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Outline

Kleene algebras [Kle56, Koz94] pop up all around computer science
(regular languages and finite automata, shortest path problems etc.)

Kleene algebras with tests [Koz97] combine Kleene algebra (programs,
actions) with a Boolean algebra of tests (statements); this allows to
represent reasoning about propositional while programs equationally.

Kleene algebras with tests are two-sorted and one-sorted alternatives
have been sought.

Kleene algebra with (co)domain [DS08, DS11] adds to KA a unary
operation d such that d(K) forms a Boolean algebra of tests.
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Outline

KAT embeds into KAD (-), but KAD is too strong:

(,) d(K) forms the largest Boolean subalgebra of the negative cone of K;

(,) not every KA expands to a KAD.

We introduce a generalization of KAD that preserves (-) and avoids (,)

We’ve also shown that the substructural logic of partial correctness S
[KT03] embeds into residuated KAD (called SKAT).
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Outline

1 Kleene algebra with tests

2 Kleene algebra with (co)domain

3 One-sorted KAT

4 KAT embeds into OneKAT

5 SKAT and an embedding of S
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1. Kleene algebra with tests



Kleene algebra

K = (K, ·,+, ∗ , 1, 0)

where (K, ·,+, 1, 0) is an idempotent semiring
(K,+, 0) join-semilattice
(K, ·, 1) monoid
x(y + z) = xy + xz and (x+ y)z = xz + yz

0x = 0 = x0

and ∗ : K → K (Kleene star) satisfies

1 + x+ x∗x∗ ≤ x∗ (1)
xy ≤ y ⇒ x∗y ≤ y (2)
yx ≤ y ⇒ yx∗ ≤ y (3)

KA is ∗-continuous iff xy∗z =
∑

n≥0 xy
nz

Examples: Algebras of binary relations, regular languages, matrices over
semirings, functions from monoids to complete lattices...
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Kleene algebra with tests

K = (K,B, ·,+, ∗ ,−, 1, 0)

(K, ·,+, ∗ , 1, 0) Kleene algebra
B ⊆ K
(B, ·,+,−, 1, 0) Boolean algebra

Propositional while programs
if b then p else q: (bp) + (b̄q), while b do p: (bp)∗b̄

{b}p{c}: bpc̄ = 0

Examples: Binary relations with B = 2id, any KA with B = {1, 0}...

Theorem. The eq. theory of KAT is PSPACE-complete [CKS96], and the Horn
theory with assumptions r = 0 reduces to the eq. theory [KS97].
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2. Kleene algebra with
(co)domain



Kleene algebra with (co)domain

The idea: Expand K = (K, ·,+, ∗, 1, 0) with unary t and a such that

t(K) = (t(K), ·,+, a, 1, 0)

is a Boolean algebra thanks to the properties of t, a.

Inspiration:

d(R) = {(s, s) | ∃tR(s, t)} c(R) = {(t, t) | ∃sR(s, t)}
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Kleene algebra with (co)domain

KAD: K = (K, ·,+, ∗, 1, 0, d, a) where (K, ·,+, ∗, 1, 0) is KA and

x ≤ d(x)x (4)
d(xy) = d(xd(y)) (5)

d(x) ≤ 1 (6)
d(0) = 0 (7)

d(x+ y) = d(x) + d(y) (8)
a(x) + d(x) = 1 (9)
d(x)a(x) = 0 (10)

KAC: A “symmetric variant” with c instead of d.
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Kleene algebra with (co)domain

Theorem. The quasi-equational theory of KAT embeds into the
quasi-equational theory of KAD (and KAC).
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Kleene algebra with (co)domain

Lemma 1. The full relational KAT over any set S “is” a KAD (and a KAC).

Lemma 2. If A is KAD, then d(A) is BA (and similarly for KAC).

Proof. This follows from:
1. d(A) is a subalgebra of A
2. (d(A), ·,+, 1, 0) is a bounded distributive lattice

(since d(x) ≤ 1 and d(x)d(x) = d(x))
3. a(d(x)) is a complement of d(x).
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Kleene algebra with (co)domain

Let Γ ∪ ϕ be a set of equations over LKAT .

Theorem 1. There is a function Tr : LKAT → LKAD such that
KAT |= Γ⇒ ϕ iff KAD |= Tr(Γ)⇒ Tr(ϕ). (Similarly for KAC.)

Proof. Let Tr(pn) = x2n, Tr(bn) = d(x2n+1) and Tr(b̄) = a(Tr(b)), while Tr
commutes with the KA operators. We discuss the case Γ = ∅.

1. If KAT 6|= p ≈ q, then there is a full relationalR 6|= p ≈ q [KS97], i.e. [p] 6= [q]
for some valuation [ ]. By Lemma 1,R is a KAD. Define[[ ]] as the unique
KAD-valuation such that[[x2n]] = [pn] and[[x2n+1]] = [bn].

