One-Sorted Program Algebras

Igor Sedlár and Johann J. Wannenburg

Institute of Computer Science of the Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2022 Coimbra, Portugal

Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

- Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)
- Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.

- Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)
- Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.
- Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.

- Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)
- Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.
- Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.
- **Kleene algebra with (co)domain** [DS08, DS11] adds to KA a unary operation d such that d(K) forms a Boolean algebra of tests.

- Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)
- Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.
- Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.
- Kleene algebra with (co)domain [DS08, DS11] adds to KA a unary operation d such that d(K) forms a Boolean algebra of tests.

■ KAT embeds into KAD (心), but KAD is too strong:

■ KAT embeds into KAD (心), but KAD is too strong:

(\mathbb{Q}) d(K) forms the largest Boolean subalgebra of the negative cone of K;

 (\mathbf{Q}) not every KA expands to a KAD.

■ KAT embeds into KAD (心), but KAD is too strong:

(\mathbf{Q}) d(K) forms the largest Boolean subalgebra of the negative cone of K;

 (\mathbf{Q}) not every KA expands to a KAD.

■ We introduce a generalization of KAD that preserves (心) and avoids (叭)

■ KAT embeds into KAD (心), but KAD is too strong:

(C) d(K) forms the largest Boolean subalgebra of the negative cone of K;

 (\mathbf{Q}) not every KA expands to a KAD.

- We introduce a generalization of KAD that preserves () and avoids ()
- We've also shown that the substructural logic of partial correctness S [KT03] embeds into residuated KAD (called SKAT).

- 1 Kleene algebra with tests
- 2 Kleene algebra with (co)domain
- 3 One-sorted KAT
- 4 KAT embeds into OneKAT
- 5 SKAT and an embedding of S

 $\mathcal{K} = (K, \cdot, +, *, 1, 0)$

- $\mathcal{K} = (K, \cdot, +, \, {}^*, 1, 0)$ where $(K, \cdot, +, 1, 0)$ is an idempotent semiring
 - $\ \ \, \blacksquare \ \, (K,+,0) \text{ join-semilattice} \\$
 - $\ \ \, \blacksquare \ \, (K,\cdot,1) \text{ monoid}$
 - x(y+z) = xy + xz and (x+y)z = xz + yz
 - $\bullet \ 0x = 0 = x0$

- $\mathcal{K} = (K, \cdot, +, \, {}^*, 1, 0)$ where $(K, \cdot, +, 1, 0)$ is an idempotent semiring
 - $\ \ \, \bullet \ \ \, (K,+,0) \text{ join-semilattice} \\$
 - $\ \ \, \blacksquare \ \, (K,\cdot,1) \text{ monoid}$

•
$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$

 $\bullet \ 0x = 0 = x0$

and $*: K \to K$ (Kleene star) satisfies

$$1 + x + x^* x^* \le x^* \tag{1}$$

$$xy \le y \Rightarrow x^*y \le y \tag{2}$$

$$yx \le y \Rightarrow yx^* \le y \tag{3}$$

- $\mathcal{K} = (K, \cdot, +, \, {}^*, 1, 0)$ where $(K, \cdot, +, 1, 0)$ is an idempotent semiring
 - (K, +, 0) join-semilattice
 - $\ \ \, \blacksquare \ \, (K,\cdot,1) \text{ monoid}$

•
$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$

 $\bullet \ 0x = 0 = x0$

and $\,^*: K \to K$ (Kleene star) satisfies

$$1 + x + x^* x^* \le x^* \tag{1}$$

$$xy \le y \Rightarrow x^*y \le y \tag{2}$$

$$yx \le y \Rightarrow yx^* \le y$$
 (3)

KA is *-continuous iff $xy^*z = \sum_{n\geq 0} xy^nz$

- $\mathcal{K} = (K, \cdot, +, \, {}^*, 1, 0)$ where $(K, \cdot, +, 1, 0)$ is an idempotent semiring
 - $\ \ \, \bullet \ \ \, (K,+,0) \text{ join-semilattice} \\$
 - $\ \ \, (K,\cdot,1) \text{ monoid}$

•
$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$

 $\bullet \ 0x = 0 = x0$

and $\,^*: K \to K$ (Kleene star) satisfies

$$1 + x + x^* x^* \le x^* \tag{1}$$

$$xy \le y \Rightarrow x^*y \le y \tag{2}$$

$$yx \le y \Rightarrow yx^* \le y$$
 (3)

KA is *-continuous iff $xy^*z = \sum_{n\geq 0} xy^nz$

Examples: Algebras of binary relations, regular languages, matrices over semirings, functions from monoids to complete lattices...

