One-Sorted Program Algebras

Igor Sedlár and Johann J. Wannenburg

Institute of Computer Science of the Czech Academy of Sciences

Czech Academy of Sciences

Topology, Algebra and Categories in Logic 2022
Coimbra, Portugal

Outline

■ Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

Outline

■ Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

■ Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.

Outline

■ Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

■ Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.

■ Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.

Outline

■ Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

■ Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.

■ Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.

■ Kleene algebra with (co)domain [DS08, DS11] adds to KA a unary operation d such that $\mathrm{d}(K)$ forms a Boolean algebra of tests.

Outline

■ Kleene algebras [Kle56, Koz94] pop up all around computer science (regular languages and finite automata, shortest path problems etc.)

■ Kleene algebras with tests [Koz97] combine Kleene algebra (programs, actions) with a Boolean algebra of tests (statements); this allows to represent reasoning about propositional while programs equationally.

■ Kleene algebras with tests are two-sorted and one-sorted alternatives have been sought.

■ Kleene algebra with (co)domain [DS08, DS11] adds to KA a unary operation d such that $\mathrm{d}(K)$ forms a Boolean algebra of tests.

Outline

■ KAT embeds into KAD (\mathbb{B}), but KAD is too strong:

Outline

- KAT embeds into KAD (\mathbb{B}), but KAD is too strong:
(จ) $\mathrm{d}(K)$ forms the largest Boolean subalgebra of the negative cone of K;
(®) not every KA expands to a KAD.

Outline

- KAT embeds into KAD (\mathbb{B}), but KAD is too strong:
(จ) $\mathrm{d}(K)$ forms the largest Boolean subalgebra of the negative cone of K;
(®) not every KA expands to a KAD.
- We introduce a generalization of KAD that preserves (\mathbb{B}) and avoids ($\mathbb{\Omega}$)

Outline

- KAT embeds into KAD (\mathbb{B}), but KAD is too strong:
(D) $\mathrm{d}(K)$ forms the largest Boolean subalgebra of the negative cone of K;
(D) not every KA expands to a KAD.
- We introduce a generalization of KAD that preserves (\mathbb{B}) and avoids ($\mathbb{\Omega}$)

■ We've also shown that the substructural logic of partial correctness S [KT03] embeds into residuated KAD (called SKAT).

Outline

1 Kleene algebra with tests

2 Kleene algebra with (co)domain

3 One-sorted KAT

4 KAT embeds into OneKAT

5 SKAT and an embedding of S

1. Kleene algebra with tests

Kleene algebra

$$
\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)
$$

Kleene algebra

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ where $(K, \cdot,+, 1,0)$ is an idempotent semiring

- $(K,+, 0)$ join-semilattice
- $(K, \cdot, 1)$ monoid

■ $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$

- $0 x=0=x 0$

Kleene algebra

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ where $(K, \cdot,+, 1,0)$ is an idempotent semiring

- $(K,+, 0)$ join-semilattice
- $(K, \cdot, 1)$ monoid

■ $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$

- $0 x=0=x 0$
and ${ }^{*}: K \rightarrow K$ (Kleene star) satisfies

$$
\begin{align*}
& 1+x+x^{*} x^{*} \leq x^{*} \tag{1}\\
& x y \leq y \Rightarrow x^{*} y \leq y \tag{2}\\
& y x \leq y \Rightarrow y x^{*} \leq y \tag{3}
\end{align*}
$$

Kleene algebra

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ where $(K, \cdot,+, 1,0)$ is an idempotent semiring

- $(K,+, 0)$ join-semilattice
- $(K, \cdot, 1)$ monoid

■ $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$

- $0 x=0=x 0$
and ${ }^{*}: K \rightarrow K$ (Kleene star) satisfies

$$
\begin{align*}
& 1+x+x^{*} x^{*} \leq x^{*} \tag{1}\\
& x y \leq y \Rightarrow x^{*} y \leq y \tag{2}\\
& y x \leq y \Rightarrow y x^{*} \leq y \tag{3}
\end{align*}
$$

KA is ${ }^{*}$-continuous iff $x y^{*} z=\sum_{n \geq 0} x y^{n} z$

Kleene algebra

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ where $(K, \cdot,+, 1,0)$ is an idempotent semiring

- $(K,+, 0)$ join-semilattice
- $(K, \cdot, 1)$ monoid

■ $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$

- $0 x=0=x 0$
and ${ }^{*}: K \rightarrow K$ (Kleene star) satisfies

$$
\begin{align*}
& 1+x+x^{*} x^{*} \leq x^{*} \tag{1}\\
& x y \leq y \Rightarrow x^{*} y \leq y \tag{2}\\
& y x \leq y \Rightarrow y x^{*} \leq y \tag{3}
\end{align*}
$$

KA is ${ }^{*}$-continuous iff $x y^{*} z=\sum_{n \geq 0} x y^{n} z$
Examples: Algebras of binary relations, regular languages, matrices over semirings, functions from monoids to complete lattices...

Kleene algebra with tests

$\mathcal{K}=\left(K, B, \cdot,+,{ }^{*},-, 1,0\right)$
■ ($\left.K, \cdot,+,^{*}, 1,0\right)$ Kleene algebra

- $B \subseteq K$

■ ($B, \cdot,+,-, 1,0)$ Boolean algebra

Kleene algebra with tests

$\mathcal{K}=\left(K, B, \cdot,+,^{*},-, 1,0\right)$
■ ($\left.K, \cdot,+,^{*}, 1,0\right)$ Kleene algebra
■ $B \subseteq K$
■ ($B, \cdot,+,-, 1,0)$ Boolean algebra

Propositional while programs

■ if b then p else $q:(b p)+(\bar{b} q)$, while b do $p:(b p)^{*} \bar{b}$
■ $\{b\} p\{c\}: \quad b p \bar{c}=0$

Kleene algebra with tests

$\mathcal{K}=\left(K, B, \cdot,+,^{*},-, 1,0\right)$
■ ($\left.K, \cdot,+,^{*}, 1,0\right)$ Kleene algebra
■ $B \subseteq K$
■ ($B, \cdot,+,-, 1,0)$ Boolean algebra

