt 1979)

The stature of X*

- * Theorem (JGL, Laboureix 2022). If $X \neq \emptyset$ is Noetherian and $\alpha = ||X||$, then $||X^*|| = \omega^{\omega^{\alpha \pm 1}}$ (+1 if $\alpha = \epsilon_{\beta} + n$, -1 if α finite)
- * Not very surprising: already known when X wqo (Schmidt 1979)
- * The proof is very different, and is **localic**. Explicitly, we do not reason on points (words),

but on closed sets = finite unions of word products

```
(X^*)^s consists of word products P ::= \epsilon \mid C^?P \mid F^*P with C \in X^s, F = C_1 \cup \cdots \cup C_n (C_i \in X^s)
```

An excerpt from the proof of $|X^*| \ge \omega^{\omega^{\alpha \pm 1}}$

- * Let $F \subsetneq F \cup C$, $\mathbf{C}_0 = \emptyset$, $\mathbf{C}_{n+1} = (F^*C^?)^n F^*$, $\mathcal{A}_n = \{ \mathbf{A} \in \mathcal{H}X \mid \mathbf{C}_n \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1} \}$
- * Map $(\mathbf{B} \subsetneq \mathbf{B}^+) \in \text{Step}(\mathcal{H}(F^*)), \mathbf{A} \in \mathcal{A}_n \text{ to } (F^*C^?)^{n+1}\mathbf{B} \cup \mathbf{A}C^?\mathbf{B}^+ \cup \mathbf{C}_{n+1}$

An excerpt from the proof of $|X^*| \ge \omega^{\omega^{\alpha \pm 1}}$

- * Let $F \subsetneq F \cup C$, $\mathbf{C}_0 = \emptyset$, $\mathbf{C}_{n+1} = (F^*C^?)^n F^*$, $\mathcal{A}_n = \{ \mathbf{A} \in \mathcal{H}X \mid \mathbf{C}_n \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1} \}$
- * Map $(\mathbf{B} \subsetneq \mathbf{B}^+) \in \text{Step}(\mathcal{H}(F^*)), \mathbf{A} \in \mathcal{A}_n \text{ to } (F^*C^?)^{n+1}\mathbf{B} \cup \mathbf{A}C^?\mathbf{B}^+ \cup \mathbf{C}_{n+1}$

A finite union of word products

An excerpt from the proof of $|X^*| \ge \omega^{\omega^{\alpha \pm 1}}$

- * Let $F \subsetneq F \cup C$, $\mathbf{C}_0 = \emptyset$, $\mathbf{C}_{n+1} = (F^*C^?)^n F^*$, $\mathcal{A}_n = \{ \mathbf{A} \in \mathcal{H}X \mid \mathbf{C}_n \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1} \}$
- * Map $(\mathbf{B} \subsetneq \mathbf{B}^+) \in \text{Step}(\mathcal{H}(F^*)), \mathbf{A} \in \mathcal{A}_n \text{ to } (F^*C^?)^{n+1}\mathbf{B} \cup \mathbf{A}C^?\mathbf{B}^+ \cup \mathbf{C}_{n+1}$
- * This is **strictly monotonic**: Step($\mathcal{H}(F^*)$) $\times_{lex} \mathcal{A}_n \to \mathcal{A}_{n+1}$

A finite union of word products

An excerpt from the proof of $|X^*| \ge \omega^{\omega^{\alpha \pm 1}}$

- * Let $F \subsetneq F \cup C$, $\mathbf{C}_0 = \emptyset$, $\mathbf{C}_{n+1} = (F^*C^?)^n F^*$, $\mathcal{A}_n = \{ \mathbf{A} \in \mathcal{H}X \mid \mathbf{C}_n \subseteq \mathbf{A} \subsetneq \mathbf{C}_{n+1} \}$
- * Map $(\mathbf{B} \subsetneq \mathbf{B}^+) \in \text{Step}(\mathcal{H}(F^*)), \mathbf{A} \in \mathcal{A}_n \text{ to } (F^*C^?)^{n+1}\mathbf{B} \cup \mathbf{A}C^?\mathbf{B}^+ \cup \mathbf{C}_{n+1}$
- * This is strictly monotonic : Step($\mathcal{H}(F^*)$) $\times_{lex} \mathcal{A}_n \to \mathcal{A}_{n+1}$
- * If $||F^*|| \ge \omega^{\omega^{\beta}}$ then $||C_{n+1}|| \ge \omega^{\omega^{\beta} \times (n+1)}$, so $||(F \cup C)^*|| \ge \omega^{\omega^{\beta+1}}$, by taking suprema over $n \in \mathbb{N}$
- * This is the key step in a well-founded induction on $F \in \mathcal{H}X$ showing $||F^*|| \ge \omega^{\omega^{||F||\pm 1}}$
- * Finally, let F = X; by definition, $|X| = \alpha$. \square

A finite union of word products

The stature of $\mathbb{Z}[X_1, \dots, X_n]$

- * The ordinal height of the lattice of ideals of $\mathbb{Z}[X_1, \dots, X_n]$ is $\omega^n + 1$ (Aschenbrenner, Pong 2004)
- * Hence $||\operatorname{Spec}(\mathbb{Z}[X_1,\cdots,X_n])||=\omega^n$ (argument not quite written out yet, probably well-known)

