Sums of Kripke frames and locally finite modal logics

Ilya Shapirovsky

New Mexico State University

TACL-2022, Coimbra, June 2022

Given a family $(F_i | i \text{ in } I)$ of frames indexed by elements of another frame I, the sum of the frames F_i 's over I is obtained from the disjoint union of F_i 's by connecting elements of *i*-th and *j*-th distinct components according to the relations in I.

Unimodal case: frame of indices I = (I, S); frames-summands $F_i = (W_i, R_i)$, *i* in I.

For classes \mathcal{I} , \mathcal{F} of frames, $\sum_{\mathcal{I}} \mathcal{F}$ is the class of all sums $\sum_{i \in I} F_i$ such that $I \in \mathcal{I}$ and $F_i \in \mathcal{F}$ for every i in I.

Idea: To study the modal logic of a class of sums via logics of summands/indices.

This is not a new approach: In classical model theory, *"composition theorems"* reduce the theory (FO, MSO) of a compound structure to theories of its components ([Feferman-Vaught 1959], [Shelah 1975], [Gurevich 1979], ...)

General observation:

In many cases, the modal satisfiability problem on sums can be reduced to the modal satisfiability problem on summands. This gives transfer results for

- finite model property and decidability,
- computational complexity,
- local finiteness.

Given a family $(F_i | i \text{ in } I)$ of frames indexed by elements of another frame I, the sum of the frames F_i 's over I is obtained from the disjoint union of F_i 's by connecting elements of *i*-th and *j*-th distinct components according to the relations in I.

Unimodal case: frame of indices I = (I, S); frames-summands $F_i = (W_i, R_i)$, *i* in I.

For classes \mathcal{I} , \mathcal{F} of frames, $\sum_{\mathcal{I}} \mathcal{F}$ is the class of all sums $\sum_{i \in I} F_i$ such that $I \in \mathcal{I}$ and $F_i \in \mathcal{F}$ for every *i* in I.

[Beklemishev 2007] Iterated sums over Noetherian orders are models for Japaridze's polymodal provability logic *GLP*.

[Balbiani 2009; Balbiani and Mikulás 2013; Balbiani and Fernández-Duque 2016]: Lexicographic products of modal logics

[Babenyshev and Rybakov 2010] Refinement of modal logics

[Sh 2008; 2020] *GLP* is decidable in PSpace. In general, the sum operation over Noetherian orders preserves "good" computational properties (satisfiability is sums is polynomial space Turing reducible to summands).

Given a family $(F_i | i \text{ in } I)$ of frames indexed by elements of another frame I, the sum of the frames F_i 's over I is obtained from the disjoint union of F_i 's by connecting elements of *i*-th and *j*-th distinct components according to the relations in I.

Unimodal case: frame of indices I = (I, S); frames-summands $F_i = (W_i, R_i)$, *i* in I.

For classes \mathcal{I} , \mathcal{F} of frames, $\sum_{\mathcal{I}} \mathcal{F}$ is the class of all sums $\sum_{i \in I} F_i$ such that $I \in \mathcal{I}$ and $F_i \in \mathcal{F}$ for every i in I.

Finite model property

For simplicity of notation, results below are formulated for the unimodal case. They work for the polymodal case as well.

Theorem. Let \mathcal{I} , \mathcal{F} , \mathcal{G} be classes of frames.

- Corollary of [Babenyshev and Rybakov 2010]: If $\operatorname{Log} \mathcal{I}$ and $\operatorname{Log} \mathcal{F}$ admit filtration, then $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$ admits filtration.
- [Sh 2018] Put $\mathcal{F} \equiv \mathcal{G}$ iff \mathcal{F} and \mathcal{G} have the same modal logic in the language enriched with the universal modality. We have for any \mathcal{I} : If $\mathcal{F} \equiv \mathcal{G}$, then $\sum_{\mathcal{I}} \mathcal{F} \equiv \sum_{\mathcal{I}} \mathcal{G}$.
- [Sh 2018] If *I* is a class of Noetherian orders that contains all finite trees, then

$$\operatorname{Log}\sum_{\mathcal{I}}\mathcal{F} = \operatorname{Log}\sum_{\operatorname{finite trees}}\mathcal{F}$$

In particular, if $\operatorname{Log} \mathcal{F}^{\forall}$ has the FMP, then so does $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$: it is complete w.r.t.

