A pronilpotent look at maximal subgroups of free profinite monoids

Herman Goulet-Ouellet

TACL 2022, Coimbra 24 June 2022

Part 1

Setting the stage

Let M be a compact^{*} monoid.

Let M be a compact^{*} monoid.

^{*}i.e. quasi-compact and Hausdorff.

Let M be a compact^{*} monoid.

• $x, y \in M$ are \mathcal{J} -equivalent if they generate the same two-sided ideal:

 $x \mathcal{J} y \iff MxM = MyM.$

^{*}i.e. quasi-compact and Hausdorff.

Let M be a compact * monoid.

- $x,y \in M$ are $\mathcal{J}\textbf{-equivalent}$ if they generate the same two-sided ideal:

$$x \mathcal{J} y \iff MxM = MyM.$$

- $x,y \in M$ are $\mathcal{H}\text{-}\mathbf{equivalent}$ if they generate the same left/right ideals:

$$x \mathcal{H} y \iff Mx = My \text{ and } xM = yM.$$

^{*}i.e. quasi-compact and Hausdorff.

- $x,y \in M$ are $\mathcal{J}\textbf{-equivalent}$ if they generate the same two-sided ideal:

$$x \mathcal{J} y \iff MxM = MyM.$$

- $x,y \in M$ are $\mathcal{H}\text{-}\mathbf{equivalent}$ if they generate the same left/right ideals:

$$x \mathcal{H} y \iff Mx = My \text{ and } xM = yM.$$

• *Note*: \mathcal{H} is finer than \mathcal{J} , i.e. $\mathcal{H} \subseteq \mathcal{J}$.

^{*}i.e. quasi-compact and Hausdorff.

- $x,y \in M$ are $\mathcal{J}\textbf{-equivalent}$ if they generate the same two-sided ideal:

$$x \mathcal{J} y \iff MxM = MyM.$$

- $x,y \in M$ are $\mathcal{H}\text{-}\mathbf{equivalent}$ if they generate the same left/right ideals:

$$x \mathcal{H} y \iff Mx = My \text{ and } xM = yM.$$

- *Note*: \mathcal{H} is finer than \mathcal{J} , i.e. $\mathcal{H} \subseteq \mathcal{J}$.
- A $\mathcal J$ or $\mathcal H\text{-class}$ containing an idempotent is called $\mathbf{regular}.$

^{*}i.e. quasi-compact and Hausdorff.

- $x,y \in M$ are $\mathcal{J}\textbf{-equivalent}$ if they generate the same two-sided ideal:

$$x \mathcal{J} y \iff MxM = MyM.$$

- $x,y \in M$ are $\mathcal{H}\text{-}\mathbf{equivalent}$ if they generate the same left/right ideals:

$$x \mathcal{H} y \iff Mx = My \text{ and } xM = yM.$$

- *Note*: \mathcal{H} is finer than \mathcal{J} , i.e. $\mathcal{H} \subseteq \mathcal{J}$.
- A $\mathcal J$ or $\mathcal H\text{-class}$ containing an idempotent is called $\mathbf{regular}.$

Theorem (Green)

The maximal subgroups of M are precisely its regular \mathcal{H} -classes.

^{*}i.e. quasi-compact and Hausdorff.

- $x,y \in M$ are $\mathcal{J}\text{-}\mathbf{equivalent}$ if they generate the same two-sided ideal:

$$x \mathcal{J} y \iff MxM = MyM.$$

- $x,y \in M$ are $\mathcal{H}\text{-}\mathbf{equivalent}$ if they generate the same left/right ideals:

$$x \mathcal{H} y \iff Mx = My \text{ and } xM = yM.$$

- *Note*: \mathcal{H} is finer than \mathcal{J} , i.e. $\mathcal{H} \subseteq \mathcal{J}$.
- A $\mathcal J$ or $\mathcal H\text{-}{\rm class}$ containing an idempotent is called ${\bf regular}.$

Theorem (Green)

The maximal subgroups of M are precisely its regular \mathcal{H} -classes.

Maximal subgroups in the same ${\mathcal J}\text{-}{\rm class}$ are isomorphic compact groups.