- $\mathcal{K} = (K, B, \cdot, +, *, -, 1, 0)$
 - $(K, \cdot, +, *, 1, 0)$ Kleene algebra
 - $\blacksquare \ B \subseteq K$
 - $(B, \cdot, +, -, 1, 0)$ Boolean algebra

- $\mathcal{K}=(K,B,\cdot,+,\,{}^*\,,-,1,0)$
 - $\blacksquare~(K,\cdot,+,\ ^{\ast},1,0)$ Kleene algebra
 - $\blacksquare \ B \subseteq K$
 - $\blacksquare \ (B,\cdot,+,-,1,0)$ Boolean algebra

Propositional while programs

- if b then p else q: $(bp) + (\overline{b}q)$, while b do p: $(bp)^*\overline{b}$
- $\bullet \ \{b\}p\{c\}: \ bp\bar{c}=0$

- $\mathcal{K}=(K,B,\cdot,+,\,{}^*\,,-,1,0)$
 - $\blacksquare~(K,\cdot,+,\ ^{\ast},1,0)$ Kleene algebra
 - $\blacksquare \ B \subseteq K$
 - $\blacksquare \ (B,\cdot,+,-,1,0)$ Boolean algebra

Propositional while programs

if b then p else q: $(bp) + (\bar{b}q)$, while b do p: $(bp)^*\bar{b}$

 $\bullet \ \{b\}p\{c\}: \ bp\bar{c}=0$

Examples: Binary relations with $B = 2^{id}$, any KA with $B = \{1, 0\}$...

- $\mathcal{K}=(K,B,\cdot,+,\,{}^*\,,-,1,0)$
 - $\blacksquare~(K,\cdot,+,\ ^{\ast},1,0)$ Kleene algebra
 - $\blacksquare \ B \subseteq K$
 - $\blacksquare \ (B,\cdot,+,-,1,0)$ Boolean algebra

Propositional while programs

- if b then p else q: $(bp) + (\bar{b}q)$, while b do p: $(bp)^*\bar{b}$
- $\bullet \ \{b\}p\{c\}: \ bp\bar{c}=0$

Examples: Binary relations with $B = 2^{id}$, any KA with $B = \{1, 0\}$...

Theorem. The eq. theory of KAT is PSPACE-complete [CKS96], and the Horn theory with assumptions r = 0 reduces to the eq. theory [KS97].

The idea: Expand $\mathcal{K} = (K, \cdot, +, *, 1, 0)$ with unary t and a such that

 $\mathsf{t}(\mathcal{K}) = (\mathsf{t}(K), \cdot, +, \mathsf{a}, 1, 0)$

is a Boolean algebra thanks to the properties of t, a.

The idea: Expand $\mathcal{K} = (K, \cdot, +, *, 1, 0)$ with unary t and a such that

$$\mathsf{t}(\mathcal{K}) = (\mathsf{t}(K), \cdot, +, \mathsf{a}, 1, 0)$$

is a Boolean algebra thanks to the properties of t, a.

Inspiration:

$$\mathsf{d}(R) = \{(s,s) \mid \exists t \, R(s,t)\} \qquad \mathsf{c}(R) = \{(t,t) \mid \exists s \, R(s,t)\}$$

KAD: $\mathcal{K}=(K,\cdot,+,\,{}^*,1,0,\mathsf{d},\mathsf{a})$ where $(K,\cdot,+,\,{}^*,1,0)$ is KA and

$$x \le \mathsf{d}(x)x \tag{4}$$

$$\mathsf{d}(xy) = \mathsf{d}(x\mathsf{d}(y)) \tag{5}$$

$$\mathsf{d}(x) \le 1 \tag{6}$$

$$\mathsf{d}(0) = 0 \tag{7}$$

$$d(x+y) = d(x) + d(y)$$
(8)

$$\mathsf{a}(x) + \mathsf{d}(x) = 1 \tag{9}$$

$$\mathsf{d}(x)\mathsf{a}(x) = 0 \tag{10}$$

KAD: $\mathcal{K}=(K,\cdot,+,\,{}^*,1,0,\mathsf{d},\mathsf{a})$ where $(K,\cdot,+,\,{}^*,1,0)$ is KA and

$$x \le \mathsf{d}(x)x \tag{4}$$

$$\mathsf{d}(xy) = \mathsf{d}(x\mathsf{d}(y)) \tag{5}$$

$$\mathsf{d}(x) \le 1 \tag{6}$$

$$\mathsf{d}(0) = 0 \tag{7}$$

$$d(x+y) = d(x) + d(y)$$
(8)

$$\mathsf{a}(x) + \mathsf{d}(x) = 1 \tag{9}$$

$$\mathsf{d}(x)\mathsf{a}(x) = 0 \tag{10}$$

KAC: A "symmetric variant" with c instead of d.

Theorem. The quasi-equational theory of KAT embeds into the quasi-equational theory of KAD (and KAC).

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Lemma 2. If A is KAD, then d(A) is BA (and similarly for KAC).

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Lemma 2. If A is KAD, then d(A) is BA (and similarly for KAC).

Proof. This follows from:

- 1. $d(\mathcal{A})$ is a subalgebra of \mathcal{A}
- 2. $(d(A), \cdot, +, 1, 0)$ is a bounded distributive lattice (since $d(x) \le 1$ and d(x)d(x) = d(x))
- 3. a(d(x)) is a complement of d(x).

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\bar{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

1. If KAT $\not\models p \approx q$, then there is a full relational $\mathcal{R} \not\models p \approx q$ [KS97], i.e. $[p] \neq [q]$ for some valuation []. By Lemma 1, \mathcal{R} is a KAD. Define [] as the unique KAD-valuation such that $[x_{2n}] = [p_n]$ and $[x_{2n+1}] = [b_n]$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

1. If KAT $\not\models p \approx q$, then there is a full relational $\mathcal{R} \not\models p \approx q$ [KS97], i.e. $[p] \neq [q]$ for some valuation []. By Lemma 1, \mathcal{R} is a KAD. Define [] as the unique KAD-valuation such that $[x_{2n}] = [p_n]$ and $[x_{2n+1}] = [b_n]$.