Propositional while programs

■ if b then p else $q:(b p)+(\bar{b} q)$, while b do $p:(b p)^{*} \bar{b}$
■ $\{b\} p\{c\}: \quad b p \bar{c}=0$
Examples: Binary relations with $B=2^{\text {id }}$, any KA with $B=\{1,0\} \ldots$

Kleene algebra with tests

$\mathcal{K}=\left(K, B, \cdot,+,^{*},-, 1,0\right)$
■ ($K, \cdot,+,{ }^{*}, 1,0$) Kleene algebra
■ $B \subseteq K$
■ ($B, \cdot,+,-, 1,0)$ Boolean algebra

Propositional while programs

■ if b then p else $q:(b p)+(\bar{b} q)$, while b do $p:(b p)^{*} \bar{b}$
■ $\{b\} p\{c\}: \quad b p \bar{c}=0$
Examples: Binary relations with $B=2^{\text {id }}$, any KA with $B=\{1,0\} \ldots$

Theorem. The eq. theory of KAT is PSPACE-complete [CKS96], and the Horn theory with assumptions $r=0$ reduces to the eq. theory [KS97].

2. Kleene algebra with (co)domain

Kleene algebra with (co)domain

The idea: Expand $\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ with unary t and a such that

$$
\mathrm{t}(\mathcal{K})=(\mathrm{t}(K), \cdot,+, \mathrm{a}, 1,0)
$$

is a Boolean algebra thanks to the properties of t, a.

Kleene algebra with (co)domain

The idea: Expand $\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0\right)$ with unary t and a such that

$$
\mathrm{t}(\mathcal{K})=(\mathrm{t}(K), \cdot,+, \mathrm{a}, 1,0)
$$

is a Boolean algebra thanks to the properties of t, a.

Inspiration:

$$
\mathrm{d}(R)=\{(s, s) \mid \exists t R(s, t)\} \quad \mathrm{c}(R)=\{(t, t) \mid \exists s R(s, t)\}
$$

Kleene algebra with (co)domain

KAD: $\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{~d}, \mathrm{a}\right)$ where $\left(K, \cdot \cdot+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
x \leq \mathrm{d}(x) x \tag{4}\\
\mathrm{~d}(x y)=\mathrm{d}(x \mathrm{~d}(y)) \tag{5}\\
\mathrm{d}(x) \leq 1 \tag{6}\\
\mathrm{~d}(0)=0 \tag{7}\\
\mathrm{~d}(x+y)=\mathrm{d}(x)+\mathrm{d}(y) \tag{8}\\
\mathrm{a}(x)+\mathrm{d}(x)=1 \\
\mathrm{~d}(x) \mathrm{a}(x)=0 \tag{10}
\end{gather*}
$$

Kleene algebra with (co)domain

KAD: $\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{~d}, \mathrm{a}\right)$ where $\left(K, \cdot \cdot+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
x \leq \mathrm{d}(x) x \tag{4}\\
\mathrm{~d}(x y)=\mathrm{d}(x \mathrm{~d}(y)) \tag{5}\\
\mathrm{d}(x) \leq 1 \tag{6}\\
\mathrm{~d}(0)=0 \tag{7}\\
\mathrm{~d}(x+y)=\mathrm{d}(x)+\mathrm{d}(y) \tag{8}\\
\mathrm{a}(x)+\mathrm{d}(x)=1 \tag{9}\\
\mathrm{~d}(x) \mathrm{a}(x)=0 \tag{10}
\end{gather*}
$$

KAC: A "symmetric variant" with c instead of d .

Kleene algebra with (co)domain

Theorem. The quasi-equational theory of KAT embeds into the quasi-equational theory of KAD (and KAC).

Kleene algebra with (co)domain

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Kleene algebra with (co)domain

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Lemma 2. If \mathcal{A} is $K A D$, then $\mathrm{d}(\mathcal{A})$ is $B A$ (and similarly for $K A C$).

Kleene algebra with (co)domain

Lemma 1. The full relational KAT over any set S "is" a KAD (and a KAC).

Lemma 2. If \mathcal{A} is $K A D$, then $\mathrm{d}(\mathcal{A})$ is $B A$ (and similarly for $K A C$).

Proof. This follows from:

1. $\mathrm{d}(\mathcal{A})$ is a subalgebra of \mathcal{A}
2. $(\mathrm{d}(A), \cdot,+, 1,0)$ is a bounded distributive lattice (since $\mathrm{d}(x) \leq 1$ and $\mathrm{d}(x) \mathrm{d}(x)=\mathrm{d}(x)$)
3. $\mathrm{a}(\mathrm{d}(x))$ is a complement of $\mathrm{d}(x)$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff KAD $\models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff KAD $\models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.

1. If KAT $\not \vDash p \approx q$, then there is a full relational $\mathcal{R} \not \vDash p \approx q[\mathrm{KS} 97]$, i.e. $[p] \neq[q]$ for some valuation []. By Lemma $1, \mathcal{R}$ is a KAD. Define $\llbracket \mathbb{\rrbracket}$ as the unique KAD-valuation such that $\llbracket \mathrm{x}_{2 n} \rrbracket=\left[\mathrm{p}_{n}\right]$ and $\llbracket \mathrm{x}_{2 n+1} \rrbracket=\left[\mathrm{b}_{n}\right]$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff KAD $\models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.

1. If KAT $\not \vDash p \approx q$, then there is a full relational $\mathcal{R} \not \vDash p \approx q[$ KS97], i.e. $[p] \neq[q]$ for some valuation []. By Lemma $1, \mathcal{R}$ is a KAD. Define $\llbracket \mathbb{\rrbracket}$ as the unique KAD-valuation such that $\llbracket \mathrm{x}_{2 n} \rrbracket=\left[\mathrm{p}_{n}\right]$ and $\llbracket \mathrm{x}_{2 n+1} \rrbracket=\left[\mathrm{b}_{n}\right]$.

Claim. For all $p \in \mathcal{L}_{K A T},[p]=\llbracket \operatorname{Tr}(p) \rrbracket$.
(Note that $\left[\mathrm{b}_{n}\right] \in B$ and so $\left[\mathrm{b}_{n}\right]=\mathrm{d}\left[\mathrm{b}_{n}\right]=\mathrm{d} \llbracket \mathrm{x}_{2 n+1} \rrbracket=\llbracket \operatorname{Tr}\left(\mathrm{b}_{n}\right) \rrbracket$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff KAD $\models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.