 $\sum_{\text{finite trees}} \{ \text{finite frames of } \operatorname{Log} \mathcal{F} \}.$

Finite model property

For simplicity of notation, results below are formulated for the unimodal case. They work for the polymodal case as well.

Theorem. Let \mathcal{I} , \mathcal{F} , \mathcal{G} be classes of frames.

- Corollary of [Babenyshev and Rybakov 2010]: If $\operatorname{Log} \mathcal{I}$ and $\operatorname{Log} \mathcal{F}$ admit filtration, then $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$ admits filtration.
- [Sh 2018] Put F ≡ G iff F and G have the same modal logic in the language enriched with the universal modality. We have for any I:
 If F ≡ G, then ∑_I F ≡ ∑_I G.
- [Sh 2018] If *I* is a class of Noetherian orders that contains all finite trees, then

$$\operatorname{Log}\sum_{\mathcal{I}}\mathcal{F} = \operatorname{Log}\sum_{\operatorname{finite trees}}\mathcal{F}$$

In particular, if $\operatorname{Log} \mathcal{F}^{\forall}$ has the FMP, then so does $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$: it is complete w.r.t.

 $\sum_{\text{finite trees}} \{ \text{finite frames of } \operatorname{Log} \mathcal{F} \}.$

Informally, filtration is a method of collapsing an infinite model into a finite one while preserving the truth value of a given formula. It is widely used as a tool for establishing the finite model property and decidability of modal logics.

A logic *L* admits filtration iff any *L*-model can be "filtrated" into a finite *L*-model

 \Rightarrow

L admits filtration

L has the fmp.

Many standard modal logics admit filtration.

Finite model property

For simplicity of notation, results below are formulated for the unimodal case. They work for the polymodal case as well.

Theorem. Let \mathcal{I} , \mathcal{F} , \mathcal{G} be classes of frames.

- Corollary of [Babenyshev and Rybakov 2010]: If $\operatorname{Log} \mathcal{I}$ and $\operatorname{Log} \mathcal{F}$ admit filtration, then $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$ admits filtration.
- [Sh 2018] Put F ≡ G iff F and G have the same modal logic in the language enriched with the universal modality. We have for any I:
 If F ≡ G, then ∑_I F ≡ ∑_I G.
- [Sh 2018] If *I* is a class of Noetherian orders that contains all finite trees, then

$$\operatorname{Log}\sum_{\mathcal{I}}\mathcal{F} = \operatorname{Log}\sum_{\operatorname{finite trees}}\mathcal{F}$$

In particular, if $\operatorname{Log} \mathcal{F}^{\forall}$ has the FMP, then so does $\operatorname{Log} \sum_{\mathcal{I}} \mathcal{F}$: it is complete w.r.t.

 $\sum_{\text{finite trees}} \{ \text{finite frames of } \operatorname{Log} \mathcal{F} \}.$

Universal modality on a set W is interpreted by the relation $W \times W$.

Enriching modal language with universal modality does not necessarily preserve the fmp/decidability [Wolter 94; Spaan 1993].

Fortunately, in many cases (for example, for logics that admit filtration or for logics of transitive relations) it does [Goranko and Passi 1991; Spaan 1996].

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

 $A \leq_{\mathrm{T}}^{\mathrm{PSpace}} B \in \mathrm{PSpace} \Rightarrow A \in \mathrm{PSpace}$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then Sat $(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\mathrm{PSpace}} \mathrm{Sat} \mathcal{F}^{\forall}$.

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

$$A \leq_{\mathrm{T}}^{\mathrm{PSpace}} B \in \mathrm{PSpace} \Rightarrow A \in \mathrm{PSpace}$$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then $\operatorname{Sat}(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\operatorname{PSpace}} \operatorname{Sat} \mathcal{F}^{\forall}.$

Remark 1: We have

Sat
$$\mathcal{F}^{\forall} \leq^{\operatorname{PSpace}}_{\operatorname{T}}$$
 Sat \mathcal{F}

in many cases (e.g., when \mathcal{F} is the class of frames of a transitive logic); hence:

$$\operatorname{Sat} \sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\operatorname{PSpace}} \operatorname{Sat} \mathcal{F}$$

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

 $\textbf{\textit{A}} \leq^{\operatorname{PSpace}}_{\operatorname{T}} \textbf{\textit{B}} \in \operatorname{PSpace} \ \Rightarrow \ \textbf{\textit{A}} \in \operatorname{PSpace}$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then $\operatorname{Sat}(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\operatorname{PSpace}} \operatorname{Sat} \mathcal{F}^{\forall}.$

