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Part 1

Setting the stage



Maximal subgroups

Let 𝑀 be a compact∗ monoid.

• 𝑥, 𝑦 ∈ 𝑀 are 𝒥 -equivalent if they generate the same two-sided ideal:

𝑥 𝒥 𝑦 ⟺ 𝑀𝑥𝑀 = 𝑀𝑦𝑀.
• 𝑥, 𝑦 ∈ 𝑀 areℋ -equivalent if they generate the same left/right ideals:

𝑥 ℋ 𝑦 ⟺ 𝑀𝑥 = 𝑀𝑦 and 𝑥𝑀 = 𝑦𝑀.
• Note: ℋ is finer than 𝒥 , i.e.ℋ⊆𝒥 .
• A 𝒥 or ℋ -class containing an idempotent is called regular.

Theorem (Green)
The maximal subgroups of 𝑀 are precisely its regularℋ -classes.

Maximal subgroups in the same 𝒥 -class are isomorphic compact groups.
∗i.e. quasi-compact and Hausdorff.
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Free profinite monoids

• A profinite monoid is an inverse limit of finite discrete monoids.

• Numakura, 1956: equivalently, a “Stone topological monoid”.
• The category of profinite monoids has free objects 𝐴∗.

𝐴 𝐴∗

𝑀
𝜑 𝜑

(𝑀 a profinite monoid)

• 𝐴∗ can be seen as a completion of the free monoid 𝐴∗.
• Elements of 𝐴∗ are called pseudowords.
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𝒥 -classes in 𝐴∗

{𝜀}

{𝑎} {𝑏}

{𝑎𝑎} {𝑎𝑏} {𝑏𝑎} {𝑏𝑏}
⋮

𝐴∗

Maximal regular 𝒥 -classes of 𝐴∗ ⧵ 𝐴∗

⋮
𝐴∗ ⧵ 𝐴∗

Main goal: study the maximal subgroups inside the regular 𝒥 -classes found
in the “top layer” of 𝐴∗ ⧵ 𝐴∗.
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Almeida’s correspondence

Theorem (Almeida, 2007)
The following is a bijection between uniformly recurrent languages 𝐿 ⊆ 𝐴∗
and maximal regular 𝒥 -classes 𝐽 ⊆ 𝐴∗ ⧵ 𝐴∗:

𝐿 ↦ 𝐽(𝐿) ≔ 𝐿 ⧵ 𝐴∗.

The maximal subgroups of 𝐽 (𝐿) all define the same profinite group up to
isomorphism. We denote it by 𝐺(𝐿).
Definition
We call 𝐺(𝐿) the Schützenberger group of 𝐿.

Rhodes and Steinberg, 2008: 𝐺(𝐿) is a projective profinite group.
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Recap

A uniformly recurrent language 𝐿 ⊆ 𝐴∗ gives a
regular 𝒥 -class 𝐽 (𝐿) ⊆ 𝐴∗.

The 𝒥 -class 𝐽 (𝐿) gives a profinite group 𝐺(𝐿),
the Schützenberger group.

The group 𝐺(𝐿) is a maximal subgroup of 𝐴∗

and a projective profinite group.
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Part 2

Pronilpotent quotients of projective
profinite groups



Profinite groups

• A profinite group is a compact group 𝐺 whose identity 1𝐺 has a
neighbourhood basis of clopen normal subgroups 𝑁 ⊴ 𝐺 such that

𝐺/𝑁 is a finite group.

• The category of profinite groups has free objects 𝐹(𝐴).

𝐴 𝐹(𝐴)

𝐺
𝜑 𝜑

(𝐺 a profinite group)

• 𝐹(𝐴) can be seen as a completion of the free group 𝐹(𝐴).
• We assume that H is a pseudovariety of finite groups (closed under
finite direct products, quotients and subgroups).
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Profinite groups

• A pro-𝑝 group is a compact group 𝐺 whose identity 1𝐺 has a
neighbourhood basis of clopen normal subgroups 𝑁 ⊴ 𝐺 such that

𝐺/𝑁 is a finite 𝑝-group.
• The category of pro-𝑝 groups has free objects 𝐹𝑝(𝐴).

𝐴 𝐹𝑝(𝐴)

𝐺
𝜑 𝜑

(𝐺 a pro-𝑝 group)

• 𝐹𝑝(𝐴) can be seen as a completion of the free group 𝐹(𝐴).