^{*}i.e. quasi-compact and Hausdorff.

• A **profinite monoid** is an inverse limit of finite discrete monoids.

- A **profinite monoid** is an inverse limit of finite discrete monoids.
- Numakura, 1956: equivalently, a "Stone topological monoid".

- A **profinite monoid** is an inverse limit of finite discrete monoids.
- Numakura, 1956: equivalently, a "Stone topological monoid".
- The category of profinite monoids has free objects $\widehat{A^*}$.

(M a profinite monoid)

- A **profinite monoid** is an inverse limit of finite discrete monoids.
- Numakura, 1956: equivalently, a "Stone topological monoid".
- The category of profinite monoids has free objects $\widehat{A^*}$.

(M a profinite monoid)

• $\widehat{A^*}$ can be seen as a completion of the free monoid A^* .

- A **profinite monoid** is an inverse limit of finite discrete monoids.
- Numakura, 1956: equivalently, a "Stone topological monoid".
- The category of profinite monoids has free objects $\widehat{A^*}$.

(M a profinite monoid)

- $\widehat{A^*}$ can be seen as a completion of the free monoid A^* .
- Elements of $\widehat{A^*}$ are called **pseudowords**.

\mathcal{J} -classes in $\widehat{A^*}$

\mathcal{J} -classes in $\widehat{A^*}$

\mathcal{J} -classes in $\widehat{A^*}$

Main goal: study the maximal subgroups inside the regular \mathscr{J} -classes found in the "top layer" of $\widehat{A^*} \setminus A^*$.

The following is a bijection between *uniformly recurrent languages* $L \subseteq A^*$ and *maximal regular* \mathcal{J} *-classes* $J \subseteq \widehat{A^*} \setminus A^*$:

 $L \mapsto J(L) \coloneqq \overline{L} \smallsetminus A^*.$

The following is a bijection between *uniformly recurrent languages* $L \subseteq A^*$ and *maximal regular* \mathcal{J} -classes $J \subseteq \widehat{A^*} \setminus A^*$: $L \mapsto J(L) \coloneqq \overline{L} \setminus A^*$.

The maximal subgroups of J(L) all define the same profinite group up to isomorphism. We denote it by G(L).

The following is a bijection between *uniformly recurrent languages* $L \subseteq A^*$ and *maximal regular* \mathcal{J} -classes $J \subseteq \widehat{A^*} \setminus A^*$:

 $L \mapsto J(L) := \overline{L} \smallsetminus A^*.$

The maximal subgroups of J(L) all define the same profinite group up to isomorphism. We denote it by G(L).

Definition

We call G(L) the **Schützenberger group** of *L*.

The following is a bijection between *uniformly recurrent languages* $L \subseteq A^*$ and *maximal regular* \mathcal{J} *-classes* $J \subseteq \widehat{A^*} \setminus A^*$:

 $L \mapsto J(L) := \overline{L} \smallsetminus A^*.$

The maximal subgroups of J(L) all define the same profinite group up to isomorphism. We denote it by G(L).

Definition

We call G(L) the **Schützenberger group** of *L*.

Rhodes and Steinberg, 2008: G(L) is a projective profinite group.

A uniformly recurrent language $L \subseteq A^*$ gives a regular \mathcal{J} -class $J(L) \subseteq \widehat{A^*}$.

A uniformly recurrent language $L \subseteq A^*$ gives a regular \mathcal{J} -class $J(L) \subseteq \widehat{A^*}$.

The \mathcal{J} -class J(L) gives a profinite group G(L), the Schützenberger group.

A uniformly recurrent language $L \subseteq A^*$ gives a regular \mathcal{J} -class $J(L) \subseteq \widehat{A^*}$.

The *J*-class *J*(*L*) gives a profinite group *G*(*L*), the Schützenberger group.

The group G(L) is a maximal subgroup of $\widehat{A^*}$ and a projective profinite group.

Part 2

Pronilpotent quotients of projective profinite groups

• A **profinite group** is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \leq G$ such that

G/N is a finite group.