Remark 1: We have

Sat $\mathcal{F}^{\forall} \leq^{\operatorname{PSpace}}_{\operatorname{T}}$ Sat \mathcal{F}

in many cases (e.g., when \mathcal{F} is the class of frames of a transitive logic); hence:

$$\operatorname{Sat} \sum_{\mathcal{I}} \mathcal{F} \leq^{\operatorname{PSpace}}_{\operatorname{T}} \operatorname{Sat} \mathcal{F}$$

Example. The logic of preorders S4

 $[\mbox{McKinsey 1941}]\ S4$ has the FMP, so is decidable.

[Ladner 1977] $S4 \in PSpace$.

Complexity via sums: Clusters are frames of form

 $(C, C \times C).$

Every preorder is a sum $\sum_{\text{partial order}}$ (clusters). Hence S4 is the logic of the class

$$\sum_{\text{finite posets}} \text{clusters.}$$

Thus:

Sat(preorders) \leq_{T}^{PSpace} Sat(clusters)

The satisfiability on clusters is (trivially) in $\rm NP$, so is in $\rm PSpace$

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

 $A \leq_{\mathrm{T}}^{\mathrm{PSpace}} B \in \mathrm{PSpace} \Rightarrow A \in \mathrm{PSpace}$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then $\operatorname{Sat}(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\operatorname{PSpace}} \operatorname{Sat} \mathcal{F}^{\forall}.$

Remark 1: We have

Sat $\mathcal{F}^{\forall} \leq^{\operatorname{PSpace}}_{\operatorname{T}}$ Sat \mathcal{F}

in many cases (e.g., when \mathcal{F} is the class of frames of a transitive logic); hence:

$$\operatorname{Sat} \sum_{\mathcal{I}} \mathcal{F} \leq^{\operatorname{PSpace}}_{\operatorname{T}} \operatorname{Sat} \mathcal{F}$$

 $\mbox{Example.}$ The logic of weakly transitive relations wK4

R is weakly transitive iff

 $xRyRz \Rightarrow xRz \lor x = z$

[Esakia 2001]

1. wK4 is the logic of all topological spaces, where \Diamond is the topological derivative.

2. $w\mathrm{K4}$ has the FMP and decidable.

Corollary. wK4 \in PSpace.

 $\ensuremath{\text{Proof.}}$ Because of the FMP, wK4 is the logic of

$$\sum_{\text{finite PO}} C$$
,

where

(W, R) is in C iff R contains the difference relation:

$$x \neq y \Rightarrow xRy.$$

A simple fact: $\operatorname{Sat} \mathcal{C}$ is in NP.

4/6

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

 $A \leq_{\mathrm{T}}^{\mathrm{PSpace}} B \in \mathrm{PSpace} \Rightarrow A \in \mathrm{PSpace}$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then Sat $(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\mathrm{PSpace}} \mathrm{Sat} \mathcal{F}^{\forall}$.

Remark 2: Statement (2) allows to consider Sat on sums of sums of sums...

[Simon and Gill 1977] Polynomial space Turing reductions: For problems A and B, $A \leq_{\rm T}^{\rm PSpace} B$ iff there exists a polynomial space bounded oracle deterministic machine M with oracle B that recognizes A.

 $A \leq_{\mathrm{T}}^{\mathrm{PSpace}} B \in \mathrm{PSpace} \Rightarrow A \in \mathrm{PSpace}$

Theorem [Sh 2020] Let \mathcal{F} be a class of frames, \mathcal{I} a class of Noetherian orders containing all finite trees. Then:

- Sat $\sum_{\mathcal{I}} \mathcal{F} \leq_{\mathrm{T}}^{\mathrm{PSpace}}$ Sat \mathcal{F}^{\forall} .
- If also \mathcal{I} is closed under finite disjoint unions, then Sat $(\sum_{\mathcal{I}} \mathcal{F})^{\forall} \leq_{\mathrm{T}}^{\mathrm{PSpace}} \mathrm{Sat} \mathcal{F}^{\forall}$.

Remark 2: Statement (2) allows to consider Sat on sums of sums of sums...

Example. Polymodal Provability Logic *GLP* [Japaridze 1986].