• We assume that H is a pseudovariety of finite groups (closed under
finite direct products, quotients and subgroups).

5/16



Profinite groups

• A pro-H group is a compact group 𝐺 whose identity 1𝐺 has a
neighbourhood basis of clopen normal subgroups 𝑁 ⊴ 𝐺 such that

𝐺/𝑁 ∈ H.
• The category of pro-H groups has free objects 𝐹H(𝐴).
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Maximal quotients

• Pro-H groups form a reflective subcategory of profinite groups.

• In particular, every profinite group 𝐺 admits a maximal pronilpotent
quotient,

pro-𝑝 quotient and pro-𝑝 elementary Abelian quotient.

𝐺 𝑄nil(𝐺)

𝐻

𝑞nil

𝜑 𝜑

(𝐻 is pronilpotent)

𝐺 𝑄𝑝(𝐺)

𝐻

𝑞𝑝

𝜑 𝜑

(𝐻 is pro-𝑝)

𝐺 𝑄Ab𝑝 (𝐺)

𝐻

𝑞Ab𝑝

𝜑 𝜑

(𝐻 is pro-Ab𝑝 )

• 𝑄Ab𝑝 (𝐺) is a vector space over ℤ/𝑝ℤ: it is isomorphic to (ℤ/𝑝ℤ)d𝑝(𝐺)
for some cardinal d𝑝(𝐺).

• Also: 𝑄Ab𝑝 (𝐺) is the Frattini quotient of 𝑄𝑝(𝐺).
• There is a natural isomorphism 𝑄nil ≅ ∏𝑝 𝑄𝑝 .
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Maximal quotients

• Pro-H groups form a reflective subcategory of profinite groups.
• In particular, every profinite group 𝐺 admits a maximal pronilpotent
quotient, pro-𝑝 quotient and pro-𝑝 elementary Abelian quotient.

𝐺 𝑄nil(𝐺)

𝐻

𝑞nil

𝜑 𝜑

(𝐻 is pronilpotent)

𝐺 𝑄𝑝(𝐺)

𝐻

𝑞𝑝

𝜑 𝜑

(𝐻 is pro-𝑝)

𝐺 𝑄Ab𝑝 (𝐺)

𝐻

𝑞Ab𝑝

𝜑 𝜑

(𝐻 is pro-Ab𝑝 )

• 𝑄Ab𝑝 (𝐺) is a vector space over ℤ/𝑝ℤ: it is isomorphic to (ℤ/𝑝ℤ)d𝑝(𝐺)
for some cardinal d𝑝(𝐺).

• Also: 𝑄Ab𝑝 (𝐺) is the Frattini quotient of 𝑄𝑝(𝐺).
• There is a natural isomorphism 𝑄nil ≅ ∏𝑝 𝑄𝑝 .

6/16



Maximal quotients

• Pro-H groups form a reflective subcategory of profinite groups.
• In particular, every profinite group 𝐺 admits a maximal pronilpotent
quotient, pro-𝑝 quotient and pro-𝑝 elementary Abelian quotient.

𝐺 𝑄nil(𝐺)

𝐻

𝑞nil

𝜑 𝜑

(𝐻 is pronilpotent)

𝐺 𝑄𝑝(𝐺)

𝐻

𝑞𝑝

𝜑 𝜑

(𝐻 is pro-𝑝)

𝐺 𝑄Ab𝑝 (𝐺)

𝐻

𝑞Ab𝑝

𝜑 𝜑

(𝐻 is pro-Ab𝑝 )

• 𝑄Ab𝑝 (𝐺) is a vector space over ℤ/𝑝ℤ: it is isomorphic to (ℤ/𝑝ℤ)d𝑝(𝐺)
for some cardinal d𝑝(𝐺).

• Also: 𝑄Ab𝑝 (𝐺) is the Frattini quotient of 𝑄𝑝(𝐺).

• There is a natural isomorphism 𝑄nil ≅ ∏𝑝 𝑄𝑝 .

6/16



Maximal quotients

• Pro-H groups form a reflective subcategory of profinite groups.
• In particular, every profinite group 𝐺 admits a maximal pronilpotent
quotient, pro-𝑝 quotient and pro-𝑝 elementary Abelian quotient.