Claim. For all p ∈ LKAT , [p] =[[Tr(p)]].
(Note that [bn] ∈ B and so [bn] = d[bn] = d[[x2n+1]] =[[Tr(bn)]]. Moreover,
[[Tr(b̄)]] = a[b] = [b̄].)

Hence, KAD 6|= Tr(p) ≈ Tr(q).
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Problem 1: Expanding KA

(,) Not every KA can be expanded to a KAD, not even every finite one.

Example ([DS11]).

• 1 = x∗

• a

• 0 = a · a

If there is a d, then d(a) ∈ {a, 1}.
If d(a) = a, then d(a)a = 0 and so
a 6≤ d(a)a (¬4).
If d(a) = 1, then
d(ad(a)) = 1 6= 0 = d(aa) (¬5).
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Problem 2: Test algebras

(,) The test algebra of each KAD is the maximal Boolean subalgebra of the
negative cone of the underlying KA.

Proof. ([DS11]). It can be shown that d(x) = x for every x such that
∃y(yx = 0 & x+ y = 1), using

1. x ≤ xd(x)

2. d(x) ≤ 1

3. d(y d(x)) ≤ d(yx)
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3. One-sorted KAT



Generalizing KAD

Recall Lemma 2: If A is KAD, then d(A) is BA.

Proof. This follows from:
1. d(A) is a subalgebra of A
2. (d(A), ·,+, 1, 0) is a bounded distributive lattice

(since d(x) ≤ 1 and d(x)d(x) = d(x))
3. a(d(x)) is a complement of d(x).

Question: Is this possible without d(y d(x)) ≤ d(yx) (or x ≤ d(x))?
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OneKAT

K = (K, ·,+, ∗, 1, 0, t, a) where (K, ·,+, ∗, 1, 0) is KA and

t(0) = 0 (11)
t(1) = 1 (12)

t(t(x) + t(y)) = t(x) + t(y) (13)
t(t(x) t(y)) = t(x) t(y) (14)
a(t(x)) = t(a(t(x))) (15)
t(x) t(x) = t(x) (16)

t(x) ≤ 1 (17)
1 ≤ a(t(x)) + t(x) (18)
a(t(x))t(x) ≤ 0 (19)
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OneKAT

Proposition 1. Every KA expands into a OneKAT.

Proof.

t(x) =

{
0 if x = 0

1 otherwise.
a(x) =


1 if x = 0

0 if x = 1

x otherwise.

Proposition 2. The test algebra t(A) = (t(A), ·,+, a, 1, 0) is not necessarily
the largest Boolean subalgebra of the negative cone of the KA underlying A.
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OneKAT and KAD

• 1 = t(a)

• a

• 0 = aa

t(a t(a)) 6≤ t(a a)

• 1

• a

• 0 = aa = t(a)

a 6≤ a t(a)

• 1 = t(b)

• a = aa

• b

• 0 = bb = t(a)

t(a a) 6≤ t(a t(a))
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OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If A is a OneKAT, then t(A) is a BA.

Proof. By definition of OneKAT:
1. t(A) = (t(A), ·,+, a, 1, 0) is a subalgebra of A;
2. (t(A), ·,+, 1, 0) is a bounded distributive lattice;
3. a(t(x)) is a complement of t(x).

I. Sedlár, J. J. Wannenburg (ICS CAS) One-Sorted Program Algebras TACL 2022 18 / 26



OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If A is a OneKAT, then t(A) is a BA.

Proof. By definition of OneKAT:
1. t(A) = (t(A), ·,+, a, 1, 0) is a subalgebra of A;
2. (t(A), ·,+, 1, 0) is a bounded distributive lattice;
3. a(t(x)) is a complement of t(x).

I. Sedlár, J. J. Wannenburg (ICS CAS) One-Sorted Program Algebras TACL 2022 18 / 26



OneKAT and KAD

Lemma 3. Every KAD (and KAC) is a OneKAT.

Lemma 4. If A is a OneKAT, then t(A) is a BA.

Proof. By definition of OneKAT:
1. t(A) = (t(A), ·,+, a, 1, 0) is a subalgebra of A;
2. (t(A), ·,+, 1, 0) is a bounded distributive lattice;
3. a(t(x)) is a complement of t(x).

I. Sedlár, J. J. Wannenburg (ICS CAS) One-Sorted Program Algebras TACL 2022 18 / 26



A related generalization of KAD

A few days ago we’ve been notified about [AGS16] where a related
generalization is briefly mentioned:

A = (A, ·,+, ∗, n, 1, 0), where t(x) := n(n(x)) and

t(1) = 1 (20)
t(t(x)t(y)) = t(y)t(x) (21)

n(x)t(x) = 0 (22)
n(x) + n(y) = n(t(x)t(y)) (23)

This generalization has all the good properties of OneKAT.
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4. KAT embeds into OneKAT



KAT and OneKAT

Theorem 2. There is a function Tr : LKAT → LOneKAT such that
KAT |= Γ⇒ ϕ iff OneKAT |= Tr(Γ)⇒ Tr(ϕ). (Similarly for KAC.)