GLP is an important system in proof theory. It axiomatizes so called *graded provability algebras* (Lindenbaum boolean algebras of formal theories like PA enriched by provability operators [0], [1], [2] of different strength). *GLP* is Kripke-incomplete.

[Beklemishev 2007] *GLP* is polynomialtime reducible to the logic of iterated sums over Noetherian orders:

Corollary. $GLP \in PSpace$. Proof (sketch).

 $Sat(\{singleton\}) \in NP$

The algebra Alg(F) of a frame $F = (X, (R_a)_{a \in A})$ is the powerset algebra of X endowed with

 $\Diamond_a : \mathcal{P}(X) \to \mathcal{P}(X),$

where for $Y \subseteq X$, $\Diamond_a(Y) = R_a^{-1}[Y]$.

 $\begin{array}{l} \operatorname{Log}(\mathsf{F}) \text{ is } \mathsf{LF} \xrightarrow{\Rightarrow} \operatorname{Alg}(\mathsf{F}) \text{ is } \mathsf{LF} \xrightarrow{\Rightarrow} \operatorname{Log}(\mathsf{F}) \\ \text{has the FMP.} \end{array}$

The algebra Alg(F) of a frame $F = (X, (R_a)_{a \in A})$ is the powerset algebra of X endowed with

 $\Diamond_a : \mathcal{P}(X) \to \mathcal{P}(X),$

where for $Y \subseteq X$, $\Diamond_a(Y) = R_a^{-1}[Y]$.

 $\operatorname{Log}(F)$ is LF $\stackrel{\Rightarrow}{\Leftarrow} \operatorname{Alg}(F)$ is LF $\stackrel{\Rightarrow}{\Leftarrow} \operatorname{Log}(F)$ has the FMP.

Main lemma (2022) Let $A < \omega$ be the alphabet of modal operators. Let $(F_i)_{i \in I}$ be a family of A-frames, $I = (I, (S_a)_A)$ be an A-frame with all S_a irreflexive.

- If the algebras $\operatorname{Alg}(\bigsqcup_{I} F_{i})$ and $\operatorname{Alg}(I)$ are locally finite, then $\operatorname{Alg}(\sum_{I} F_{i})$ is locally finite.
- If the logics $Log(\bigsqcup_i F_i)$ and Log(I)are locally finite, then $Log(\sum_i F_i)$ is locally finite.

The algebra Alg(F) of a frame $F = (X, (R_a)_{a \in A})$ is the powerset algebra of X endowed with

 $\Diamond_a : \mathcal{P}(X) \to \mathcal{P}(X),$

where for $Y \subseteq X$, $\Diamond_a(Y) = R_a^{-1}[Y]$.

Log(F) is LF $\stackrel{\Rightarrow}{\Leftarrow} Alg(F)$ is LF $\stackrel{\Rightarrow}{\Leftarrow} Log(F)$ has the FMP.

Main lemma (2022) Let $A < \omega$ be the alphabet of modal operators. Let $(F_i)_{i \in I}$ be a family of A-frames, $I = (I, (S_a)_A)$ be an A-frame with all S_a irreflexive.

- If the algebras $\operatorname{Alg}(\bigsqcup_{I} F_{i})$ and $\operatorname{Alg}(I)$ are locally finite, then $\operatorname{Alg}(\sum_{I} F_{i})$ is locally finite.
- If the logics $Log(\bigsqcup_i F_i)$ and Log(I)are locally finite, then $Log(\sum_i F_i)$ is locally finite.

[Malcev, 1960s] The variety Var(A) of a finite signature is LF iff $\exists f : \omega \to \omega$ s.t. the cardinality of a subalgebra of A generated by $m < \omega$ elements is $\leq f(m)$.

The algebra Alg(F) of a frame $F = (X, (R_a)_{a \in A})$ is the powerset algebra of X endowed with

 $\Diamond_a : \mathcal{P}(X) \to \mathcal{P}(X),$

where for $Y \subseteq X$, $\Diamond_a(Y) = R_a^{-1}[Y]$.

 $\operatorname{Log}(F)$ is LF $\stackrel{\Rightarrow}{\Leftarrow} \operatorname{Alg}(F)$ is LF $\stackrel{\Rightarrow}{\Leftarrow} \operatorname{Log}(F)$ has the FMP.