1. If KAT $\not \vDash p \approx q$, then there is a full relational $\mathcal{R} \not \vDash p \approx q[$ KS97], i.e. $[p] \neq[q]$ for some valuation []. By Lemma $1, \mathcal{R}$ is a KAD. Define $\llbracket \mathbb{]}$ as the unique KAD-valuation such that $\llbracket \mathrm{x}_{2 n} \rrbracket=\left[\mathrm{p}_{n}\right]$ and $\llbracket \mathrm{x}_{2 n+1} \rrbracket=\left[\mathrm{b}_{n}\right]$.

Claim. For all $p \in \mathcal{L}_{K A T},[p]=\llbracket \operatorname{Tr}(p) \rrbracket$.
(Note that $\left[\mathrm{b}_{n}\right] \in B$ and so $\left[\mathrm{b}_{n}\right]=\mathrm{d}\left[\mathrm{b}_{n}\right]=\mathrm{d} \llbracket \mathrm{x}_{2 n+1} \rrbracket=\llbracket \operatorname{Tr}\left(\mathrm{b}_{n}\right) \rrbracket$. Moreover, $\llbracket \operatorname{Tr}(\bar{b}) \rrbracket=\mathrm{a}[b]=[\bar{b}]$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.

1. If KAT $\not \vDash p \approx q$, then there is a full relational $\mathcal{R} \not \vDash p \approx q[\mathrm{KS} 97]$, i.e. $[p] \neq[q]$ for some valuation []. By Lemma $1, \mathcal{R}$ is a KAD. Define $\llbracket \mathbb{\rrbracket}$ as the unique KAD-valuation such that $\llbracket \mathrm{x}_{2 n} \rrbracket=\left[\mathrm{p}_{n}\right]$ and $\llbracket \mathrm{x}_{2 n+1} \rrbracket=\left[\mathrm{b}_{n}\right]$.

Claim. For all $p \in \mathcal{L}_{K A T},[p]=\llbracket \operatorname{Tr}(p) \rrbracket$.
(Note that $\left[\mathrm{b}_{n}\right] \in B$ and so $\left[\mathrm{b}_{n}\right]=\mathrm{d}\left[\mathrm{b}_{n}\right]=\mathrm{d} \llbracket \mathrm{x}_{2 n+1} \rrbracket=\llbracket \operatorname{Tr}\left(\mathrm{b}_{n}\right) \rrbracket$. Moreover, $\llbracket \operatorname{Tr}(\bar{b}) \rrbracket=\mathrm{a}[b]=[\bar{b}]$.

Hence, $\operatorname{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \models \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.
2. If $\mathrm{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\mathcal{A} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, i.e. $\llbracket \operatorname{Tr}(p) \rrbracket \neq \llbracket \operatorname{Tr}(q) \rrbracket$ for some KAD-valuation $\mathbb{I} \mathbb{\rrbracket}$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\vDash \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \vDash \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.
2. If $\mathrm{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\mathcal{A} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, i.e. $\llbracket \operatorname{Tr}(p) \rrbracket \neq \llbracket \operatorname{Tr}(q) \rrbracket$ for some KAD-valuation 【】. By Lemma $2, \mathrm{~d}(\mathcal{A})$ is a BA, and so
$\mathcal{K}=\left(A, \mathrm{~d}(A), \cdot,+,{ }^{*}, \mathrm{a}, 1,0\right)$ is a KAT.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\vDash \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \vDash \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.
2. If $\mathrm{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\mathcal{A} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, i.e. $\llbracket \operatorname{Tr}(p) \rrbracket \neq \llbracket \operatorname{Tr}(q) \rrbracket$ for some KAD-valuation $\llbracket \mathbb{1}$. By Lemma $2, \mathrm{~d}(\mathcal{A})$ is a BA , and so

$$
\mathcal{K}=\left(A, \mathrm{~d}(A), \cdot,+,{ }^{*}, \mathrm{a}, 1,0\right) \text { is a KAT. }
$$

Define a KAT-valuation [] by $\left[\mathrm{p}_{n}\right]=\llbracket \mathrm{x}_{2 n} \rrbracket$ and $\left[\mathrm{b}_{n}\right]=\llbracket \mathrm{d}\left(\mathrm{x}_{2 n+1}\right) \rrbracket$.

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\vDash \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \vDash \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.
2. If $\mathrm{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\mathcal{A} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, i.e. $\llbracket \operatorname{Tr}(p) \rrbracket \neq \llbracket \operatorname{Tr}(q) \rrbracket$ for some KAD-valuation $\llbracket \mathbb{1}$. By Lemma $2, \mathrm{~d}(\mathcal{A})$ is a BA , and so $\mathcal{K}=\left(A, \mathrm{~d}(A), \cdot,+,{ }^{*}, \mathrm{a}, 1,0\right)$ is a KAT.

Define a KAT-valuation [] by $\left[\mathrm{p}_{n}\right]=\llbracket \mathrm{x}_{2 n} \rrbracket$ and $\left[\mathrm{b}_{n}\right]=\llbracket \mathrm{d}\left(\mathrm{x}_{2 n+1}\right) \rrbracket$.
Claim. For all $p \in \mathcal{L}_{K A T},[p]=\llbracket \operatorname{Tr}(p) \rrbracket$.
$\left(\llbracket \operatorname{Tr}\left(\mathrm{b}_{n}\right) \rrbracket=\llbracket \mathrm{d}\left(\mathrm{x}_{2 n+1}\right) \rrbracket=\left[\mathrm{b}_{n}\right]\right.$ and $\left.\llbracket \operatorname{Tr}(\bar{b}) \rrbracket=\mathrm{a} \llbracket \operatorname{Tr}(b) \rrbracket=\mathrm{a}[b]=[\bar{b}].\right)$