• A **profinite group** is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \trianglelefteq G$ such that

G/N is a finite group.

• The category of profinite groups has free objects $\widehat{F}(A)$.

(G a profinite group)

• A **profinite group** is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \trianglelefteq G$ such that

G/N is a finite group.

• The category of profinite groups has free objects $\widehat{F}(A)$.

(G a profinite group)

• $\widehat{F}(A)$ can be seen as a completion of the free group F(A).

• A **pronilpotent group** is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \trianglelefteq G$ such that

G/N is a finite nilpotent group.

• The category of pronilpotent groups has free objects $\widehat{F}_{nil}(A)$.

(G a pronilpotent group)

• $\widehat{F}_{nil}(A)$ can be seen as a completion of the free group F(A).

• A **pro**-*p* **group** is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \leq G$ such that

G/N is a finite *p*-group.

• The category of pro-*p* groups has free objects $\widehat{F}_p(A)$.

 $(G \mathrel{\texttt{a pro-}} p \mathrel{\texttt{group}})$

• $\widehat{F}_p(A)$ can be seen as a completion of the free group F(A).

• A **pro-H** group is a compact group *G* whose identity 1_G has a neighbourhood basis of clopen normal subgroups $N \leq G$ such that

 $G/N \in \mathbf{H}.$

• The category of pro-**H** groups has free objects $\widehat{F}_{\mathbf{H}}(A)$.

 $(G \text{ a pro-}\mathbf{H} \text{ group})$

- $\widehat{F}_{\mathbf{H}}(A)$ can be seen as a completion of the free group F(A).
- We assume that **H** is a **pseudovariety** of finite groups (closed under finite direct products, quotients and subgroups).

• Pro-H groups form a reflective subcategory of profinite groups.

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient*,

(H is pronilpotent)

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient, pro-p quotient*

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient, pro-p quotient* and *pro-p elementary Abelian quotient.*

Maximal quotients

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient*, *pro-p quotient* and *pro-p elementary Abelian quotient*.

*Q*_{Ab_p}(*G*) is a vector space over Z/pZ: it is isomorphic to (Z/pZ)^{d_p(G)} for some cardinal d_p(G).

Maximal quotients

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient, pro-p quotient* and *pro-p elementary Abelian quotient.*

- *Q*_{Ab_p}(*G*) is a vector space over Z/pZ: it is isomorphic to (Z/pZ)^{d_p(G)} for some cardinal d_p(G).
- Also: $Q_{Ab_p}(G)$ is the *Frattini quotient* of $Q_p(G)$.

Maximal quotients

- Pro-H groups form a reflective subcategory of profinite groups.
- In particular, every profinite group *G* admits a maximal *pronilpotent quotient*, *pro-p quotient* and *pro-p elementary Abelian quotient*.

- *Q*_{Ab_p}(*G*) is a vector space over Z/pZ: it is isomorphic to (Z/pZ)^{d_p(G)} for some cardinal d_p(G).
- Also: $Q_{Ab_p}(G)$ is the Frattini quotient of $Q_p(G)$.
- There is a natural isomorphism $Q_{\text{nil}} \cong \prod_p Q_p$.

Projective profinite groups

Projective profinite groups are defined by the usual lifting property.

Projective profinite groups

Projective profinite groups are defined by the usual lifting property.

Theorem (Tate)

A pro-*p* group is projective if and only if it is pro-*p* free, i.e. $\cong \widehat{F}_p(A)$.

Projective profinite groups

Projective profinite groups are defined by the usual lifting property.

Theorem (Tate)

A pro-*p* group is projective if and only if it is pro-*p* free, i.e. $\cong \widehat{F}_p(A)$.

Proposition

If G is a projective profinite group, then

$$Q_{\mathrm{nil}}(G) \cong \prod_p \widehat{F}_p(\mathrm{d}_p(G)).$$

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter, 1983*: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter*, 1983: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.
- In that case, pointwise limits in $\operatorname{End}(\widehat{F}(A))$ of the form $\psi^{\omega} = \lim \psi^{n!}$ give idempotents.