Claim. For all $p \in \mathcal{L}_{KAT}$, $[p] = \llbracket Tr(p) \rrbracket$. (Note that $[b_n] \in B$ and so $[b_n] = d[b_n] = d\llbracket x_{2n+1} \rrbracket = \llbracket Tr(b_n) \rrbracket$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

1. If KAT $\not\models p \approx q$, then there is a full relational $\mathcal{R} \not\models p \approx q$ [KS97], i.e. $[p] \neq [q]$ for some valuation []. By Lemma 1, \mathcal{R} is a KAD. Define [] as the unique KAD-valuation such that $[x_{2n}] = [p_n]$ and $[x_{2n+1}] = [b_n]$.

Claim. For all $p \in \mathcal{L}_{KAT}$, $[p] = \llbracket Tr(p) \rrbracket$. (Note that $[b_n] \in B$ and so $[b_n] = d \llbracket b_n \rrbracket = d \llbracket x_{2n+1} \rrbracket = \llbracket Tr(b_n) \rrbracket$. Moreover, $\llbracket Tr(\bar{b}) \rrbracket = a [b] = [\bar{b}]$.)

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

1. If KAT $\not\models p \approx q$, then there is a full relational $\mathcal{R} \not\models p \approx q$ [KS97], i.e. $[p] \neq [q]$ for some valuation []. By Lemma 1, \mathcal{R} is a KAD. Define [] as the unique KAD-valuation such that $[x_{2n}] = [p_n]$ and $[x_{2n+1}] = [b_n]$.

Claim. For all $p \in \mathcal{L}_{KAT}$, $[p] = \llbracket Tr(p) \rrbracket$. (Note that $[b_n] \in B$ and so $[b_n] = d\llbracket b_n \rrbracket = d\llbracket x_{2n+1} \rrbracket = \llbracket Tr(b_n) \rrbracket$. Moreover, $\llbracket Tr(\bar{b}) \rrbracket = a[b] = [\bar{b}]$.)

Hence, KAD $\not\models Tr(p) \approx Tr(q)$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\bar{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

2. If KAD $\not\models Tr(p) \approx Tr(q)$, then $\mathcal{A} \not\models Tr(p) \approx Tr(q)$, i.e. $\llbracket Tr(p) \rrbracket \neq \llbracket Tr(q) \rrbracket$ for some KAD-valuation $\llbracket \rrbracket$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\bar{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

2. If KAD $\not\models Tr(p) \approx Tr(q)$, then $\mathcal{A} \not\models Tr(p) \approx Tr(q)$, i.e. $\llbracket Tr(p) \rrbracket \neq \llbracket Tr(q) \rrbracket$ for some KAD-valuation $\llbracket \rrbracket$. By Lemma 2, d(\mathcal{A}) is a BA, and so $\mathcal{K} = (A, d(A), \cdot, +, *, a, 1, 0)$ is a KAT.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

2. If KAD $\not\models Tr(p) \approx Tr(q)$, then $\mathcal{A} \not\models Tr(p) \approx Tr(q)$, i.e. $\llbracket Tr(p) \rrbracket \neq \llbracket Tr(q) \rrbracket$ for some KAD-valuation $\llbracket \rrbracket$. By Lemma 2, d(\mathcal{A}) is a BA, and so $\mathcal{K} = (A, \mathsf{d}(A), \cdot, +, \cdot^*, \mathsf{a}, 1, 0)$ is a KAT.

Define a KAT-valuation [] by $[p_n] = \llbracket x_{2n} \rrbracket$ and $[b_n] = \llbracket d(x_{2n+1}) \rrbracket$.

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

2. If KAD $\not\models Tr(p) \approx Tr(q)$, then $\mathcal{A} \not\models Tr(p) \approx Tr(q)$, i.e. $\llbracket Tr(p) \rrbracket \neq \llbracket Tr(q) \rrbracket$ for some KAD-valuation $\llbracket \rrbracket$. By Lemma 2, d(\mathcal{A}) is a BA, and so $\mathcal{K} = (A, d(A), \cdot, +, *, a, 1, 0)$ is a KAT.

Define a KAT-valuation [] by $[p_n] = \llbracket x_{2n} \rrbracket$ and $[b_n] = \llbracket d(x_{2n+1}) \rrbracket$.

Claim. For all $p \in \mathcal{L}_{KAT}$, $[p] = \llbracket Tr(p) \rrbracket$. ($\llbracket Tr(\mathbf{b}_n) \rrbracket = \llbracket d(\mathbf{x}_{2n+1}) \rrbracket = \llbracket \mathbf{b}_n \rrbracket$ and $\llbracket Tr(\bar{b}) \rrbracket = \mathbf{a}\llbracket Tr(b) \rrbracket = \mathbf{a}[b] = [\bar{b}]$.)

Let $\Gamma \cup \varphi$ be a set of equations over \mathcal{L}_{KAT} .

Theorem 1. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{KAD}$ such that $\mathsf{KAT} \models \Gamma \Rightarrow \varphi$ iff $\mathsf{KAD} \models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Let $Tr(p_n) = x_{2n}$, $Tr(b_n) = d(x_{2n+1})$ and $Tr(\overline{b}) = a(Tr(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma = \emptyset$.