Kleene algebra with (co)domain

Let $\Gamma \cup \varphi$ be a set of equations over $\mathcal{L}_{K A T}$.
Theorem 1. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{K A D}$ such that KAT $\vDash \Gamma \Rightarrow \varphi$ iff $\mathrm{KAD} \vDash \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Let $\operatorname{Tr}\left(\mathrm{p}_{n}\right)=\mathrm{x}_{2 n}, \operatorname{Tr}\left(\mathrm{~b}_{n}\right)=\mathrm{d}\left(\mathrm{x}_{2 n+1}\right)$ and $\operatorname{Tr}(\bar{b})=\mathrm{a}(\operatorname{Tr}(b))$, while Tr commutes with the KA operators. We discuss the case $\Gamma=\emptyset$.
2. If $\mathrm{KAD} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\mathcal{A} \not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, i.e. $\llbracket \operatorname{Tr}(p) \rrbracket \neq \llbracket \operatorname{Tr}(q) \rrbracket$ for some KAD-valuation $\mathbb{I} \mathbb{I}$. By Lemma 2, $\mathrm{d}(\mathcal{A})$ is a BA , and so $\mathcal{K}=\left(A, \mathrm{~d}(A), \cdot,+,^{*}, \mathrm{a}, 1,0\right)$ is a KAT.

Define a KAT-valuation [] by $\left[\mathrm{p}_{n}\right]=\llbracket \mathrm{x}_{2 n} \rrbracket$ and $\left[\mathrm{b}_{n}\right]=\llbracket \mathrm{d}\left(\mathrm{x}_{2 n+1}\right) \rrbracket$.
Claim. For all $p \in \mathcal{L}_{K A T},[p]=\llbracket \operatorname{Tr}(p) \rrbracket$.
$\left(\llbracket \operatorname{Tr}\left(\mathrm{b}_{n}\right) \rrbracket=\llbracket \mathrm{d}\left(\mathrm{x}_{2 n+1}\right) \rrbracket=\left[\mathrm{b}_{n}\right]\right.$ and $\left.\llbracket \operatorname{Tr}(\bar{b}) \rrbracket=\mathrm{a} \llbracket \operatorname{Tr}(b) \rrbracket=\mathrm{a}[b]=[\bar{b}].\right)$
Hence, KAT $\notin p \approx q$.

Problem 1: Expanding KA

(จ) Not every KA can be expanded to a KAD, not even every finite one.

Problem 1: Expanding KA

(队) Not every KA can be expanded to a KAD, not even every finite one.

Example ([DS11]).

- $1=x^{*}$

- a
- $0=a \cdot a$

Problem 1: Expanding KA

(จ) Not every KA can be expanded to a KAD, not even every finite one.

Example ([DS11]).

- $1=x^{*}$
| $a=a \cdot a$

If there is a d , then $\mathrm{d}(a) \in\{a, 1\}$.
■ If $\mathrm{d}(a)=a$, then $\mathrm{d}(a) a=0$ and so $a \not \leq \mathrm{d}(a) a \quad(\neg 4)$.

- If $\mathrm{d}(a)=1$, then $\mathrm{d}(a \mathrm{~d}(a))=1 \neq 0=\mathrm{d}(a a) \quad(\neg 5)$.

Problem 2: Test algebras

(จ) The test algebra of each KAD is the maximal Boolean subalgebra of the negative cone of the underlying KA.

Problem 2: Test algebras

(จ) The test algebra of each KAD is the maximal Boolean subalgebra of the negative cone of the underlying KA.

Proof. ([DS11]). It can be shown that $\mathrm{d}(x)=x$ for every x such that $\exists y(y x=0 \& x+y=1)$, using

1. $x \leq x \mathrm{~d}(x)$
2. $\mathrm{d}(x) \leq 1$
3. $\mathrm{d}(y \mathrm{~d}(x)) \leq \mathrm{d}(y x)$

3. One-sorted KAT

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is $K A D$, then $\mathrm{d}(\mathcal{A})$ is $B A$.

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is $K A D$, then $\mathrm{d}(\mathcal{A})$ is $B A$.
Proof. This follows from:

1. $\mathrm{d}(\mathcal{A})$ is a subalgebra of \mathcal{A}
2. $(\mathrm{d}(A), \cdot,+, 1,0)$ is a bounded distributive lattice
(since $\mathrm{d}(x) \leq 1$ and $\mathrm{d}(x) \mathrm{d}(x)=\mathrm{d}(x)$)
3. $\mathrm{a}(\mathrm{d}(x))$ is a complement of $\mathrm{d}(x)$.

Generalizing KAD

Recall Lemma 2: If \mathcal{A} is $K A D$, then $\mathrm{d}(\mathcal{A})$ is $B A$.
Proof. This follows from:

1. $\mathrm{d}(\mathcal{A})$ is a subalgebra of \mathcal{A}
2. $(\mathrm{d}(A), \cdot,+, 1,0)$ is a bounded distributive lattice
(since $\mathrm{d}(x) \leq 1$ and $\mathrm{d}(x) \mathrm{d}(x)=\mathrm{d}(x)$)
3. $\mathrm{a}(\mathrm{d}(x))$ is a complement of $\mathrm{d}(x)$.

Question: Is this possible without $\mathrm{d}(y \mathrm{~d}(x)) \leq \mathrm{d}(y x)$ (or $x \leq \mathrm{d}(x))$?

OneKAT

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{t}, \mathrm{a}\right)$ where $\left(K, \cdot,+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
\mathrm{t}(0)=0 \tag{11}\\
\mathrm{t}(1)=1 \tag{12}\\
\mathrm{t}(\mathrm{t}(x)+\mathrm{t}(y))=\mathrm{t}(x)+\mathrm{t}(y) \tag{13}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{a}(\mathrm{t}(x))=\mathrm{t}(\mathrm{a}(\mathrm{t}(x))) \tag{15}\\
\mathrm{t}(x) \mathrm{t}(x)=\mathrm{t}(x) \tag{16}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
1 \leq \mathrm{a}(\mathrm{t}(x))+\mathrm{t}(x) \tag{18}\\
\mathrm{a}(\mathrm{t}(x)) \mathrm{t}(x) \leq 0 \tag{19}
\end{gather*}
$$