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter*, 1983: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.
- In that case, pointwise limits in $\operatorname{End}(\widehat{F}(A))$ of the form $\psi^{\omega} = \lim \psi^{n!}$ give idempotents.
- An endomorphism φ of F(A) has an extension $\hat{\varphi} \in \text{End}(\widehat{F}(A))$.

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter*, 1983: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.
- In that case, pointwise limits in End(F
 (A)) of the form ψ^ω = lim ψⁿ! give idempotents.
- An endomorphism φ of F(A) has an extension $\hat{\varphi} \in \text{End}(\widehat{F}(A))$.

Definition

An ω -presentation is a profinite presentation of the form

 $G \cong \langle A \mid \hat{\varphi}^{\omega}(a)a^{-1} : a \in A \rangle,$

where *A* is finite, φ is an endomorphism of *F*(*A*).

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter, 1983*: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.
- In that case, pointwise limits in End(F
 (A)) of the form ψ^ω = lim ψⁿ! give idempotents.
- An endomorphism φ of F(A) has an extension $\hat{\varphi} \in \text{End}(\widehat{F}(A))$.

Definition

An ω -presentation is a profinite presentation of the form

 $G \cong \langle A \mid \hat{\varphi}^{\omega}(a)a^{-1} : a \in A \rangle,$

where *A* is finite, φ is an endomorphism of *F*(*A*).

Lubotzky, 2001: ω -presented groups are projective profinite groups.

- Let $\operatorname{End}(\widehat{F}(A))$ be the set of continuous endomorphisms of $\widehat{F}(A)$.
- *Hunter, 1983*: if A is finite, $End(\widehat{F}(A))$ is "pointwise" profinite.
- In that case, pointwise limits in End(F
 (A)) of the form ψ^ω = lim ψⁿ! give idempotents.
- An endomorphism φ of F(A) has an extension $\hat{\varphi} \in \text{End}(\widehat{F}(A))$.

Definition

An ω -presentation is a profinite presentation of the form

 $G \cong \langle A \mid \hat{\varphi}^{\omega}(a)a^{-1} : a \in A \rangle,$

where *A* is finite, φ is an endomorphism of *F*(*A*).

Lubotzky, 2001: ω -presented groups are projective profinite groups.

Almeida and Costa, 2013: in some cases, Schützenberger groups of uniformly recurrent languages are ω -presented.

 For a ∈ A, extend the delta function δ_a : A → {0, 1} to a homomorphism |−|_a : F(A) → Z ("counting occurrences" of a).

- For *a* ∈ *A*, extend the delta function δ_a : *A* → {0, 1} to a homomorphism |−|_a : *F*(*A*) → Z ("counting occurrences" of *a*).
- Define the **composition matrix** of $\varphi : F(A) \to F(A)$ by

 $M_{\varphi}(a,b) = |\varphi(b)|_a, \quad a,b \in A.$

- For a ∈ A, extend the delta function δ_a : A → {0, 1} to a homomorphism |−|_a : F(A) → Z ("counting occurrences" of a).
- Define the **composition matrix** of $\varphi : F(A) \to F(A)$ by

$$M_{\varphi}(a,b) = |\varphi(b)|_a, \quad a,b \in A.$$

• Let $\chi_{p,\varphi}$ be the characteristic polynomial of M_{φ} over $\mathbb{Z}/p\mathbb{Z}$.

- For a ∈ A, extend the delta function δ_a : A → {0, 1} to a homomorphism |−|_a : F(A) → Z ("counting occurrences" of a).
- Define the **composition matrix** of $\varphi : F(A) \to F(A)$ by

$$M_{\varphi}(a,b) = |\varphi(b)|_a, \quad a,b \in A.$$

- Let $\chi_{p,\varphi}$ be the characteristic polynomial of M_{φ} over $\mathbb{Z}/p\mathbb{Z}$.
- The **reciprocal** of a degree *n* polynomial ξ is $\xi^*(x) = x^n \xi(x^{-1})$.