The stature of $\mathbb{Z}[X_1, \dots, X_n]$

- * The ordinal height of the lattice of ideals of $\mathbb{Z}[X_1, \dots, X_n]$ is $\omega^n + 1$ (Aschenbrenner, Pong 2004)
- * Hence $||\operatorname{Spec}(\mathbb{Z}[X_1,\cdots,X_n])||=\omega^n$ (argument not quite written out yet, probably well-known)
- * Together with $||X \times Y|| = ||X|| \otimes ||Y||$ (JGL, Laboureix 2022) extending the same formula on wqos (de Jongh, Parikh 1977), we obtain the **stature** of the state space of **concurrent polynomial programs**...

The stature of the state space of concurrent polynomial programs

- * m programs, each on n variables p queues, on $k \ge 1$ letters
- * Stature of state space = $(\omega^n)^m \otimes (\omega^{\omega^{k-1}})^p$ $= \omega^{nm \oplus \omega^{k-1} \cdot p}$

* Note that the contribution of the polynomial programs (nm) is **much lower** than the contribution of the queues ($\omega^{k-1} \cdot p$)

Our findings on statures so far

* We have already obtained **statures** of quite a few Noetherian constructions

Our findings on statures so far

- * We have already obtained **statures** of quite a few Noetherian constructions
- * We retrieve the known formulae from wqo theory, which **extend** properly

$ \mid X \mid $	
card X	
α	
$ Y \oplus Z $	
Y + Z	
1+ Y	
$ Y \otimes Z $	
$\omega^{\wedge}\{\omega^{ Y \pm 1}\}$	
$\omega^{\tilde{\alpha}} [Y = \alpha]$	
	card X α $ Y \oplus Z $ $ Y + Z $ $1 + Y $ $1 + Y $ $ Y \otimes Z $ $\omega^{\{\omega^{ Y \pm 1\}}}$

From JGL and B. Laboureix, *Statures and sobrification ranks of Noetherian spaces*. Submitted, 2022. https://arxiv.org/abs/2112.06828

Our findings on statures so far

- * We have already obtained statures of quite a few Noetherian constructions
- * We retrieve the known formulae from wqo theory, which extend properly
- * and new formulae for non-wqo
 Noetherian spaces

X	X	
finite T ₀	card X	
ordinal α (Alex.)	α	
Y+Z	$ Y \oplus Z $	
$Y+_{\text{lex}}Z$	Y + Z	
Y_{\perp}	1+ Y	
$Y \times Z$	$ Y \otimes Z $	
fin. words Y*	$\omega^{\{\omega^{ Y +1}\}}$	
multisets Y®	$\omega^{\tilde{\alpha}} [Y = \alpha]$	
ordinal α (Scott)	$\alpha / \alpha - 1$	
cofinite topology	min (card Υ, ω)	
$\mathcal{H}Y$, $\mathbb{P}Y$	$1+ Y \omega^{ Y }$	
words, prefix top.	$\omega^{\{\omega^{\beta+1}\}}$ $[Y =\omega^{\{\omega^{\beta}+\}}+]$	
$Y < \alpha$	$\leq \omega^{\wedge} \{ \omega^{(Y +\alpha)\pm 1} \}$	

From JGL and B. Laboureix, *Statures and sobrification ranks of Noetherian spaces*. Submitted, 2022. https://arxiv.org/abs/2112.06828

Bottom row from JGL, S. Halfon, and A. Lopez, *Infinitary Noetherian Constructions II.*Transfinite Words and the Regular Subword Topology. Submitted, 2022.

https://arxiv.org/abs/2202.05047

sobrification ranks

Our findings on statures so far

- * We have already obtained **statures** of quite a few Noetherian constructions
- * We retrieve the known formulae from wqo theory, which extend properly
- * and new formulae for non-wqo
 Noetherian spaces
- * A related notion: sobrification ranks $|X^s|$

X	$ \mid X \mid \mid$	$\operatorname{sob} X$
finite T ₀	card X	≤ card X
ordinal α (Alex.)	α	$\alpha / \alpha + 1$
Y+Z	$ Y \oplus Z $	max(sob Y, sob Z)
$Y+_{\text{lex}}Z$	Y + Z	sob Y+sob Z
Y_{\perp}	1+ Y	1+sob Y
$Y \times Z$	$ Y \otimes Z $	(sob Y⊕sob Z)–1
fin. words Y*	$\omega^{\{\omega^{ Y } + 1\}}$	$\omega^{ Y \pm 1}$
multisets Y [®]	$\omega^{\tilde{\alpha}} [Y = \alpha]$	ω. Y +1 Y ⊗ω+1
ordinal α (Scott)	$\alpha / \alpha - 1$	$\alpha / \alpha + 1$
cofinite topology	min (card <i>Y</i> , ω)	1 / 2
$\mathcal{H}Y$, $\mathbb{P}Y$	$1+ Y \omega^{ Y }$	Y +1
words, prefix top.	$\omega^{\wedge}\{\omega^{\beta+1}\}$ $[Y =\omega^{\wedge}\{\omega^{\beta}+\} +]$	$\omega^{\alpha+1}+1$ $[\mid \mid Y \mid \mid -1=\omega^{\alpha}+\dots]$
Υ<α	$\leq \omega^{\wedge} \{ \omega^{(Y +\alpha)\pm 1} \}$	$\leq \omega^{(Y +\alpha)\pm 1}$