OneKAT

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{t}, \mathrm{a}\right)$ where $\left(K, \cdot,+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
\mathrm{t}(0)=0 \tag{11}\\
\mathrm{t}(1)=1 \tag{12}\\
\mathrm{t}(\mathrm{t}(x)+\mathrm{t}(y))=\mathrm{t}(x)+\mathrm{t}(y) \tag{13}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{a}(\mathrm{t}(x))=\mathrm{t}(\mathrm{a}(\mathrm{t}(x))) \tag{15}\\
\mathrm{t}(x) \mathrm{t}(x)=\mathrm{t}(x) \tag{16}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
1 \leq \mathrm{a}(\mathrm{t}(x))+\mathrm{t}(x) \tag{18}\\
\mathrm{a}(\mathrm{t}(x)) \mathrm{t}(x) \leq 0 \tag{19}
\end{gather*}
$$

OneKAT

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{t}, \mathrm{a}\right)$ where $\left(K, \cdot,+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
\mathrm{t}(0)=0 \tag{11}\\
\mathrm{t}(1)=1 \tag{12}\\
\mathrm{t}(\mathrm{t}(x)+\mathrm{t}(y))=\mathrm{t}(x)+\mathrm{t}(y) \tag{13}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{a}(\mathrm{t}(x))=\mathrm{t}(\mathrm{a}(\mathrm{t}(x))) \tag{15}\\
\mathrm{t}(x) \mathrm{t}(x)=\mathrm{t}(x) \tag{16}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
1 \leq \mathrm{a}(\mathrm{t}(x))+\mathrm{t}(x) \tag{18}\\
\mathrm{a}(\mathrm{t}(x)) \mathrm{t}(x) \leq 0 \tag{19}
\end{gather*}
$$

OneKAT

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{t}, \mathrm{a}\right)$ where $\left(K, \cdot,+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
\mathrm{t}(0)=0 \tag{11}\\
\mathrm{t}(1)=1 \tag{12}\\
\mathrm{t}(\mathrm{t}(x)+\mathrm{t}(y))=\mathrm{t}(x)+\mathrm{t}(y) \tag{13}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{a}(\mathrm{t}(x))=\mathrm{t}(\mathrm{a}(\mathrm{t}(x))) \tag{15}\\
\mathrm{t}(x) \mathrm{t}(x)=\mathrm{t}(x) \tag{16}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
1 \leq \mathrm{a}(\mathrm{t}(x))+\mathrm{t}(x) \tag{18}\\
\mathrm{a}(\mathrm{t}(x)) \mathrm{t}(x) \leq 0 \tag{19}
\end{gather*}
$$

OneKAT

$\mathcal{K}=\left(K, \cdot,+,{ }^{*}, 1,0, \mathrm{t}, \mathrm{a}\right)$ where $\left(K, \cdot,+,{ }^{*}, 1,0\right)$ is KA and

$$
\begin{gather*}
\mathrm{t}(0)=0 \tag{11}\\
\mathrm{t}(1)=1 \tag{12}\\
\mathrm{t}(\mathrm{t}(x)+\mathrm{t}(y))=\mathrm{t}(x)+\mathrm{t}(y) \tag{13}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{a}(\mathrm{t}(x))=\mathrm{t}(\mathrm{a}(\mathrm{t}(x))) \tag{15}\\
\mathrm{t}(x) \mathrm{t}(x)=\mathrm{t}(x) \tag{16}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
1 \leq \mathrm{a}(\mathrm{t}(x))+\mathrm{t}(x) \tag{18}\\
\mathrm{a}(\mathrm{t}(x)) \mathrm{t}(x) \leq 0 \tag{19}
\end{gather*}
$$

OneKAT

Proposition 1. Every KA expands into a OneKAT.

OneKAT

Proposition 1. Every KA expands into a OneKAT.

Proof.

$$
\mathrm{t}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
1 & \text { otherwise }
\end{array} \quad \mathrm{a}(x)= \begin{cases}1 & \text { if } x=0 \\
0 & \text { if } x=1 \\
x & \text { otherwise }\end{cases}\right.
$$

OneKAT

Proposition 1. Every KA expands into a OneKAT.

Proof.

$$
\mathrm{t}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
1 & \text { otherwise } .
\end{array} \quad \mathrm{a}(x)= \begin{cases}1 & \text { if } x=0 \\
0 & \text { if } x=1 \\
x & \text { otherwise }\end{cases}\right.
$$

Proposition 2. The test algebra $\mathrm{t}(\mathcal{A})=(\mathrm{t}(A), \cdot,+, \mathrm{a}, 1,0)$ is not necessarily the largest Boolean subalgebra of the negative cone of the KA underlying \mathcal{A}.

OneKAT and KAD

- $1=\mathrm{t}(a)$
- a
- $0=a a$
$\mathrm{t}(a \mathrm{t}(a)) \not \leq \mathrm{t}(a a)$

OneKAT and KAD

- $1=\mathrm{t}(a)$
a
$\mathrm{t}(a \mathrm{t}(a)) \not \leq \mathrm{t}(a a) \quad a \not \leq a \mathrm{t}(a)$

OneKAT and KAD

OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If \mathcal{A} is a OneKAT, then $t(\mathcal{A})$ is a $B A$.

OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If \mathcal{A} is a OneKAT, then $t(\mathcal{A})$ is a $B A$.

Proof. By definition of OneKAT:

1. $\mathrm{t}(\mathcal{A})=(\mathrm{t}(A), \cdot,+, \mathrm{a}, 1,0)$ is a subalgebra of \mathcal{A};
2. $(\mathrm{t}(A), \cdot,+, 1,0)$ is a bounded distributive lattice;
3. $\mathrm{a}(\mathrm{t}(x))$ is a complement of $\mathrm{t}(x)$.