𝐺 𝑄nil(𝐺)

𝐻

𝑞nil

𝜑 𝜑

(𝐻 is pronilpotent)

𝐺 𝑄𝑝(𝐺)

𝐻

𝑞𝑝

𝜑 𝜑

(𝐻 is pro-𝑝)

𝐺 𝑄Ab𝑝 (𝐺)

𝐻

𝑞Ab𝑝

𝜑 𝜑

(𝐻 is pro-Ab𝑝 )

• 𝑄Ab𝑝 (𝐺) is a vector space over ℤ/𝑝ℤ: it is isomorphic to (ℤ/𝑝ℤ)d𝑝(𝐺)
for some cardinal d𝑝(𝐺).

• Also: 𝑄Ab𝑝 (𝐺) is the Frattini quotient of 𝑄𝑝(𝐺).
• There is a natural isomorphism 𝑄nil ≅ ∏𝑝 𝑄𝑝 .

6/16



Projective profinite groups

Projective profinite groups are defined by the usual lifting property.

𝐺

𝐾 𝐻

Theorem (Tate)

A pro-𝑝 group is projective if and only if it is pro-𝑝 free, i.e. ≅ 𝐹𝑝(𝐴).

Proposition
If 𝐺 is a projective profinite group, then

𝑄nil(𝐺) ≅ ∏
𝑝

𝐹𝑝(d𝑝(𝐺)).
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𝜔-presentations
• Let End(𝐹 (𝐴)) be the set of continuous endomorphisms of 𝐹(𝐴).

• Hunter, 1983: if 𝐴 is finite, End(𝐹 (𝐴)) is “pointwise” profinite.
• In that case, pointwise limits in End(𝐹 (𝐴)) of the form 𝜓𝜔 = lim 𝜓 𝑛!
give idempotents.

• An endomorphism 𝜑 of 𝐹(𝐴) has an extension �̂� ∈ End(𝐹 (𝐴)).
Definition
An 𝜔-presentation is a profinite presentation of the form

𝐺 ≅ ⟨𝐴 ∣ �̂�𝜔(𝑎)𝑎−1 ∶ 𝑎 ∈ 𝐴⟩,
where 𝐴 is finite, 𝜑 is an endomorphism of 𝐹(𝐴).

Lubotzky, 2001: 𝜔-presented groups are projective profinite groups.

Almeida and Costa, 2013: in some cases, Schützenberger groups of
uniformly recurrent languages are 𝜔-presented.
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Dimension Formula

• For 𝑎 ∈ 𝐴, extend the delta function 𝛿𝑎 ∶𝐴 → {0, 1} to a
homomorphism |−|𝑎 ∶ 𝐹(𝐴) → ℤ (“counting occurrences” of 𝑎).

• Define the composition matrix of 𝜑 ∶ 𝐹(𝐴) → 𝐹(𝐴) by
𝑀𝜑(𝑎, 𝑏) = |𝜑(𝑏)|𝑎 , 𝑎, 𝑏 ∈ 𝐴.

• Let 𝜒𝑝,𝜑 be the characteristic polynomial of 𝑀𝜑 over ℤ/𝑝ℤ.
• The reciprocal of a degree 𝑛 polynomial 𝜉 is 𝜉 ∗(𝑥) = 𝑥𝑛𝜉 (𝑥−1).

Theorem
If 𝜑 ∶ 𝐹(𝐴) → 𝐹(𝐴) defines an 𝜔-presentation of 𝐺, then

d𝑝(𝐺) = deg(𝜒∗𝑝,𝜑).

In particular, 𝑄nil(𝐺) ≅ ∏𝑝 𝐹𝑝(deg(𝜒∗𝑝,𝜑)).
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Corollaries

Suppose that 𝐺 ≅ ⟨𝐴 ∣ �̂�(𝑎)𝑎−1 ∶ 𝑎 ∈ 𝐴⟩ is 𝜔-presented.

Corollary 1
𝐺 is a perfect profinite group if and only if 𝑀𝜑 is a nilpotent matrix.
Moreover, 𝐺 cannot be pro-𝑝.

Let pdet(𝑀) be the product of the non-zero eigenvalues of 𝑀 .

Corollary 2
If pdet(𝑀𝜑) ≠ ±1, then 𝐺 is not free profinite.

Say 𝐺 is relatively free if it is free pro-H for some pseudovariety H.