From JGL and B. Laboureix, *Statures and sobrification ranks of Noetherian spaces*. Submitted, 2022. https://arxiv.org/abs/2112.06828

sobrification ranks

Our findings on statures so far

- * We have already obtained statures of quite a few Noetherian constructions
- * We retrieve the known formulae from wqo theory, which extend properly
- * and new formulae for non-wqo
 Noetherian spaces
- * A related notion: sobrification ranks $|X^s|$
- * Missing: finite **trees**, notably (see Schmidt 1979 for the wqo case)

X	$ \mid X \mid \mid$	$\operatorname{sob} X$
finite T ₀	card X	≤ card X
ordinal α (Alex.)	α	$\alpha / \alpha + 1$
Y+Z	$ Y \oplus Z $	max(sob Y, sob Z)
$Y+_{lex}Z$	Y + Z	sob Y+sob Z
Y_{\perp}	1+ Y	1+sob Y
$Y \times Z$	$ Y \otimes Z $	(sob Y⊕sob Z)–1
fin. words Y*	$\omega^{\{\omega^{ Y +1}\}}$	$\omega^{ Y \pm 1}$
multisets Y®	$\omega^{\tilde{\alpha}} [Y = \alpha]$	ω. Y +1 Y ⊗ω+1
ordinal α (Scott)	$\alpha / \alpha - 1$	$\alpha / \alpha + 1$
cofinite topology	min (card Υ, ω)	1 / 2
$\mathcal{H}Y$, $\mathbb{P}Y$	$1+ Y \omega^{ Y }$	Y +1
words, prefix top.	$\omega^{\wedge}\{\omega^{\beta+1}\}$ $[Y =\omega^{\wedge}\{\omega^{\beta}+\} +]$	$\omega^{\alpha+1}+1$ $[\mid \mid Y \mid \mid -1=\omega^{\alpha}+\dots]$
Υ<α	$\leq \omega^{\{\omega^{(Y +\alpha)\pm 1}\}}$	$\leq \omega^{(Y +\alpha)\pm 1}$

From JGL and B. Laboureix, *Statures and sobrification ranks of Noetherian spaces*. Submitted, 2022. https://arxiv.org/abs/2112.06828

sobrification ranks

Our findings on statures so far

- * We have already obtained statures of quite a few Noetherian constructions
- * We retrieve the known formulae from wqo theory, which extend properly
- * and new formulae for non-wqo
 Noetherian spaces
- * A related notion: sobrification ranks $|X^s|$
- * Missing: finite **trees**, notably (see Schmidt 1979 for the wqo case)
- * Application to actual complexity upper bounds?

X	$ \mid X \mid \mid$	$\operatorname{sob} X$
finite T ₀	card X	≤ card X
ordinal α (Alex.)	α	$\alpha / \alpha + 1$
Y+Z	$ Y \oplus Z $	max(sob Y, sob Z)
$Y+_{\text{lex}}Z$	Y + Z	sob Y+sob Z
γ_{\perp}	1+ Y	1+sob Y
$Y \times Z$	$ Y \otimes Z $	(sob Y⊕sob Z)–1
fin. words Y*	$\omega^{\{\omega^{ Y } + 1\}}$	$\omega^{ Y \pm 1}$
multisets Y [®]	$\omega^{\tilde{\alpha}} [Y = \alpha]$	ω. Y +1 Y ⊗ω+1
ordinal α (Scott)	$\alpha / \alpha - 1$	$\alpha / \alpha + 1$
cofinite topology	min (card Y, ω)	1 / 2
$\mathcal{H}Y$, $\mathbb{P}Y$	$1+ Y \omega^{ Y }$	Y +1
words, prefix top.	$\omega^{\wedge}\{\omega^{\beta+1}\}$ $[\mid \mid Y \mid \mid =\omega^{\wedge}\{\omega^{\beta}+\ldots\} + \ldots]$	$\omega^{\alpha+1}+1$ $[\mid \mid Y \mid \mid -1=\omega^{\alpha}+\dots]$
Υ<α	$\leq \omega^{\wedge} \{ \omega^{(Y +\alpha)\pm 1} \}$	$\leq \omega^{(Y +\alpha)\pm 1}$

From JGL and B. Laboureix, Statures and sobrification ranks of Noetherian spaces. Submitted, 2022. https://arxiv.org/abs/2112.06828

Conclusion

Conclusion, research directions

- * A rich theory extending wqos into the topological: Noetherian spaces
- * Old results extend, new results pop up (powersets, spectra, infinite words)
- * Ordinal analysis: the **stature** ||X|| = ordinal rank of top element of $\mathcal{H}X$ as an analogue of maximal order types
- * Still in its infancy