A related generalization of KAD

A few days ago we've been notified about [AGS16] where a related generalization is briefly mentioned:
$\mathcal{A}=\left(A, \cdot,+,^{*}, \mathrm{n}, 1,0\right)$, where $\mathrm{t}(x):=\mathrm{n}(\mathrm{n}(x))$ and

$$
\begin{gather*}
\mathrm{t}(1)=1 \tag{2}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(y) \mathrm{t}(x) \tag{21}\\
\mathrm{n}(x) \mathrm{t}(x)=0 \tag{22}\\
\mathrm{n}(x)+\mathrm{n}(y)=\mathrm{n}(\mathrm{t}(x) \mathrm{t}(y)) \tag{23}
\end{gather*}
$$

A related generalization of KAD

A few days ago we've been notified about [AGS16] where a related generalization is briefly mentioned:
$\mathcal{A}=\left(A, \cdot,+,^{*}, \mathrm{n}, 1,0\right)$, where $\mathrm{t}(x):=\mathrm{n}(\mathrm{n}(x))$ and

$$
\begin{gather*}
\mathrm{t}(1)=1 \tag{2}\\
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(y) \mathrm{t}(x) \tag{21}\\
\mathrm{n}(x) \mathrm{t}(x)=0 \tag{22}\\
\mathrm{n}(x)+\mathrm{n}(y)=\mathrm{n}(\mathrm{t}(x) \mathrm{t}(y)) \tag{23}
\end{gather*}
$$

This generalization has all the good properties of OneKAT.
4. KAT embeds into OneKAT

KAT and OneKAT

Theorem 2. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{\text {OneKAT }}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\equiv \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

KAT and OneKAT

Theorem 2. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{\text {OneKAT }}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\equiv \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. $T r$ is defined as before. We reason for $\Gamma=\emptyset$. By Theorem 1 , if KAT $\not \vDash p \approx q$, then KAD $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$ and so by Lemma 3, OneKAT $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$.

KAT and OneKAT

Theorem 2. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{\text {OneKAT }}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\vDash \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. $T r$ is defined as before. We reason for $\Gamma=\emptyset$. By Theorem 1 , if KAT $\not \vDash p \approx q$, then KAD $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$ and so by Lemma 3, OneKAT $\notin \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$.

If OneKAT $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\llbracket p \rrbracket_{\mathcal{A}} \neq \llbracket q \rrbracket_{\mathcal{A}}$ where $\mathcal{K}=\left(A, \mathrm{t}(A), \cdot,+,^{*}, \mathrm{a}, 1,0\right)$ is a KAT by Lemma 4.

KAT and OneKAT

Theorem 2. There is a function $\operatorname{Tr}: \mathcal{L}_{K A T} \rightarrow \mathcal{L}_{\text {OneKAT }}$ such that KAT $\models \Gamma \Rightarrow \varphi$ iff OneKAT $\equiv \operatorname{Tr}(\Gamma) \Rightarrow \operatorname{Tr}(\varphi)$. (Similarly for KAC.)

Proof. Tr is defined as before. We reason for $\Gamma=\emptyset$. By Theorem 1 , if KAT $\not \vDash p \approx q$, then KAD $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$ and so by Lemma 3, OneKAT $\notin \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$. If OneKAT $\not \vDash \operatorname{Tr}(p) \approx \operatorname{Tr}(q)$, then $\llbracket p \rrbracket_{\mathcal{A}} \neq \llbracket q \rrbracket_{\mathcal{A}}$ where $\mathcal{K}=\left(A, \mathrm{t}(A), \cdot,+,^{*}, \mathrm{a}, 1,0\right)$ is a KAT by Lemma 4.
We define []$_{\mathcal{K}}$ as before and prove that $\llbracket \operatorname{Tr}(p) \rrbracket_{\mathcal{A}}=[p]_{\mathcal{K}}$ for all p as before. It follows that KAT $\not \vDash p \approx q$.

5. SKAT and an embedding of S

The logic S [KTO3]

Let $\mathrm{B}=\left\{\mathrm{b}_{i} \mid i \in \omega\right\}$ be the set of test variables and let $\mathrm{P}=\left\{\mathrm{p}_{i} \mid i \in \omega\right\}$ be the set of program variables. Let $E=B \cup P$

- tests
- programs

$$
b, c:=\mathrm{b}_{i}|0| b \Rightarrow c
$$

- formulas $\quad f, g:=b \mid p \Rightarrow f$
- environments $\Gamma, \Delta:=\epsilon|\Gamma, p| \Gamma, f$
- sequents $\quad \Gamma \vdash f$

Let $E x_{\mathrm{S}}$ be the union of the sets of formulas, programs and environments.

The logic S [KT03]

A Kozen-Tiuryn model is a pair $M=(W, V)$ where $V: \mathrm{E} \rightarrow 2^{W \times W}$ such that $V(\mathrm{~b}) \subseteq \mathrm{id}_{W}$.

For each M, we define the M-interpretation function [] ${ }_{M}: E x_{\mathrm{S}} \rightarrow 2^{W \times W}$ as follows:

■ [b] ${ }_{M}=V(\mathrm{~b}),[\mathrm{p}]_{M}=V(\mathrm{p})$ and $[0]_{M}=\emptyset$
■ $[b \Rightarrow c]_{M}=\left\{(s, s) \mid(s, s) \notin[b]_{M}\right.$ or $\left.(s, s) \in[c]_{M}\right\}$
■ $[p \oplus q]_{M}=[p]_{M} \cup[q]_{M}$ and $[p \otimes q]_{M}=[p]_{M} \circ[q]_{M}$
■ $\left[p^{+}\right]_{M}=[p]_{M}^{+}$
$\square[p \Rightarrow f]_{M}=\left\{(s, s) \mid \forall t .(s, t) \in[p]_{M} \Longrightarrow(t, t) \in[f]_{M}\right\}$
■ $[\epsilon]_{M}=\operatorname{id}_{W}$ and $[\Gamma, \Delta]_{M}=[\Gamma]_{M} \circ[\Delta]_{M}$
(Here ${ }^{+}$denotes transitive closure and \circ denotes relational composition.)

The logic S [KT03]

A Kozen-Tiuryn model is a pair $M=(W, V)$ where $V: \mathrm{E} \rightarrow 2^{W \times W}$ such that $V(\mathbf{b}) \subseteq \mathrm{id}_{W}$.