Main lemma (2022) Let $A < \omega$ be the alphabet of modal operators. Let $(F_i)_{i \in I}$ be a family of A-frames, $I = (I, (S_a)_A)$ be an A-frame with all S_a irreflexive.

- If the algebras Alg(∐_i F_i) and Alg(I) are locally finite, then Alg(∑_i F_i) is locally finite.
- If the logics $Log(\bigsqcup_{i} F_{i})$ and Log(I)are locally finite, then $Log(\sum_{i} F_{i})$ is locally finite.

[Malcev, 1960s] The variety Var(A) of a finite signature is LF iff $\exists f : \omega \to \omega$ s.t. the cardinality of a subalgebra of A generated by $m < \omega$ elements is $\leq f(m)$.

Let I = (I, S) be a unimodal frame, $(F_i)_{i \in I}$ a family of A-frames, $F_i =$ $(W_i, (R_{i,a})_{a \in A})$ The *lexicographic sum* $\sum_{i=1}^{lex} F_i$ is the (1+A)frame $(\bigsqcup_{i \in I} W_i, S^{\text{lex}}, (R_a)_{a < N})$, where $(i, w)S^{\text{lex}}(j, u)$ iff iSj, $(i, w)R_a(j, u)$ iff $i = j \& wR_{i,a}u$. For a class ${\mathcal F}$ of A-frames and a class ${\mathcal I}$ of 1-frames, $\sum_{\mathcal{T}} \mathcal{F}$ denotes the class of all sums $\sum_{i} F_{i}$, where $I \in \mathcal{I}$ and all F_{i} are in F

Theorem (2022). If $Log(\mathcal{F})$ and $Log(\mathcal{I})$ are LF, then $Log(\sum_{\mathcal{I}}^{lex} \mathcal{F})$ is LF.

The algebra Alg(F) of a frame $F = (X, (R_a)_{a \in A})$ is the powerset algebra of X endowed with

 $\Diamond_a : \mathcal{P}(X) \to \mathcal{P}(X),$

where for $Y \subseteq X$, $\Diamond_a(Y) = R_a^{-1}[Y]$.

$$\operatorname{Log}(\mathsf{F})$$
 is $\operatorname{LF} \stackrel{\Rightarrow}{\Leftarrow} \operatorname{Alg}(\mathsf{F})$ is $\operatorname{LF} \stackrel{\Rightarrow}{\Leftarrow} \operatorname{Log}(\mathsf{F})$
has the FMP.

Main lemma (2022) Let $A < \omega$ be the alphabet of modal operators. Let $(F_i)_{i \in I}$ be a family of A-frames, $I = (I, (S_a)_A)$ be an A-frame with all S_a irreflexive.

- If the algebras Alg(∐_i F_i) and Alg(I) are locally finite, then Alg(∑_i F_i) is locally finite.
- If the logics $Log(\bigsqcup_{I} F_{i})$ and Log(I)are locally finite, then $Log(\sum_{I} F_{i})$ is locally finite.

[Malcev, 1960s] The variety Var(A) of a finite signature is LF iff $\exists f : \omega \to \omega$ s.t. the cardinality of a subalgebra of A generated by $m < \omega$ elements is $\leq f(m)$.

Formulas of finite height (unimodal case):

$$B_0 = \bot, \quad B_{i+1} = p_{i+1} \to \Box(\Diamond p_{i+1} \lor B_i)$$

[Segerberg 1971; Maksimova 1975] The logic of a class of transitive frames is locally finite iff it contains one of B_i 's.

The non-transitive and polymodal cases are much less studied...

[Balbiani 2009] The following formulas are valid in every lexicographic sum: $\begin{aligned} \alpha &= \Diamond_1 \Diamond_0 p \to \Diamond_0 p, \ \beta &= \Diamond_0 \Diamond_1 p \to \Diamond_0 p, \\ \gamma &= \Diamond_0 p \to \Box_1 \Diamond_0 p. \end{aligned}$ Moreover, in many cases

$$\sum_{L_1}^{lex} L_2 = L_1 * L_2 + \{\alpha, \beta, \gamma\},$$

where $L_1 * L_2$ denotes the fusion.

Theorem (2022). Let L_1 and L_2 be locally finite canonical unimodal logics. If the class $\operatorname{Frames} L_1$ is definable in first-order language without equality, then the logic

$$\mathit{L}_1 \ast \mathit{L}_2 + \{ \alpha, \beta, \gamma \}$$

is locally finite.

Thank you!