2. If KAD $\not\models Tr(p) \approx Tr(q)$, then $\mathcal{A} \not\models Tr(p) \approx Tr(q)$, i.e. $\llbracket Tr(p) \rrbracket \neq \llbracket Tr(q) \rrbracket$ for some KAD-valuation $\llbracket \rrbracket$. By Lemma 2, d(\mathcal{A}) is a BA, and so $\mathcal{K} = (A, d(A), \cdot, +, *, a, 1, 0)$ is a KAT.

Define a KAT-valuation [] by $[p_n] = \llbracket x_{2n} \rrbracket$ and $[b_n] = \llbracket d(x_{2n+1}) \rrbracket$.

Claim. For all $p \in \mathcal{L}_{KAT}$, $[p] = \llbracket Tr(p) \rrbracket$. $(\llbracket Tr(\mathbf{b}_n) \rrbracket = \llbracket \mathbf{d}(\mathbf{x}_{2n+1}) \rrbracket = \llbracket \mathbf{b}_n \rrbracket$ and $\llbracket Tr(\bar{b}) \rrbracket = \mathbf{a}\llbracket Tr(b) \rrbracket = \mathbf{a}[b] = [\bar{b}]$.) Hence, KAT $\nvDash p \approx q$.

Problem 1: Expanding KA

 (\mathbf{Q}) Not every KA can be expanded to a KAD, not even every finite one.

Problem 1: Expanding KA

 (\mathbb{Q}) Not every KA can be expanded to a KAD, not even every finite one.

Example ([DS11]).

Problem 1: Expanding KA

 (\mathbb{Q}) Not every KA can be expanded to a KAD, not even every finite one.

Example ([DS11]).

If there is a d, then $d(a) \in \{a, 1\}$. If d(a) = a, then d(a)a = 0 and so $a \not\leq d(a)a \quad (\neg 4)$. If d(a) = 1, then $d(ad(a)) = 1 \neq 0 = d(aa) \quad (\neg 5)$.

Problem 2: Test algebras

(\$\backslashed{S}) The test algebra of each KAD is the maximal Boolean subalgebra of the negative cone of the underlying KA.

(\$\backslashed{S}) The test algebra of each KAD is the maximal Boolean subalgebra of the negative cone of the underlying KA.

<u>Proof.</u> ([DS11]). It can be shown that d(x) = x for every x such that $\exists y(yx = 0 \& x + y = 1)$, using 1. $x \leq xd(x)$ 2. $d(x) \leq 1$ 3. $d(yd(x)) \leq d(yx)$

3. One-sorted KAT

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is KAD, then $d(\mathcal{A})$ is BA.

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is KAD, then $d(\mathcal{A})$ is BA.

Proof. This follows from:

- 1. $d(\mathcal{A})$ is a subalgebra of \mathcal{A}
- 2. $(d(A), \cdot, +, 1, 0)$ is a bounded distributive lattice (since $d(x) \le 1$ and d(x)d(x) = d(x))
- 3. a(d(x)) is a complement of d(x).

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is KAD, then $d(\mathcal{A})$ is BA.

Proof. This follows from:

- 1. $d(\mathcal{A})$ is a subalgebra of \mathcal{A}
- 2. $(d(A), \cdot, +, 1, 0)$ is a bounded distributive lattice (since $d(x) \le 1$ and d(x)d(x) = d(x))
- 3. a(d(x)) is a complement of d(x).

Question: Is this possible without $d(y d(x)) \le d(yx)$ (or $x \le d(x)$)?

$$\mathbf{t}(0) = 0 \tag{11}$$

$$t(1) = 1$$
 (12)

$$t(t(x) + t(y)) = t(x) + t(y)$$
 (13)

$$t(t(x) t(y)) = t(x) t(y)$$
(14)

$$a(t(x)) = t(a(t(x)))$$
(15)

$$\mathbf{t}(x)\,\mathbf{t}(x) = \mathbf{t}(x) \tag{16}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$1 \le \mathsf{a}(\mathsf{t}(x)) + \mathsf{t}(x) \tag{18}$$

$$\mathsf{a}(\mathsf{t}(x))\mathsf{t}(x) \le 0 \tag{19}$$

$$\mathsf{t}(0) = 0 \tag{11}$$

$$\mathbf{t}(1) = 1 \tag{12}$$

$$t(t(x) + t(y)) = t(x) + t(y)$$
 (13)

$$\mathbf{t}(\mathbf{t}(x)\,\mathbf{t}(y)) = \mathbf{t}(x)\,\mathbf{t}(y) \tag{14}$$

$$a(t(x)) = t(a(t(x)))$$
(15)

$$\mathbf{t}(x)\,\mathbf{t}(x) = \mathbf{t}(x) \tag{16}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$1 \le \mathsf{a}(\mathsf{t}(x)) + \mathsf{t}(x) \tag{18}$$

$$a(t(x))t(x) \le 0 \tag{19}$$

$$\mathbf{t}(0) = 0 \tag{11}$$

$$t(1) = 1$$
 (12)

$$t(t(x) + t(y)) = t(x) + t(y)$$
 (13)

$$t(t(x) t(y)) = t(x) t(y)$$
(14)

$$a(t(x)) = t(a(t(x)))$$
(15)

