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Many important normal modal logics can
by characterized as logics of sums of rela-
tional structures.
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tional structures.

Idea: To study the modal logic of a class
of sums via logics of summands/indices.

This is not a new approach:
In classical model theory, �composition the-
orems� reduce the theory (FO, MSO) of a
compound structure to theories of its com-
ponents ([Feferman�Vaught 1959], [She-
lah 1975], [Gurevich 1979], ...)

General observation:
In many cases, the modal satis�ability
problem on sums can be reduced to
the modal satis�ability problem on sum-
mands.This gives transfer results for

�nite model property and
decidability,

computational complexity,

local �niteness.
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Many important normal modal logics can
by characterized as logics of sums of rela-
tional structures.

[Beklemishev 2007] Iterated sums
over Noetherian orders are models for
Japaridze's polymodal provability logic
GLP.

[Balbiani 2009; Balbiani and Mikul�as 2013;
Balbiani and Fern�andez-Duque 2016]:
Lexicographic products of modal logics

[Babenyshev and Rybakov 2010]
Re�nement of modal logics

[Sh 2008; 2020] GLP is decidable in
PSpace. In general, the sum operation
over Noetherian orders preserves �good�
computational properties (satis�ability is
sums is polynomial space Turing reducible
to summands).
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Finite model property

For simplicity of notation, results below are formu-

lated for the unimodal case. They work for the poly-

modal case as well.

Theorem. Let I, F , G be classes of
frames.

Corollary of [Babenyshev and
Rybakov 2010]: If Log I and LogF
admit �ltration, then Log

∑
I F

admits �ltration.

[Sh 2018] Put F ≡ G i� F and G
have the same modal logic in the
language enriched with the universal
modality. We have for any I:
If F ≡ G, then

∑
I F ≡

∑
I G.

[Sh 2018] If I is a class of
Noetherian orders that contains all
�nite trees, then

Log
∑
I

F = Log
∑

�nite trees

F

In particular, if LogF∀ has the
FMP, then so does Log

∑
I F : it is

complete w.r.t.∑
�nite trees

{�nite frames of LogF}.
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�nite trees, then

Log
∑
I

F = Log
∑

�nite trees

F

In particular, if LogF∀ has the
FMP, then so does Log

∑
I F : it is

complete w.r.t.∑
�nite trees

{�nite frames of LogF}.

Informally, �ltration is a method of collaps-
ing an in�nite model into a �nite one while
preserving the truth value of a given for-
mula. It is widely used as a tool for estab-
lishing the �nite model property and decid-
ability of modal logics.

A logic L admits �ltration i� any L-model
can be ��ltrated� into a �nite L-model.

L admits �ltration
⇒
⇍ L has the fmp.

Many standard modal logics admit �ltra-
tion.
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Finite model property

For simplicity of notation, results below are formu-

lated for the unimodal case. They work for the poly-

modal case as well.

Theorem. Let I, F , G be classes of
frames.

Corollary of [Babenyshev and
Rybakov 2010]: If Log I and LogF
admit �ltration, then Log
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∑
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[Sh 2018] If I is a class of
Noetherian orders that contains all
�nite trees, then

Log
∑
I

F = Log
∑

�nite trees

F

In particular, if LogF∀ has the
FMP, then so does Log

∑
I F : it is

complete w.r.t.∑
�nite trees

{�nite frames of LogF}.

Universal modality on a set W is inter-
preted by the relation W ×W .

Enriching modal language with universal
modality does not necessarily preserve the
fmp/decidability [Wolter 94; Spaan 1993].

Fortunately, in many cases (for example,
for logics that admit �ltration or for logics
of transitive relations) it does [Goranko and
Passi 1991; Spaan 1996].
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Complexity

[Simon and Gill 1977]
Polynomial space Turing reductions:

For problems A and B, A ≤PSpace
T

B i�
there exists a polynomial space bounded
oracle deterministic machine M with ora-
cle B that recognizes A.

A ≤PSpace
T

B ∈ PSpace ⇒ A ∈ PSpace

Theorem [Sh 2020] Let F be a class of
frames, I a class of Noetherian orders con-
taining all �nite trees. Then:

Sat
∑

I F ≤PSpace
T

SatF∀.

If also I is closed under �nite
disjoint unions, then

Sat (
∑

I F)∀ ≤PSpace
T

SatF∀.
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Remark 1: We have

SatF∀ ≤PSpace
T

SatF

in many cases (e.g., when F is the class of
frames of a transitive logic); hence:

Sat
∑
I

F ≤PSpace
T

SatF

Example. The logic of preorders S4

[McKinsey 1941] S4 has the FMP, so is
decidable.