- For a ∈ A, extend the delta function δ_a : A → {0, 1} to a homomorphism |−|_a : F(A) → Z ("counting occurrences" of a).
- Define the **composition matrix** of $\varphi : F(A) \to F(A)$ by

$$M_{\varphi}(a,b) = |\varphi(b)|_a, \quad a,b \in A.$$

- Let $\chi_{p,\varphi}$ be the characteristic polynomial of M_{φ} over $\mathbb{Z}/p\mathbb{Z}$.
- The **reciprocal** of a degree *n* polynomial ξ is $\xi^*(x) = x^n \xi(x^{-1})$.

Theorem

If φ : *F*(*A*) \rightarrow *F*(*A*) defines an ω -presentation of *G*, then

 $d_p(G) = \deg(\chi_{p,\varphi}^*).$

- For a ∈ A, extend the delta function δ_a : A → {0, 1} to a homomorphism |−|_a : F(A) → Z ("counting occurrences" of a).
- Define the **composition matrix** of $\varphi : F(A) \to F(A)$ by

$$M_{\varphi}(a,b) = |\varphi(b)|_a, \quad a,b \in A.$$

- Let $\chi_{p,\varphi}$ be the characteristic polynomial of M_{φ} over $\mathbb{Z}/p\mathbb{Z}$.
- The **reciprocal** of a degree *n* polynomial ξ is $\xi^*(x) = x^n \xi(x^{-1})$.

Theorem

If φ : *F*(*A*) \rightarrow *F*(*A*) defines an ω -presentation of *G*, then

 $d_p(G) = \deg(\chi_{p,\varphi}^*).$

In particular, $Q_{\text{nil}}(G) \cong \prod_{p} \widehat{F}_{p}(\text{deg}(\chi_{p,\varphi}^{*})).$

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Corollary 1

G is a *perfect profinite group* if and only if M_{φ} is a *nilpotent matrix*. Moreover, *G* cannot be pro-*p*.

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Corollary 1

G is a *perfect profinite group* if and only if M_{φ} is a *nilpotent matrix*. Moreover, *G* cannot be pro-*p*.

Let pdet(M) be the product of the non-zero eigenvalues of M.

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Corollary 1

G is a *perfect profinite group* if and only if M_{φ} is a *nilpotent matrix*. Moreover, *G* cannot be pro-*p*.

Let pdet(M) be the product of the non-zero eigenvalues of M.

Corollary 2 If $pdet(M_{\varphi}) \neq \pm 1$, then *G* is not free profinite.

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Corollary 1

G is a *perfect profinite group* if and only if M_{φ} is a *nilpotent matrix*. Moreover, *G* cannot be pro-*p*.

Let pdet(M) be the product of the non-zero eigenvalues of M.

Corollary 2 If $pdet(M_{\varphi}) \neq \pm 1$, then *G* is not free profinite.

Say G is **relatively free** if it is free pro-**H** for some pseudovariety **H**.

Suppose that $G \cong \langle A \mid \hat{\varphi}(a)a^{-1} : a \in A \rangle$ is ω -presented.

Corollary 1

G is a *perfect profinite group* if and only if M_{φ} is a *nilpotent matrix*. Moreover, *G* cannot be pro-*p*.

Let pdet(M) be the product of the non-zero eigenvalues of M.

Corollary 2 If $pdet(M_{\varphi}) \neq \pm 1$, then *G* is not free profinite.

Say G is **relatively free** if it is free pro-**H** for some pseudovariety **H**.

Corollary 3

If there are primes p, q such that $0 < \deg(\chi_{p,\varphi}^*) < \deg(\chi_{q,\varphi}^*)$, then *G* is not relatively free.

When G is ω -presented by an endomorphism φ ,

When G is ω -presented by an endomorphism φ ,

 $Q_{\text{nil}}(G)$ is completely determined by the prime-indexed sequence $(\deg(\chi_{p,\varphi}^*))_p$.

Part 3

Schützenberger groups of primitive substitutions

• A substitution is an endomorphism $\varphi : A^* \to A^*$.

- A substitution is an endomorphism $\varphi : A^* \to A^*$.
- A substitution is **primitive** if, for some $n \ge 1$,

b occurs in $\varphi^n(a)$ for all $a, b \in A$.