For each M, we define the M-interpretation function [] ${ }_{M}: E x_{\mathrm{S}} \rightarrow 2^{W \times W}$ as follows:

■ [b] ${ }_{M}=V(\mathrm{~b}),[\mathrm{p}]_{M}=V(\mathrm{p})$ and $[0]_{M}=\emptyset$
■ $[b \Rightarrow c]_{M}=\left\{(s, s) \mid(s, s) \notin[b]_{M}\right.$ or $\left.(s, s) \in[c]_{M}\right\}$
■ $[p \oplus q]_{M}=[p]_{M} \cup[q]_{M}$ and $[p \otimes q]_{M}=[p]_{M} \circ[q]_{M}$
■ $\left[p^{+}\right]_{M}=[p]_{M}^{+}$
$\square[p \Rightarrow f]_{M}=\left\{(s, s) \mid \forall t .(s, t) \in[p]_{M} \Longrightarrow(t, t) \in[f]_{M}\right\}$
■ $[\epsilon]_{M}=\operatorname{id}_{W}$ and $[\Gamma, \Delta]_{M}=[\Gamma]_{M} \circ[\Delta]_{M}$
(Here ${ }^{+}$denotes transitive closure and \circ denotes relational composition.)

The logic S [KT03]

A Kozen-Tiuryn model is a pair $M=(W, V)$ where $V: \mathrm{E} \rightarrow 2^{W \times W}$ such that $V(\mathbf{b}) \subseteq \mathrm{id}_{W}$.

For each M, we define the M-interpretation function [] ${ }_{M}: E x_{\mathrm{S}} \rightarrow 2^{W \times W}$ as follows:

■ [b] ${ }_{M}=V(\mathrm{~b}),[\mathrm{p}]_{M}=V(\mathrm{p})$ and $[0]_{M}=\emptyset$
■ $[b \Rightarrow c]_{M}=\left\{(s, s) \mid(s, s) \notin[b]_{M}\right.$ or $\left.(s, s) \in[c]_{M}\right\}$
■ $[p \oplus q]_{M}=[p]_{M} \cup[q]_{M}$ and $[p \otimes q]_{M}=[p]_{M} \circ[q]_{M}$
■ $\left[p^{+}\right]_{M}=[p]_{M}^{+}$
$\square[p \Rightarrow f]_{M}=\left\{(s, s) \mid \forall t .(s, t) \in[p]_{M} \Longrightarrow(t, t) \in[f]_{M}\right\}$
■ $[\epsilon]_{M}=\operatorname{id}_{W}$ and $[\Gamma, \Delta]_{M}=[\Gamma]_{M} \circ[\Delta]_{M}$
(Here ${ }^{+}$denotes transitive closure and \circ denotes relational composition.)

The logic S [KT03]

A Kozen-Tiuryn model is a pair $M=(W, V)$ where $V: \mathrm{E} \rightarrow 2^{W \times W}$ such that $V(\mathbf{b}) \subseteq \mathrm{id}_{W}$.

For each M, we define the M-interpretation function [] ${ }_{M}: E x_{\mathrm{S}} \rightarrow 2^{W \times W}$ as follows:

■ [b] ${ }_{M}=V(\mathrm{~b}),[\mathrm{p}]_{M}=V(\mathrm{p})$ and $[0]_{M}=\emptyset$
■ $[b \Rightarrow c]_{M}=\left\{(s, s) \mid(s, s) \notin[b]_{M}\right.$ or $\left.(s, s) \in[c]_{M}\right\}$
■ $[p \oplus q]_{M}=[p]_{M} \cup[q]_{M}$ and $[p \otimes q]_{M}=[p]_{M} \circ[q]_{M}$
■ $\left[p^{+}\right]_{M}=[p]_{M}^{+}$
$\square[p \Rightarrow f]_{M}=\left\{(s, s) \mid \forall t .(s, t) \in[p]_{M} \Longrightarrow(t, t) \in[f]_{M}\right\}$
■ $[\epsilon]_{M}=\operatorname{id}_{W}$ and $[\Gamma, \Delta]_{M}=[\Gamma]_{M} \circ[\Delta]_{M}$
(Here ${ }^{+}$denotes transitive closure and \circ denotes relational composition.)

The logic S [KT03]

A sequent $\Gamma \vdash f$ is valid in M iff, for all $s, t \in W$, if $(s, t) \in[\Gamma]_{M}$, then $(t, t) \in[f]_{M}$.

SKAT

A SKAT is $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, \mathrm{t}, \mathrm{e}, 1,0\right)$ where $\left(K, \cdot \cdot+, \rightarrow, \hookrightarrow,{ }^{*}, 1,0\right)$ is a residuated Kleene algebra, and t and e satisfy the following:

$$
\begin{gather*}
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
\mathrm{t}(x+y)=\mathrm{t}(x)+\mathrm{t}(y) \tag{24}\\
\mathrm{e}(x+y)=\mathrm{e}(x)+\mathrm{e}(y) \tag{25}\\
x \leq \mathrm{e}(\mathrm{t}(x)) \tag{26}\\
\mathrm{t}(\mathrm{e}(x)) \leq x \tag{27}\\
x \leq x \mathrm{t}(x) \tag{28}\\
\mathrm{t}(x y) \leq \mathrm{t}(\mathrm{t}(x) y) \tag{29}\\
\mathrm{t}(x \rightarrow y) \leq x \rightarrow x \mathrm{t}(y) \tag{30}\\
1 \leq \mathrm{t}(\mathrm{t}(x) \rightarrow 0)+t(x) \tag{31}
\end{gather*}
$$

SKAT

A SKAT is $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, \mathrm{t}, \mathrm{e}, 1,0\right)$ where $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, 1,0\right)$ is a residuated Kleene algebra, and t and e satisfy the following:

$$
\begin{gather*}
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
\mathrm{t}(x+y)=\mathrm{t}(x)+\mathrm{t}(y) \tag{24}\\
\mathrm{e}(x+y)=\mathrm{e}(x)+\mathrm{e}(y) \tag{25}\\
x \leq \mathrm{e}(\mathrm{t}(x)) \tag{26}\\
\mathrm{t}(\mathrm{e}(x)) \leq x \tag{27}\\
x \leq x \mathrm{t}(x) \tag{28}\\
\mathrm{t}(x y) \leq \mathrm{t}(\mathrm{t}(x) y) \tag{29}\\
\mathrm{t}(x \rightarrow y) \leq x \rightarrow x \mathrm{t}(y) \tag{30}\\
1 \leq \mathrm{t}(\mathrm{t}(x) \rightarrow 0)+t(x) \tag{31}
\end{gather*}
$$