[Ladner 1977] S4 ∈ PSpace.

Complexity via sums: Clusters
are frames of form

(C ,C × C).

Every preorder is a sum∑
partial order (clusters). Hence S4 is the

logic of the class∑
�nite posets

clusters.

Thus:

Sat(preorders) ≤PSpace
T

Sat(clusters)

The satis�ability on clusters is (trivially) in
NP, so is in PSpace.
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[Simon and Gill 1977]
Polynomial space Turing reductions:

For problems A and B, A ≤PSpace
T

B i�
there exists a polynomial space bounded
oracle deterministic machine M with ora-
cle B that recognizes A.
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Remark 1: We have

SatF∀ ≤PSpace
T

SatF

in many cases (e.g., when F is the class of
frames of a transitive logic); hence:

Sat
∑
I

F ≤PSpace
T

SatF

Example. The logic of weakly transitive
relations wK4

R is weakly transitive i�

xRyRz ⇒ xRz ∨ x = z

[Esakia 2001]
1. wK4 is the logic of all topological
spaces, where ♢ is the topological deriva-
tive.
2. wK4 has the FMP and decidable.

Corollary. wK4 ∈ PSpace.

Proof. Because of the FMP, wK4 is
the logic of ∑

�nite PO

C,

where
(W ,R) is in C i� R contains the di�erence
relation:

x ̸= y ⇒ xRy .

A simple fact: Sat C is in NP.
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taining all �nite trees. Then:

Sat
∑

I F ≤PSpace
T

SatF∀.

If also I is closed under �nite
disjoint unions, then

Sat (
∑

I F)∀ ≤PSpace
T

SatF∀.

Remark 2: Statement (2) allows to
consider Sat on sums of sums of sums...

Example. Polymodal Provability Logic
GLP [Japaridze 1986].

GLP is an important system in proof the-
ory. It axiomatizes so called graded prov-
ability algebras (Lindenbaum boolean alge-
bras of formal theories like PA enriched by
provability operators [0], [1], [2] of di�erent
strength).
GLP is Kripke-incomplete.

[Beklemishev 2007] GLP is polynomial-
time reducible to the logic of iterated sums
over Noetherian orders:

Corollary. GLP ∈ PSpace.
Proof (sketch).

Sat({singleton}) ∈ NP
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Local �niteness

The algebra Alg(F ) of a frame F =
(X , (Ra)a∈A) is the powerset algebra of X
endowed with

♢a : P(X ) → P(X ),

where for Y ⊆ X , ♢a(Y ) = R−1
a [Y ].

Log(F) is LF
⇒
⇍ Alg(F) is LF

⇒
⇍ Log(F)

has the FMP.
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[Malcev, 1960s] The variety Var(A) of a
�nite signature is LF i� ∃f : ω → ω s.t. the
cardinality of a subalgebra of A generated
by m < ω elements is ≤ f (m).

Let I = (I ,S) be a unimodal frame,
(Fi )i∈I a family of A-frames, Fi =
(Wi , (Ri,a)a∈A).

The lexicographic sum
lex∑

IFi is the (1+A)-

frame
(⊔

i∈I Wi , S
lex, (Ra)a<N

)
, where

(i ,w)S lex(j , u) i� iSj ,

(i ,w)Ra(j , u) i� i = j & wRi,au.

For a class F of A-frames and a class I

of 1-frames,
lex∑

IF denotes the class of all

sums
lex∑

IFi , where I ∈ I and all Fi are in
F .

Theorem (2022). If Log(F) and Log(I)

are LF, then Log(
lex∑

IF) is LF.
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[Malcev, 1960s] The variety Var(A) of a
�nite signature is LF i� ∃f : ω → ω s.t. the
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by m < ω elements is ≤ f (m).

Formulas of �nite height (unimodal case):

B0 = ⊥, Bi+1 = pi+1 → □(♢pi+1 ∨ Bi )

[Segerberg 1971; Maksimova 1975]
The logic of a class of transitive frames is
locally �nite i� it contains one of Bi 's.

The non-transitive and polymodal cases are
much less studied...

[Balbiani 2009] The following formulas are
valid in every lexicographic sum:
α = ♢1♢0p → ♢0p, β = ♢0♢1p → ♢0p,
γ = ♢0p → □1♢0p.
Moreover, in many cases

lex∑
L1
L2 = L1 ∗ L2 + {α, β, γ},

where L1 ∗ L2 denotes the fusion.

Theorem (2022). Let L1 and L2 be lo-
cally �nite canonical unimodal logics. If the
class Frames L1 is de�nable in �rst-order
language without equality, then the logic

L1 ∗ L2 + {α, β, γ}

is locally �nite.
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Thank you!
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