- A **substitution** is an endomorphism $\varphi : A^* \to A^*$.
- A substitution is **primitive** if, for some $n \ge 1$,

b occurs in $\varphi^n(a)$ for all $a, b \in A$.

- A primitive substitution φ defines the uniformly recurrent language

 $L(\varphi) = \{ w \in A^* : \varphi^n(a) \in A^* w A^*, \text{ for some } a \in A, n \in \mathbb{N} \}.$

- A **substitution** is an endomorphism $\varphi : A^* \to A^*$.
- A substitution is **primitive** if, for some $n \ge 1$,

b occurs in $\varphi^n(a)$ for all $a, b \in A$.

- A primitive substitution φ defines the uniformly recurrent language

 $L(\varphi) = \{ w \in A^* : \varphi^n(a) \in A^* w A^*, \text{ for some } a \in A, n \in \mathbb{N} \}.$

• Recall *Almeida's theorem*: to each uniformly recurrent language $L \subseteq A^*$ corresponds a maximal subgroup $G(L) \subseteq \widehat{A^*}$.

- A substitution is an endomorphism $\varphi : A^* \to A^*$.
- A substitution is **primitive** if, for some $n \ge 1$,

b occurs in $\varphi^n(a)$ for all $a, b \in A$.

- A primitive substitution φ defines the uniformly recurrent language

 $L(\varphi) = \{ w \in A^* : \varphi^n(a) \in A^* w A^*, \text{ for some } a \in A, n \in \mathbb{N} \}.$

- Recall *Almeida's theorem*: to each uniformly recurrent language $L \subseteq A^*$ corresponds a maximal subgroup $G(L) \subseteq \widehat{A^*}$.
- For short, we write $G(\varphi)$ instead of $G(L(\varphi))$.

Almeida and Costa's presentation theorem

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Almeida and Costa's presentation theorem

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Almeida and Costa's presentation theorem

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

Let φ be a primitive aperiodic substitution. The Schützenberger group $G(\varphi)$ is $\omega\text{-presented}.$
A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

Let φ be a primitive aperiodic substitution. The Schützenberger group $G(\varphi)$ is ω -presented.

• *The proof is constructive.* It relies on the notion of **return substitution**.

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

- *The proof is constructive.* It relies on the notion of **return substitution**.
- In fact, *all* return substitutions of φ give ω -presentations of $G(\varphi)$.

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

- *The proof is constructive.* It relies on the notion of **return substitution**.
- In fact, *all* return substitutions of φ give ω -presentations of $G(\varphi)$.
- For a return substitution ψ , $Q_{\text{nil}}(G(\varphi))$ is determined by $(\deg(\chi_{p,\psi}^*))_p$.

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

- *The proof is constructive.* It relies on the notion of **return substitution**.
- In fact, *all* return substitutions of φ give ω -presentations of $G(\varphi)$.
- For a return substitution ψ , $Q_{\text{nil}}(G(\varphi))$ is determined by $(\deg(\chi_{p,\psi}^*))_p$.
- *Durand, 2012*: There is an algorithm which takes as input a primitive substitution, and outputs a return substitution.

A uniformly recurrent language $L \subseteq A^*$ is **aperiodic** if $L \cap \{w^n : n \ge 0\}$ is finite for all $w \in L$.

Note: when *L* is **periodic**, G(L) is a free profinite group of rank 1.

Theorem (Almeida and Costa, 2013)

- *The proof is constructive.* It relies on the notion of **return substitution**.
- In fact, *all* return substitutions of φ give ω -presentations of $G(\varphi)$.
- For a return substitution ψ , $Q_{nil}(G(\varphi))$ is determined by $(\deg(\chi_{p,\psi}^*))_p$.
- *Durand, 2012*: There is an algorithm which takes as input a primitive substitution, and outputs a return substitution.
- *But* the algorithm can be costly and unpredictable.