Corollary 3
If there are primes 𝑝, 𝑞 such that 0 < deg(𝜒∗𝑝,𝜑) < deg(𝜒∗𝑞,𝜑), then 𝐺 is not
relatively free.
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Let pdet(𝑀) be the product of the non-zero eigenvalues of 𝑀 .

Corollary 2
If pdet(𝑀𝜑) ≠ ±1, then 𝐺 is not free profinite.

Say 𝐺 is relatively free if it is free pro-H for some pseudovariety H.

Corollary 3
If there are primes 𝑝, 𝑞 such that 0 < deg(𝜒∗𝑝,𝜑) < deg(𝜒∗𝑞,𝜑), then 𝐺 is not
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Recap

When 𝐺 is 𝜔-presented by an endomorphism 𝜑,

𝑄nil(𝐺) is completely determined by the
prime-indexed sequence (deg(𝜒 ∗𝑝,𝜑))𝑝.
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Part 3

Schützenberger groups of primitive
substitutions



Primitive substitutions

• A substitution is an endomorphism 𝜑 ∶𝐴∗ → 𝐴∗.

• A substitution is primitive if, for some 𝑛 ≥ 1,
𝑏 occurs in 𝜑𝑛(𝑎) for all 𝑎, 𝑏 ∈ 𝐴.

• A primitive substitution 𝜑 defines the uniformly recurrent language

𝐿(𝜑) = {𝑤 ∈ 𝐴∗ ∶ 𝜑𝑛(𝑎) ∈ 𝐴∗𝑤𝐴∗, for some 𝑎 ∈ 𝐴, 𝑛 ∈ ℕ}.
• Recall Almeida’s theorem: to each uniformly recurrent language
𝐿 ⊆ 𝐴∗ corresponds a maximal subgroup 𝐺(𝐿) ⊆ 𝐴∗.

• For short, we write 𝐺(𝜑) instead of 𝐺(𝐿(𝜑)).
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Almeida and Costa’s presentation theorem

A uniformly recurrent language 𝐿 ⊆ 𝐴∗ is aperiodic if 𝐿 ∩ {𝑤𝑛 ∶ 𝑛 ≥ 0} is
finite for all 𝑤 ∈ 𝐿.

Note: when 𝐿 is periodic, 𝐺(𝐿) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)
Let 𝜑 be a primitive aperiodic substitution. The Schützenberger group
𝐺(𝜑) is 𝜔-presented.

• The proof is constructive. It relies on the notion of return substitution.
• In fact, all return substitutions of 𝜑 give 𝜔-presentations of 𝐺(𝜑).
• For a return substitution 𝜓 , 𝑄nil(𝐺(𝜑)) is determined by (deg(𝜒∗𝑝,𝜓 ))𝑝 .
• Durand, 2012: There is an algorithm which takes as input a primitive
substitution, and outputs a return substitution.

• But the algorithm can be costly and unpredictable.
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Durand’s lemma

Lemma (Durand, 1998)
Let 𝜑 be a primitive aperiodic substitution with a return substitution 𝜓 .
For some 𝑛 > 0 and some products of cyclotomic polynomials 𝜉1, 𝜉2,

𝜉1𝜒∗𝜑𝑛 = ±𝜉2𝜒∗𝜓 .

Corollary
The termwise difference of (deg(𝜒∗𝑝,𝜓 ))𝑝 and (deg(𝜒∗𝑝,𝜑))𝑝 is a constant
sequence.

Therefore: (deg(𝜒∗𝑝,𝜑))𝑝 determine 𝑄nil(𝐺(𝜑)) up to a free pronilpotent factor.
This is true even though 𝜑 may not define an 𝜔-presentation of 𝐺(𝜑).
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Corollaries

Let 𝜑 be a primitive aperiodic substitution.

Corollary 1
𝐺(𝜑) is neither perfect nor pro-𝑝.

Corollary 2
If pdet(𝑀𝜑) ≠ ±1, then 𝐺(𝜑) is not free profinite.

Corollary 3
If there are primes 𝑝, 𝑞, 𝑟 such that deg(𝜒∗𝑝,𝜑) < deg(𝜒∗𝑞,𝜑) < deg(𝜒∗𝑟,𝜑), then
𝐺(𝜑) is not relatively free.
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Thank you for your attention!
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