Proof. Tr is defined as before. We reason for Γ = ∅. By Theorem 1, if KAT 6|= p ≈ q,
then KAD 6|= Tr(p) ≈ Tr(q) and so by Lemma 3, OneKAT 6|= Tr(p) ≈ Tr(q).

If OneKAT 6|= Tr(p) ≈ Tr(q), then[[p]]A 6=[[q]]A where
K = (A, t(A), ·,+, ∗, a, 1, 0) is a KAT by Lemma 4.
We define [ ]K as before and prove that[[Tr(p)]]A = [p]K for all p as before. It
follows that KAT 6|= p ≈ q.
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5. SKAT and an embedding of S



The logic S [KT03]

Let B = {bi | i ∈ ω} be the set of test variables and let P = {pi | i ∈ ω} be
the set of program variables. Let E = B ∪ P

• tests b, c := bi | 0 | b⇒ c

• programs p, q := pi | b | p⊕ q | p⊗ q | p+

• formulas f, g := b | p⇒ f

• environments Γ,∆ := ε | Γ, p | Γ, f
• sequents Γ ` f

Let ExS be the union of the sets of formulas, programs and environments.
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The logic S [KT03]

A Kozen–Tiuryn model is a pair M = (W,V ) where V : E→ 2W×W such
that V (b) ⊆ idW .

For each M , we define the M -interpretation function [ ]M : ExS → 2W×W

as follows:
[b]M = V (b), [p]M = V (p) and [0]M = ∅
[b⇒ c]M = {(s, s) | (s, s) 6∈ [b]M or (s, s) ∈ [c]M}
[p⊕ q]M = [p]M ∪ [q]M and [p⊗ q]M = [p]M ◦ [q]M
[p+]M = [p]+M
[p⇒ f]M = {(s, s) | ∀t.(s, t) ∈ [p]M =⇒ (t, t) ∈ [f]M}
[ε]M = idW and [Γ,∆]M = [Γ]M ◦ [∆]M

(Here + denotes transitive closure and ◦ denotes relational composition.)
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that V (b) ⊆ idW .

For each M , we define the M -interpretation function [ ]M : ExS → 2W×W

as follows:
[b]M = V (b), [p]M = V (p) and [0]M = ∅
[b⇒ c]M = {(s, s) | (s, s) 6∈ [b]M or (s, s) ∈ [c]M}
[p⊕ q]M = [p]M ∪ [q]M and [p⊗ q]M = [p]M ◦ [q]M
[p+]M = [p]+M
[p⇒ f]M = {(s, s) | ∀t.(s, t) ∈ [p]M =⇒ (t, t) ∈ [f]M}
[ε]M = idW and [Γ,∆]M = [Γ]M ◦ [∆]M

(Here + denotes transitive closure and ◦ denotes relational composition.)
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The logic S [KT03]

A sequent Γ ` f is valid in M iff, for all s, t ∈W , if (s, t) ∈ [Γ]M , then
(t, t) ∈ [f]M .
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SKAT

A SKAT is (K, ·,+,→, ↪→, ∗, t, e, 1, 0) where (K, ·,+,→, ↪→, ∗, 1, 0) is a
residuated Kleene algebra, and t and e satisfy the following:

t(t(x)t(y)) = t(x) t(y) (14)
t(x) ≤ 1 (17)

t(x+ y) = t(x) + t(y) (24)
e(x+ y) = e(x) + e(y) (25)

x ≤ e(t(x)) (26)
t(e(x)) ≤ x (27)
x ≤ xt(x) (28)

t(xy) ≤ t(t(x)y) (29)
t(x→ y) ≤ x→ xt(y) (30)
1 ≤ t(t(x)→ 0) + t(x) (31)
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SKAT

Proposition 3. Each SKAT is an expansion of a KAC.

Theorem 3. There is a function Tr : ExS → LSKAT such that Γ ` f is valid
in all KT models iff t(Tr(Γ)) ≤ Tr(f) is valid in all ∗-continuous SKAT.
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Conclusion

OneKAT is a generalization of KAD (and KAC) that keeps (some of) their good
properties while it avoids the bad properties, namely:

KAT embeds into OneKAT
Every KA expands into a OneKAT
The “choice” of the test subalgebra is rather flexible

Future work:
Free OneKAT? (Generalising [McL20])
PSPACE-complete?
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Thank you!
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