Let φ be a primitive aperiodic substitution with a return substitution ψ . For some n > 0 and some products of cyclotomic polynomials ξ_1, ξ_2 ,

 $\xi_1 \chi_{\varphi^n}^* = \pm \xi_2 \chi_{\psi}^*.$

Let φ be a primitive aperiodic substitution with a return substitution ψ . For some n > 0 and some products of cyclotomic polynomials ξ_1, ξ_2 ,

 $\xi_1 \chi_{\varphi^n}^* = \pm \xi_2 \chi_{\psi}^*.$

Corollary

The termwise difference of $(\deg(\chi^*_{p,\psi}))_p$ and $(\deg(\chi^*_{p,\varphi}))_p$ is a constant sequence.

Let φ be a primitive aperiodic substitution with a return substitution ψ . For some n > 0 and some products of cyclotomic polynomials ξ_1, ξ_2 ,

 $\xi_1 \chi_{\varphi^n}^* = \pm \xi_2 \chi_{\psi}^*.$

Corollary

The termwise difference of $(\deg(\chi^*_{p,\psi}))_p$ and $(\deg(\chi^*_{p,\varphi}))_p$ is a constant sequence.

Therefore: $(\deg(\chi_{p,\varphi}^*))_p$ determine $Q_{nil}(G(\varphi))$ up to a free pronilpotent factor.

Let φ be a primitive aperiodic substitution with a return substitution ψ . For some n > 0 and some products of cyclotomic polynomials ξ_1, ξ_2 ,

 $\xi_1 \chi_{\varphi^n}^* = \pm \xi_2 \chi_{\psi}^*.$

Corollary

The termwise difference of $(\deg(\chi^*_{p,\psi}))_p$ and $(\deg(\chi^*_{p,\varphi}))_p$ is a constant sequence.

Therefore: $(\deg(\chi_{p,\varphi}^*))_p$ determine $Q_{nil}(G(\varphi))$ up to a free pronilpotent factor. This is true even though φ may not define an ω -presentation of $G(\varphi)$.

Corollary 1

 $G(\varphi)$ is neither perfect nor pro-*p*.

Corollary 1

 $G(\varphi)$ is neither perfect nor pro-*p*.

Corollary 2

If $pdet(M_{\varphi}) \neq \pm 1$, then $G(\varphi)$ is not free profinite.

Corollary 1 $G(\varphi)$ is neither perfect nor pro-*p*.

Corollary 2

If $pdet(M_{\varphi}) \neq \pm 1$, then $G(\varphi)$ is not free profinite.

Corollary 3

If there are primes p, q, r such that $\deg(\chi_{p,\varphi}^*) < \deg(\chi_{q,\varphi}^*) < \deg(\chi_{r,\varphi}^*)$, then $G(\varphi)$ is not relatively free.

References i

- J. Almeida, *Profinite groups associated with weakly primitive substitutions*, J. Math. Sci. **144** (2007), no. 2, 3881–3903.
- J. Almeida and A. Costa, *Presentations of Schützenberger groups of minimal subshifts*, Israel J. Math. **196** (2013), no. 1, 1–31.
- F. Durand, *A generalization of Cobham's theorem*, Theory Comput. Syst. **31** (1998), no. 2, 169–185.
- F. Durand, *HD0L-ω-equivalence and periodicity problems in the primitive case* (to the memory of *G. Rauzy*), Unif. Distrib. Theory 7 (2012), no. 1, 199–215.
- H. Goulet-Ouellet, *Pronilpotent quotients associated with primitive substitutions*, J. Algebra **606** (2022), 341–370.

- R. P. Hunter, *Some remarks on subgroups defined by the Bohr compactification*, Semigr. Forum **26** (1983), no. 1, 125–137.
- A. Lubotzky, Pro-finite presentations, J. Algebra 242 (2001), no. 2, 672–690.
- K. Numakura, *Theorems on compact totally disconnected semigroups and lattices*, Proc. Am. Math. Soc. **8** (1957), no. 4, 623–626.
- J. Rhodes and B. Steinberg, *Closed subgroups of free profinite monoids are projective profinite groups*, Bull. Lond. Math. Soc. **40** (2008), no. 3, 375–383.

Thank you for your attention!