$$\mathbf{t}(x)\,\mathbf{t}(x) = \mathbf{t}(x) \tag{16}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$1 \le \mathsf{a}(\mathsf{t}(x)) + \mathsf{t}(x) \tag{18}$$

$$\mathsf{a}(\mathsf{t}(x))\mathsf{t}(x) \le 0 \tag{19}$$

$$\mathbf{t}(0) = 0 \tag{11}$$

$$t(1) = 1$$
 (12)

$$t(t(x) + t(y)) = t(x) + t(y)$$
 (13)

$$t(t(x) t(y)) = t(x) t(y)$$
(14)

$$a(t(x)) = t(a(t(x)))$$
(15)

$$\mathbf{t}(x)\,\mathbf{t}(x) = \mathbf{t}(x) \tag{16}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$1 \le \mathsf{a}(\mathsf{t}(x)) + \mathsf{t}(x) \tag{18}$$

$$\mathsf{a}(\mathsf{t}(x))\mathsf{t}(x) \le 0 \tag{19}$$

$$\mathbf{t}(0) = 0 \tag{11}$$

$$t(1) = 1$$
 (12)

$$t(t(x) + t(y)) = t(x) + t(y)$$
 (13)

$$t(t(x) t(y)) = t(x) t(y)$$
(14)

$$a(t(x)) = t(a(t(x)))$$
(15)

$$\mathbf{t}(x)\,\mathbf{t}(x) = \mathbf{t}(x) \tag{16}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$1 \le \mathsf{a}(\mathsf{t}(x)) + \mathsf{t}(x) \tag{18}$$

$$\mathsf{a}(\mathsf{t}(x))\mathsf{t}(x) \le 0 \tag{19}$$

Proposition 1. Every KA expands into a OneKAT.

Proposition 1. Every KA expands into a OneKAT.

Proof.

$$\mathbf{t}(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{otherwise.} \end{cases} \quad \mathbf{a}(x) = \begin{cases} 1 & \text{if } x = 0\\ 0 & \text{if } x = 1\\ x & \text{otherwise.} \end{cases}$$

.

Proposition 1. Every KA expands into a OneKAT.

Proof.

$$\mathsf{t}(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise.} \end{cases} \quad \mathsf{a}(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x = 1 \\ x & \text{otherwise.} \end{cases}$$

Proposition 2. The test algebra $t(A) = (t(A), \cdot, +, a, 1, 0)$ is not necessarily the largest Boolean subalgebra of the negative cone of the KA underlying A.

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If A is a OneKAT, then t(A) is a BA.

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If A is a OneKAT, then t(A) is a BA.

Proof. By definition of OneKAT:

- 1. $t(\mathcal{A}) = (t(A), \cdot, +, a, 1, 0)$ is a subalgebra of \mathcal{A} ;
- 2. $(t(A), \cdot, +, 1, 0)$ is a bounded distributive lattice;
- 3. a(t(x)) is a complement of t(x).

A related generalization of KAD

A few days ago we've been notified about [AGS16] where a related generalization is briefly mentioned:

$$\mathcal{A} = (A, \cdot, +, *, \mathsf{n}, 1, 0),$$
 where $\mathsf{t}(x) := \mathsf{n}(\mathsf{n}(x))$ and

$$t(1) = 1$$
 (20)

$$t(t(x)t(y)) = t(y)t(x)$$
(21)

$$\mathsf{n}(x)\mathsf{t}(x) = 0 \tag{22}$$

$$\mathsf{n}(x) + \mathsf{n}(y) = \mathsf{n}(\mathsf{t}(x)\mathsf{t}(y)) \tag{23}$$

A related generalization of KAD

A few days ago we've been notified about [AGS16] where a related generalization is briefly mentioned:

$$\begin{aligned} \mathcal{A} &= (A, \cdot, +, \, {}^*, {\sf n}, 1, 0), \, {\sf where} \, {\sf t}(x) := {\sf n}({\sf n}(x)) \, {\sf and} \\ & {\sf t}(1) = 1 \qquad (20) \\ {\sf t}({\sf t}(x){\sf t}(y)) &= {\sf t}(y){\sf t}(x) \qquad (21) \\ {\sf n}(x){\sf t}(x) &= 0 \qquad (22) \\ {\sf n}(x) + {\sf n}(y) &= {\sf n}({\sf t}(x){\sf t}(y)) \qquad (23) \end{aligned}$$

This generalization has all the good properties of OneKAT.

4. KAT embeds into OneKAT

KAT and OneKAT

Theorem 2. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{OneKAT}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.) **Theorem 2.** There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{OneKAT}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Tr is defined as before. We reason for $\Gamma = \emptyset$. By Theorem 1, if KAT $\not\models p \approx q$, then KAD $\not\models Tr(p) \approx Tr(q)$ and so by Lemma 3, OneKAT $\not\models Tr(p) \approx Tr(q)$.

Theorem 2. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{OneKAT}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Tr is defined as before. We reason for $\Gamma = \emptyset$. By Theorem 1, if KAT $\not\models p \approx q$, then KAD $\not\models Tr(p) \approx Tr(q)$ and so by Lemma 3, OneKAT $\not\models Tr(p) \approx Tr(q)$.