SKAT

A SKAT is $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, \mathrm{t}, \mathrm{e}, 1,0\right)$ where $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, 1,0\right)$ is a residuated Kleene algebra, and t and e satisfy the following:

$$
\begin{gather*}
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
\mathrm{t}(x+y)=\mathrm{t}(x)+\mathrm{t}(y) \tag{24}\\
\mathrm{e}(x+y)=\mathrm{e}(x)+\mathrm{e}(y) \tag{25}\\
x \leq \mathrm{e}(\mathrm{t}(x)) \tag{26}\\
\mathrm{t}(\mathrm{e}(x)) \leq x \tag{27}\\
x \leq x \mathrm{t}(x) \tag{28}\\
\mathrm{t}(x y) \leq \mathrm{t}(\mathrm{t}(x) y) \tag{29}\\
\mathrm{t}(x \rightarrow y) \leq x \rightarrow x \mathrm{t}(y) \tag{30}\\
1 \leq \mathrm{t}(\mathrm{t}(x) \rightarrow 0)+t(x) \tag{31}
\end{gather*}
$$

SKAT

A SKAT is $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, \mathrm{t}, \mathrm{e}, 1,0\right)$ where $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, 1,0\right)$ is a residuated Kleene algebra, and t and e satisfy the following:

$$
\begin{gather*}
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
\mathrm{t}(x+y)=\mathrm{t}(x)+\mathrm{t}(y) \tag{24}\\
\mathrm{e}(x+y)=\mathrm{e}(x)+\mathrm{e}(y) \tag{25}\\
x \leq \mathrm{e}(\mathrm{t}(x)) \tag{26}\\
\mathrm{t}(\mathrm{e}(x)) \leq x \tag{27}\\
x \leq x \mathrm{t}(x) \tag{28}\\
\mathrm{t}(x y) \leq \mathrm{t}(\mathrm{t}(x) y) \tag{29}\\
\mathrm{t}(x \rightarrow y) \leq x \rightarrow x \mathrm{t}(y) \tag{30}\\
1 \leq \mathrm{t}(\mathrm{t}(x) \rightarrow 0)+t(x) \tag{31}
\end{gather*}
$$

SKAT

A SKAT is $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, \mathrm{t}, \mathrm{e}, 1,0\right)$ where $\left(K, \cdot,+, \rightarrow, \hookrightarrow,{ }^{*}, 1,0\right)$ is a residuated Kleene algebra, and t and e satisfy the following:

$$
\begin{gather*}
\mathrm{t}(\mathrm{t}(x) \mathrm{t}(y))=\mathrm{t}(x) \mathrm{t}(y) \tag{14}\\
\mathrm{t}(x) \leq 1 \tag{17}\\
\mathrm{t}(x+y)=\mathrm{t}(x)+\mathrm{t}(y) \tag{24}\\
\mathrm{e}(x+y)=\mathrm{e}(x)+\mathrm{e}(y) \tag{25}\\
x \leq \mathrm{e}(\mathrm{t}(x)) \tag{26}\\
\mathrm{t}(\mathrm{e}(x)) \leq x \tag{27}\\
x \leq x \mathrm{t}(x) \tag{28}\\
\mathrm{t}(x y) \leq \mathrm{t}(\mathrm{t}(x) y) \tag{29}\\
\mathrm{t}(x \rightarrow y) \leq x \rightarrow x \mathrm{t}(y) \tag{30}\\
1 \leq \mathrm{t}(\mathrm{t}(x) \rightarrow 0)+t(x) \tag{31}
\end{gather*}
$$

SKAT

Proposition 3. Each SKAT is an expansion of a KAC.

SKAT

Proposition 3. Each SKAT is an expansion of a KAC.

Theorem 3. There is a function $\operatorname{Tr}: E x_{\mathrm{S}} \rightarrow \mathcal{L}_{S K A T}$ such that $\Gamma \vdash f$ is valid in all $K T$ models iff $\mathrm{t}(\operatorname{Tr}(\Gamma)) \leq \operatorname{Tr}(f)$ is valid in all ${ }^{*}$-continuous SKAT.

Conclusion

OneKAT is a generalization of KAD (and KAC) that keeps (some of) their good properties while it avoids the bad properties, namely:

■ KAT embeds into OneKAT

- Every KA expands into a OneKAT

■ The "choice" of the test subalgebra is rather flexible

Conclusion

OneKAT is a generalization of KAD (and KAC) that keeps (some of) their good properties while it avoids the bad properties, namely:

■ KAT embeds into OneKAT

- Every KA expands into a OneKAT

■ The "choice" of the test subalgebra is rather flexible
Future work:
■ Free OneKAT? (Generalising [McL20])
■ PSPACE-complete?

Thank you!

References I

Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth.
Building program construction and verification tools from algebraic principles.
Formal Aspects of Computing, 28(2):265-293, 2016.
Ernie Cohen, Dexter Kozen, and Frederick Smith.
The complexity of Kleene algebra with tests.
Technical Report TR96-1598, Computer Science Department, Cornell University, July 1996.
Jules Desharnais and Georg Struth.
Modal semirings revisited.
In International Conference on Mathematics of Program Construction, pages 360-387. Springer, 2008.
Jules Desharnais and Georg Struth.
Internal axioms for domain semirings.
Science of Computer Programming, 76(3):181-203, 2011.
Special issue on the Mathematics of Program Construction (MPC 2008).
Stephen C Kleene.
Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3-41. Princeton University Press, 1956.

Dexter Kozen.
A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366-390, 1994.

References II

Dexter Kozen.
Kleene algebra with tests.
ACM Trans. Program. Lang. Syst., 19(3):427-443, May 1997.
Dexter Kozen and Frederick Smith.
Kleene algebra with tests: Completeness and decidability.
In Dirk van Dalen and Marc Bezem, editors, Computer Science Logic, pages 244-259, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

Dexter Kozen and Jerzy Tiuryn.
Substructural logic and partial correctness.
ACM Trans. Computational Logic, 4(3):355-378, July 2003.
Brett McLean.
Free kleene algebras with domain.
Journal of Logical and Algebraic Methods in Programming, 117:100606, 2020.