If $\mathsf{OneKAT} \not\models Tr(p) \approx Tr(q)$, then $\llbracket p \rrbracket_{\mathcal{A}} \neq \llbracket q \rrbracket_{\mathcal{A}}$ where $\mathcal{K} = (A, \mathsf{t}(A), \cdot, +, *, \mathsf{a}, 1, 0)$ is a KAT by Lemma 4.

Theorem 2. There is a function $Tr : \mathcal{L}_{KAT} \to \mathcal{L}_{OneKAT}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\models Tr(\Gamma) \Rightarrow Tr(\varphi)$. (Similarly for KAC.)

<u>Proof.</u> Tr is defined as before. We reason for $\Gamma = \emptyset$. By Theorem 1, if KAT $\not\models p \approx q$, then KAD $\not\models Tr(p) \approx Tr(q)$ and so by Lemma 3, OneKAT $\not\models Tr(p) \approx Tr(q)$.

If OneKAT $\not\models Tr(p) \approx Tr(q)$, then $\llbracket p \rrbracket_{\mathcal{A}} \neq \llbracket q \rrbracket_{\mathcal{A}}$ where $\mathcal{K} = (A, \mathsf{t}(A), \cdot, +, *, \mathsf{a}, 1, 0)$ is a KAT by Lemma 4.

We define $[]_{\mathcal{K}}$ as before and prove that $\llbracket Tr(p) \rrbracket_{\mathcal{A}} = [p]_{\mathcal{K}}$ for all p as before. It follows that KAT $\not\models p \approx q$.

5. SKAT and an embedding of S

Let $B = \{b_i \mid i \in \omega\}$ be the set of test variables and let $P = \{p_i \mid i \in \omega\}$ be the set of program variables. Let $E = B \cup P$

 $\begin{array}{ll} \bullet \mbox{ tests } & b,c:= \mathsf{b}_i \mid 0 \mid b \Rightarrow c \\ \bullet \mbox{ programs } & p,q:= \mathsf{p}_i \mid b \mid p \oplus q \mid p \otimes q \mid p^+ \\ \bullet \mbox{ formulas } & f,g:=b \mid p \Rightarrow f \\ \bullet \mbox{ environments } & \Gamma, \Delta := \epsilon \mid \Gamma, p \mid \Gamma, f \\ \bullet \mbox{ sequents } & \Gamma \vdash f \\ \end{array}$

Let Ex_S be the union of the sets of formulas, programs and environments.

A Kozen–Tiuryn model is a pair M = (W, V) where $V : \mathsf{E} \to 2^{W \times W}$ such that $V(\mathsf{b}) \subseteq \mathrm{id}_W$.

For each M, we define the M-interpretation function [] $_M : Ex_S \to 2^{W \times W}$ as follows:

$$\begin{array}{l} \left[b \right]_{M} = V(b), \ \left[p \right]_{M} = V(p) \text{ and } \left[0 \right]_{M} = \emptyset \\ \left[b \Rightarrow c \right]_{M} = \left\{ (s,s) \mid (s,s) \notin [b]_{M} \text{ or } (s,s) \in [c]_{M} \right\} \\ \left[p \oplus q \right]_{M} = \left[p \right]_{M} \cup [q]_{M} \text{ and } \left[p \otimes q \right]_{M} = \left[p \right]_{M} \circ [q]_{M} \\ \left[p^{+} \right]_{M} = \left[p \right]_{M}^{+} \\ \left[p \Rightarrow f \right]_{M} = \left\{ (s,s) \mid \forall t.(s,t) \in [p]_{M} \Longrightarrow (t,t) \in [f]_{M} \right\} \\ \left[\epsilon \right]_{M} = \operatorname{id}_{W} \text{ and } [\Gamma, \Delta]_{M} = [\Gamma]_{M} \circ [\Delta]_{M} \\ \end{array}$$

(Here $^+$ denotes transitive closure and \circ denotes relational composition.)

A Kozen–Tiuryn model is a pair M = (W, V) where $V : \mathsf{E} \to 2^{W \times W}$ such that $V(\mathsf{b}) \subseteq \mathrm{id}_W$.

For each M, we define the M-interpretation function [] $_M : Ex_S \to 2^{W \times W}$ as follows:

$$\begin{array}{l} \left[{\rm b} \right]_{M} = V({\rm b}), \ \left[{\rm p} \right]_{M} = V({\rm p}) \ {\rm and} \ \left[0 \right]_{M} = \emptyset \\ \\ \left[{\rm b} \Rightarrow c \right]_{M} = \left\{ (s,s) \mid (s,s) \not\in \left[b \right]_{M} \ {\rm or} \ (s,s) \in \left[c \right]_{M} \right\} \\ \\ \left[{\rm p} \oplus q \right]_{M} = \left[p \right]_{M} \cup \left[q \right]_{M} \ {\rm and} \ \left[p \otimes q \right]_{M} = \left[p \right]_{M} \circ \left[q \right]_{M} \\ \\ \left[{\rm p}^{+} \right]_{M} = \left[p \right]_{M}^{+} \\ \\ \left[{\rm p} \Rightarrow f \right]_{M} = \left\{ (s,s) \mid \forall t.(s,t) \in \left[p \right]_{M} \Longrightarrow \ (t,t) \in \left[f \right]_{M} \right\} \\ \\ \\ \left[\epsilon \right]_{M} = {\rm id}_{W} \ {\rm and} \ [\Gamma, \Delta]_{M} = \left[\Gamma \right]_{M} \circ [\Delta]_{M} \end{array}$$

(Here $^+$ denotes transitive closure and \circ denotes relational composition.)

A Kozen–Tiuryn model is a pair M = (W, V) where $V : \mathsf{E} \to 2^{W \times W}$ such that $V(\mathsf{b}) \subseteq \mathrm{id}_W$.

For each M, we define the M-interpretation function [] $_M : Ex_S \to 2^{W \times W}$ as follows:

$$\begin{array}{l} \left[b \right]_{M} = V(b), \ \left[p \right]_{M} = V(p) \text{ and } \left[0 \right]_{M} = \emptyset \\ \left[b \Rightarrow c \right]_{M} = \left\{ (s,s) \mid (s,s) \notin \left[b \right]_{M} \text{ or } (s,s) \in \left[c \right]_{M} \right\} \\ \left[p \oplus q \right]_{M} = \left[p \right]_{M} \cup \left[q \right]_{M} \text{ and } \left[p \otimes q \right]_{M} = \left[p \right]_{M} \circ \left[q \right]_{M} \\ \left[p^{+} \right]_{M} = \left[p \right]_{M}^{+} \\ \left[p \Rightarrow f \right]_{M} = \left\{ (s,s) \mid \forall t.(s,t) \in \left[p \right]_{M} \implies (t,t) \in \left[f \right]_{M} \right\} \\ \left[\epsilon \right]_{M} = \operatorname{id}_{W} \text{ and } \left[\Gamma, \Delta \right]_{M} = \left[\Gamma \right]_{M} \circ \left[\Delta \right]_{M} \end{array}$$

(Here ⁺ denotes transitive closure and \circ denotes relational composition.)

A Kozen–Tiuryn model is a pair M = (W, V) where $V : \mathsf{E} \to 2^{W \times W}$ such that $V(\mathsf{b}) \subseteq \mathrm{id}_W$.

For each M, we define the M-interpretation function [] $_M : Ex_S \to 2^{W \times W}$ as follows:

$$\begin{array}{l} \left[b \right]_{M} = V(b), \ \left[p \right]_{M} = V(p) \text{ and } \left[0 \right]_{M} = \emptyset \\ \\ \left[b \Rightarrow c \right]_{M} = \left\{ (s,s) \mid (s,s) \not\in [b]_{M} \text{ or } (s,s) \in [c]_{M} \right\} \\ \\ \left[p \oplus q \right]_{M} = \left[p \right]_{M} \cup \left[q \right]_{M} \text{ and } \left[p \otimes q \right]_{M} = \left[p \right]_{M} \circ \left[q \right]_{M} \\ \\ \left[p^{+} \right]_{M} = \left[p \right]_{M}^{+} \\ \\ \\ \left[p \Rightarrow f \right]_{M} = \left\{ (s,s) \mid \forall t.(s,t) \in [p]_{M} \implies (t,t) \in [f]_{M} \right\} \\ \\ \\ \\ \left[\epsilon \right]_{M} = \operatorname{id}_{W} \text{ and } \left[\Gamma, \Delta \right]_{M} = \left[\Gamma \right]_{M} \circ [\Delta]_{M} \end{array}$$

(Here ⁺ denotes transitive closure and \circ denotes relational composition.)

A sequent $\Gamma \vdash f$ is valid in M iff, for all $s, t \in W$, if $(s, t) \in [\Gamma]_M$, then $(t, t) \in [f]_M$.

$$\mathsf{t}(\mathsf{t}(x)\mathsf{t}(y)) = \mathsf{t}(x)\,\mathsf{t}(y) \tag{14}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$\mathsf{t}(x+y) = \mathsf{t}(x) + \mathsf{t}(y) \tag{24}$$

$$e(x + y) = e(x) + e(y)$$
 (25)

$$x \le \mathsf{e}(\mathsf{t}(x)) \tag{26}$$

$$\mathsf{t}(\mathsf{e}(x)) \le x \tag{27}$$

$$x \le x \mathsf{t}(x) \tag{28}$$

$$\mathsf{t}(xy) \le \mathsf{t}(\mathsf{t}(x)y) \tag{29}$$

$$\mathsf{t}(x \to y) \le x \to x \mathsf{t}(y) \tag{30}$$

$$1 \le \mathsf{t}(\mathsf{t}(x) \to 0) + t(x) \tag{31}$$

$$\mathsf{t}(\mathsf{t}(x)\mathsf{t}(y)) = \mathsf{t}(x)\,\mathsf{t}(y) \tag{14}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$\mathsf{t}(x+y) = \mathsf{t}(x) + \mathsf{t}(y) \tag{24}$$

$$e(x + y) = e(x) + e(y)$$
 (25)

$$x \le \mathsf{e}(\mathsf{t}(x)) \tag{26}$$

$$\mathsf{t}(\mathsf{e}(x)) \le x \tag{27}$$

$$x \le x \mathsf{t}(x) \tag{28}$$

$$t(xy) \le t(t(x)y) \tag{29}$$

$$\mathsf{t}(x \to y) \le x \to x \mathsf{t}(y) \tag{30}$$

$$1 \le \mathsf{t}(\mathsf{t}(x) \to 0) + t(x) \tag{31}$$

$$\mathsf{t}(\mathsf{t}(x)\mathsf{t}(y)) = \mathsf{t}(x)\,\mathsf{t}(y) \tag{14}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$t(x+y) = t(x) + t(y)$$
 (24)

$$e(x+y) = e(x) + e(y)$$
 (25)

$$x \le \mathsf{e}(\mathsf{t}(x)) \tag{26}$$

$$t(\mathbf{e}(x)) \le x \tag{27}$$

$$x \le x \mathsf{t}(x) \tag{28}$$

$$\mathsf{t}(xy) \le \mathsf{t}(\mathsf{t}(x)y) \tag{29}$$

$$\mathsf{t}(x \to y) \le x \to x \mathsf{t}(y) \tag{30}$$

$$1 \le \mathsf{t}(\mathsf{t}(x) \to 0) + t(x) \tag{31}$$

$$\mathsf{t}(\mathsf{t}(x)\mathsf{t}(y)) = \mathsf{t}(x)\,\mathsf{t}(y) \tag{14}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$\mathsf{t}(x+y) = \mathsf{t}(x) + \mathsf{t}(y) \tag{24}$$

$$e(x + y) = e(x) + e(y)$$
 (25)

$$x \le \mathsf{e}(\mathsf{t}(x)) \tag{26}$$

$$\mathsf{c}(\mathsf{e}(x)) \le x \tag{27}$$

$$x \le x \mathsf{t}(x)$$
 (28)

$$\mathsf{t}(xy) \le \mathsf{t}(\mathsf{t}(x)y) \tag{29}$$

$$\mathsf{t}(x \to y) \le x \to x \mathsf{t}(y) \tag{30}$$

$$1 \le \mathsf{t}(\mathsf{t}(x) \to 0) + t(x) \tag{31}$$

$$\mathsf{t}(\mathsf{t}(x)\mathsf{t}(y)) = \mathsf{t}(x)\,\mathsf{t}(y) \tag{14}$$

$$\mathsf{t}(x) \le 1 \tag{17}$$

$$\mathsf{t}(x+y) = \mathsf{t}(x) + \mathsf{t}(y) \tag{24}$$

$$e(x + y) = e(x) + e(y)$$
 (25)

$$x \le \mathsf{e}(\mathsf{t}(x)) \tag{26}$$

$$\mathsf{t}(\mathsf{e}(x)) \le x \tag{27}$$

$$x \le x \mathsf{t}(x) \tag{28}$$

$$\mathsf{t}(xy) \le \mathsf{t}(\mathsf{t}(x)y) \tag{29}$$

$$\mathsf{t}(x \to y) \le x \to x \mathsf{t}(y) \tag{30}$$

$$1 \le \mathsf{t}(\mathsf{t}(x) \to 0) + t(x) \tag{31}$$

Proposition 3. Each SKAT is an expansion of a KAC.

Proposition 3. Each SKAT is an expansion of a KAC.

Theorem 3. There is a function $Tr : Ex_S \to \mathcal{L}_{SKAT}$ such that $\Gamma \vdash f$ is valid in all KT models iff $t(Tr(\Gamma)) \leq Tr(f)$ is valid in all *-continuous SKAT.

Conclusion

OneKAT is a generalization of KAD (and KAC) that keeps (some of) their good properties while it avoids the bad properties, namely:

- KAT embeds into OneKAT
- Every KA expands into a OneKAT
- The "choice" of the test subalgebra is rather flexible

Conclusion

OneKAT is a generalization of KAD (and KAC) that keeps (some of) their good properties while it avoids the bad properties, namely:

- KAT embeds into OneKAT
- Every KA expands into a OneKAT
- The "choice" of the test subalgebra is rather flexible

Future work:

- Free OneKAT? (Generalising [McL20])
- PSPACE-complete?

Thank you!

References I

Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth. Building program construction and verification tools from algebraic principles. *Formal Aspects of Computing*, 28(2):265–293, 2016.

Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with tests. Technical Report TR96-1598, Computer Science Department, Cornell University, July 1996.

Jules Desharnais and Georg Struth. Modal semirings revisited.

In International Conference on Mathematics of Program Construction, pages 360–387. Springer, 2008.

Jules Desharnais and Georg Struth.

Internal axioms for domain semirings.

Science of Computer Programming, 76(3):181–203, 2011. Special issue on the Mathematics of Program Construction (MPC 2008).

1

Stephen C Kleene.

Representation of events in nerve nets and finite automata.

In C. E. Shannon and J. McCarthy, editors, *Automata Studies*, pages 3 – 41. Princeton University Press, 1956.

Dexter Kozen.

A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation, 110(2):366 – 390, 1994.

References II

Dexter Kozen. Kleene algebra with tests.

ACM Trans. Program. Lang. Syst., 19(3):427–443. May 1997.

Dexter Kozen and Frederick Smith.

Kleene algebra with tests: Completeness and decidability.

In Dirk van Dalen and Marc Bezem, editors, *Computer Science Logic*, pages 244–259, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

Dexter Kozen and Jerzy Tiuryn.

Substructural logic and partial correctness.

ACM Trans. Computational Logic, 4(3):355–378, July 2003.

Brett McLean.

Free kleene algebras with domain.

Journal of Logical and Algebraic Methods in Programming, 117:100606, 2020.